Two-stage physics-based Wiener process models for online RUL prediction in field vibration data
•We propose the two-stage physics-based Wiener process models.•An online stage division principle is developed to detect the change point.•An online remaining useful life prediction framework is constructed.•A dataset of wheel tread vibration demonstrates the superiority of the proposed method. Due...
Uloženo v:
| Vydáno v: | Mechanical systems and signal processing Ročník 152; s. 107378 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin
Elsevier Ltd
01.05.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0888-3270, 1096-1216 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •We propose the two-stage physics-based Wiener process models.•An online stage division principle is developed to detect the change point.•An online remaining useful life prediction framework is constructed.•A dataset of wheel tread vibration demonstrates the superiority of the proposed method.
Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage features in engineering practice. Other minor factors are also the key issues affecting the health evolution process, including the component structure, assembly accuracy, and working environment. Ignoring such a mechanism may lead to imprecise in degradation modeling, life prognostic, and ultimately lead to safety risk. Besides, achieving high accuracy of prognostic emphasizes the influence of random effect in the degradation process. The contribution of this study lies in addressing this issue by proposing two-stage physics-based Wiener process models integrating: (a) fatigue crack mechanism and crack growth law, and (b) other minor factors. A general prognostic framework is formulated by jointly employing the online change point detection, parameter estimation, and remaining useful life (RUL) prediction, which has good statistic inference and applicability in two general nonlinear systems, i.e., power-law and exponential-law. A joint implement of offline two-step parameter estimation method and the online Bayesian update method is executed, making full advantage of historical and in-service data, based on which the RUL prediction transcends into an imperative PHM module. A practical case study on the vibration dataset of wheel treads demonstrates the practically implement ability of the proposed method in achieving high accuracy of RUL prediction. |
|---|---|
| AbstractList | Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage features in engineering practice. Other minor factors are also the key issues affecting the health evolution process, including the component structure, assembly accuracy, and working environment. Ignoring such a mechanism may lead to imprecise in degradation modeling, life prognostic, and ultimately lead to safety risk. Besides, achieving high accuracy of prognostic emphasizes the influence of random effect in the degradation process. The contribution of this study lies in addressing this issue by proposing two-stage physics-based Wiener process models integrating: (a) fatigue crack mechanism and crack growth law, and (b) other minor factors. A general prognostic framework is formulated by jointly employing the online change point detection, parameter estimation, and remaining useful life (RUL) prediction, which has good statistic inference and applicability in two general nonlinear systems, i.e., power-law and exponential-law. A joint implement of offline two-step parameter estimation method and the online Bayesian update method is executed, making full advantage of historical and in-service data, based on which the RUL prediction transcends into an imperative PHM module. A practical case study on the vibration dataset of wheel treads demonstrates the practically implement ability of the proposed method in achieving high accuracy of RUL prediction. •We propose the two-stage physics-based Wiener process models.•An online stage division principle is developed to detect the change point.•An online remaining useful life prediction framework is constructed.•A dataset of wheel tread vibration demonstrates the superiority of the proposed method. Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage features in engineering practice. Other minor factors are also the key issues affecting the health evolution process, including the component structure, assembly accuracy, and working environment. Ignoring such a mechanism may lead to imprecise in degradation modeling, life prognostic, and ultimately lead to safety risk. Besides, achieving high accuracy of prognostic emphasizes the influence of random effect in the degradation process. The contribution of this study lies in addressing this issue by proposing two-stage physics-based Wiener process models integrating: (a) fatigue crack mechanism and crack growth law, and (b) other minor factors. A general prognostic framework is formulated by jointly employing the online change point detection, parameter estimation, and remaining useful life (RUL) prediction, which has good statistic inference and applicability in two general nonlinear systems, i.e., power-law and exponential-law. A joint implement of offline two-step parameter estimation method and the online Bayesian update method is executed, making full advantage of historical and in-service data, based on which the RUL prediction transcends into an imperative PHM module. A practical case study on the vibration dataset of wheel treads demonstrates the practically implement ability of the proposed method in achieving high accuracy of RUL prediction. |
| ArticleNumber | 107378 |
| Author | Huang, Guifa Yan, Bingxin Zhao, Yu Ma, Xiaobing |
| Author_xml | – sequence: 1 givenname: Bingxin surname: Yan fullname: Yan, Bingxin organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China – sequence: 2 givenname: Xiaobing surname: Ma fullname: Ma, Xiaobing email: maxiaobing@buaa.edu.cn organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China – sequence: 3 givenname: Guifa surname: Huang fullname: Huang, Guifa organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China – sequence: 4 givenname: Yu surname: Zhao fullname: Zhao, Yu organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China |
| BookMark | eNqFkMtKAzEUhoNUsFafwE3A9dRcZjIzCxdSvEFBkBaXIU3OaIZpUpNppW9v2nHlQleBk_87l-8cjZx3gNAVJVNKqLhpp_t1jJspI-xQKXlZnaAxJbXIKKNihMakqqqMs5KcofMYW0JInRMxRnLx5bPYq3fAm499tDpmKxXB4DcLDgLeBK8hRrz2BrqIGx-wd511gF-X8_QLxureeoetw42FzuCdXQV1LBnVqwt02qguwuXPO0HLh_vF7Cmbvzw-z-7mmeac9mmm0TpnuilyURZGqBUrOdFVzWglGi1AmKKpOYdSa0ZzkxtBBE9BTnNFGfAJuh76poU_txB72fptcGmkZHmd7i7Kukipekjp4GMM0Eht--OyfVC2k5TIg0_ZyqNPefApB5-J5b_YTbBrFfb_ULcDlezBzkKQUSezOnkLoHtpvP2T_wZJl5MH |
| CitedBy_id | crossref_primary_10_1177_14759217251317090 crossref_primary_10_1016_j_eswa_2024_125995 crossref_primary_10_1109_JSEN_2024_3492019 crossref_primary_10_1088_1361_6501_ad89ee crossref_primary_10_1002_qre_3177 crossref_primary_10_1016_j_measurement_2024_115159 crossref_primary_10_1016_j_ress_2024_110047 crossref_primary_10_1016_j_ress_2025_111531 crossref_primary_10_1002_qre_3539 crossref_primary_10_1109_JSEN_2024_3510720 crossref_primary_10_1016_j_eswa_2023_120588 crossref_primary_10_1080_00224065_2025_2522412 crossref_primary_10_1016_j_ress_2024_110602 crossref_primary_10_1016_j_ress_2022_109041 crossref_primary_10_1016_j_ress_2025_110802 crossref_primary_10_1109_TR_2024_3382121 crossref_primary_10_1007_s11668_022_01532_4 crossref_primary_10_1016_j_ejor_2024_06_032 crossref_primary_10_1016_j_ress_2023_109182 crossref_primary_10_1002_qre_3740 crossref_primary_10_1016_j_measurement_2022_112232 crossref_primary_10_1088_1742_6596_2184_1_012023 crossref_primary_10_1016_j_cie_2024_110288 crossref_primary_10_1016_j_ress_2024_110014 crossref_primary_10_1109_TII_2023_3278869 crossref_primary_10_1109_TIE_2021_3127035 crossref_primary_10_1016_j_measurement_2023_112739 crossref_primary_10_1088_1361_6501_adb5b2 crossref_primary_10_1109_TR_2023_3273082 crossref_primary_10_1016_j_ymssp_2023_110931 crossref_primary_10_1016_j_ress_2022_108624 crossref_primary_10_1016_j_aei_2023_102066 crossref_primary_10_1016_j_knosys_2025_114217 crossref_primary_10_1016_j_ress_2022_109033 crossref_primary_10_1177_1748006X221141744 crossref_primary_10_1016_j_measurement_2024_116040 crossref_primary_10_1016_j_ymssp_2024_111120 crossref_primary_10_1016_j_est_2025_118041 crossref_primary_10_1016_j_energy_2023_130153 crossref_primary_10_1016_j_est_2022_104313 crossref_primary_10_1088_1361_6501_addbfa crossref_primary_10_3390_electronics11132026 crossref_primary_10_1007_s42417_025_01981_9 crossref_primary_10_1002_qre_3630 crossref_primary_10_1016_j_est_2025_115371 crossref_primary_10_1117_1_JRS_18_027501 crossref_primary_10_1016_j_ress_2025_111431 crossref_primary_10_1109_TASE_2023_3274635 crossref_primary_10_1016_j_microrel_2022_114609 crossref_primary_10_1016_j_cie_2024_110496 crossref_primary_10_1088_1361_6501_adb76c crossref_primary_10_3390_math13121972 crossref_primary_10_1080_00423114_2023_2211693 crossref_primary_10_1016_j_ymssp_2022_109677 crossref_primary_10_1016_j_measurement_2025_118770 crossref_primary_10_1109_TR_2024_3362331 crossref_primary_10_1007_s40747_021_00606_4 crossref_primary_10_1016_j_ymssp_2022_109679 crossref_primary_10_1109_TNNLS_2023_3310482 crossref_primary_10_1016_j_jmsy_2025_08_005 crossref_primary_10_1016_j_ymssp_2024_111435 crossref_primary_10_1088_1361_6501_acb808 crossref_primary_10_1016_j_ress_2022_108412 crossref_primary_10_1016_j_ress_2025_110908 crossref_primary_10_1016_j_ymssp_2025_112844 crossref_primary_10_1109_TR_2025_3527128 crossref_primary_10_3390_math11133008 crossref_primary_10_1088_1361_6501_ad646f crossref_primary_10_1088_1361_6501_adcce4 crossref_primary_10_1016_j_ress_2022_108651 crossref_primary_10_1016_j_ress_2021_108099 crossref_primary_10_1016_j_ymssp_2025_112683 crossref_primary_10_3390_s24113394 crossref_primary_10_1016_j_measurement_2023_112831 crossref_primary_10_3390_pr12020268 crossref_primary_10_1016_j_ymssp_2023_110435 crossref_primary_10_1016_j_ymssp_2022_109029 crossref_primary_10_1016_j_ijfatigue_2023_107504 crossref_primary_10_3390_s24020375 crossref_primary_10_1155_2021_9403401 crossref_primary_10_1016_j_apm_2023_09_007 crossref_primary_10_3390_machines10020072 crossref_primary_10_3390_pr12050849 crossref_primary_10_1177_1748006X251348686 crossref_primary_10_3390_machines11090905 crossref_primary_10_1109_TIM_2024_3481588 |
| Cites_doi | 10.1109/TR.2009.2026784 10.1080/0740817X.2012.705451 10.2478/v10164-010-0024-8 10.15224/978-1-63248-123-8-14 10.1016/j.jspi.2011.06.008 10.1177/1475921719861801 10.1109/TIE.2013.2270212 10.1109/TR.2018.2829844 10.1016/j.apm.2020.05.014 10.1109/87.508893 10.1016/j.ress.2012.12.011 10.1016/j.ymssp.2010.11.018 10.1177/1475921718760483 10.1016/j.asoc.2005.10.001 10.1016/j.ymssp.2019.106548 10.2514/6.2013-1940 10.1016/j.ress.2011.03.014 10.1006/mssp.2000.1301 10.1080/00949655.2014.898765 10.1002/asmb.2063 10.1115/1.2920891 10.1016/j.ymssp.2008.06.009 10.1109/TII.2017.2684821 10.1109/ACCESS.2018.2877630 10.1109/TR.2017.2785978 10.1080/00401706.1977.10489586 10.1016/j.ress.2016.06.002 10.1023/A:1009617814586 10.1177/1687814016664660 10.3390/app10020467 10.1115/1.4047302 10.1109/TR.2014.2299155 10.1080/10402009908982232 10.1109/TR.2011.2182221 10.1016/j.ress.2018.04.005 10.1016/j.ymssp.2017.11.016 10.1115/1.4044287 10.1016/j.jsv.2019.115101 10.1080/0740817X.2014.893400 10.1016/j.ejor.2018.02.033 10.1198/000313005X55233 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV May 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV May 2021 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ymssp.2020.107378 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| ExternalDocumentID | 10_1016_j_ymssp_2020_107378 S0888327020307640 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c331t-badcc42cf54675d6ab2730c892186fc6e6d5f933e7cc214d4d60635d6314a12e3 |
| ISICitedReferencesCount | 96 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634108900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-3270 |
| IngestDate | Sun Nov 09 08:23:30 EST 2025 Sat Nov 29 07:12:59 EST 2025 Tue Nov 18 21:16:50 EST 2025 Fri Feb 23 02:40:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Online RUL prediction Wiener process model Two-stage physics-based models Wheel tread vibration Fatigue crack and spall |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-badcc42cf54675d6ab2730c892186fc6e6d5f933e7cc214d4d60635d6314a12e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2492705795 |
| PQPubID | 2045429 |
| ParticipantIDs | proquest_journals_2492705795 crossref_citationtrail_10_1016_j_ymssp_2020_107378 crossref_primary_10_1016_j_ymssp_2020_107378 elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107378 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 2021-05-00 20210501 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Jin, Matthews, Zhou (b0015) 2013; 113 Liao, Tian (b0065) 2013; 45 Li, Pan, Chen (b0040) 2015; 45 Altan, Hacioglu (b0205) 2017 Saxena, Saad (b0155) 2007; 7 Gönen, Johnson, Lu, Westfall (b0225) 2005; 59 Bhowmik, Krishnan, Hazra, Pakrashi (b0210) 2018; 18 Wang, Balakrishnan, Guo (b0100) 2015; 85 Heng, Zhang, Tian, Mathew (b0160) 2009; 23 Tripura, Bhowmik, Pakrashi (b0025) 2019; 19 Altan, Hacioglu (b0195) 2018 Huang, Zhao, Wang, Ma, Tang (b0245) 2020; 10 Whitmore, Crowder, Lawless (b0095) 1998; 4 Le, Fouladirad, Barros, Levrat (b0050) 2013; 112 Chhikara, Folks (b0005) 1977; 19 Ye, Xie (b0085) 2015; 31 Wang, Tang, Bae, Xu (b0170) 2018; 67 Huang, Golubovi, Koh, Yang, Li, Fan, Zhang (b0010) 2016; 154 Hoeprich (b0125) 1992; 114 Wang, Hu, Wang, Si (b0055) 2014; 63 Li, Kurfess, Liang (b0150) 2000; 14 Sikorska, Hodkiewicz, Ma (b0110) 2011; 25 Li, Billington, Zhang, Kurfess, Danyluk, Liang (b0130) 1999; 42 Keogh, Chu, Hart, Pazzani (b0220) 2001 Tsai, Tseng, Balakrishnan (b0075) 2011; 141 Mucchielli, Bhowmik, Hazra, Pakrashi (b0090) 2020; 142 Paris, Gomez, Anderson (b0120) 1961; 13 Altan, Hacioglu (b0190) 2020; 138 Si, Wang, Hu, Zhou, Pecht (b0240) 2012; 61 Jasztal, Kocanda, Tomaszek (b0135) 2010; 1 Liao (b0145) 2014; 61 Zhai, Ye (b0060) 2017; 13 A. Altan, O. Aslan, R. Hacioglu, Model predictive control of load transporting system on unmanned aerial vehicle (UAV), in: Fifth International Conference on Advances in Mechanical and Robotics Engineering, 2017. Wen, Wu, Das, Tseng (b0185) 2018; 176 Pan, Balakrishnan (b0035) 2011; 96 Zhang, Hu, He, Si (b0175) 2019; 68 Zhang, Si, Hu, Lei (b0045) 2018; 271 Ray, Tangirala (b0140) 1996; 4 D. An, J.H. Choi, N.H. Kim, Options for prognostics methods: A review of data-driven and physics-based prognostics, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013. Bhowmik, Tripura, Hazra, Pakrashi (b0020) 2019; 71 Peng, Tseng (b0070) 2009; 58 Wang, Zhao, Ma (b0180) 2018; 6 Tripura, Gogoi, Hazra (b0030) 2020; 86 Flory, Kharoufeh, Gebraeel (b0080) 2014; 46 Lei, Li, Guo, Li, Yan, Lin (b0105) 2018; 104 Paris, Erdogan (b0235) 1963; 85 Cubillo, Perinpanayagam, Esperon-miguez (b0115) 2016; 8 Bhowmik, Tripura, Hazra, Pakrashi (b0215) 2020; 468 Tripura (10.1016/j.ymssp.2020.107378_b0025) 2019; 19 Altan (10.1016/j.ymssp.2020.107378_b0190) 2020; 138 Wang (10.1016/j.ymssp.2020.107378_b0100) 2015; 85 Zhang (10.1016/j.ymssp.2020.107378_b0045) 2018; 271 Zhai (10.1016/j.ymssp.2020.107378_b0060) 2017; 13 Zhang (10.1016/j.ymssp.2020.107378_b0175) 2019; 68 Sikorska (10.1016/j.ymssp.2020.107378_b0110) 2011; 25 Huang (10.1016/j.ymssp.2020.107378_b0010) 2016; 154 Pan (10.1016/j.ymssp.2020.107378_b0035) 2011; 96 10.1016/j.ymssp.2020.107378_b0200 Li (10.1016/j.ymssp.2020.107378_b0150) 2000; 14 Li (10.1016/j.ymssp.2020.107378_b0040) 2015; 45 Jin (10.1016/j.ymssp.2020.107378_b0015) 2013; 113 Altan (10.1016/j.ymssp.2020.107378_b0205) 2017 Whitmore (10.1016/j.ymssp.2020.107378_b0095) 1998; 4 Chhikara (10.1016/j.ymssp.2020.107378_b0005) 1977; 19 Bhowmik (10.1016/j.ymssp.2020.107378_b0020) 2019; 71 Jasztal (10.1016/j.ymssp.2020.107378_b0135) 2010; 1 Wang (10.1016/j.ymssp.2020.107378_b0055) 2014; 63 Flory (10.1016/j.ymssp.2020.107378_b0080) 2014; 46 Keogh (10.1016/j.ymssp.2020.107378_b0220) 2001 Ye (10.1016/j.ymssp.2020.107378_b0085) 2015; 31 Hoeprich (10.1016/j.ymssp.2020.107378_b0125) 1992; 114 Liao (10.1016/j.ymssp.2020.107378_b0145) 2014; 61 Mucchielli (10.1016/j.ymssp.2020.107378_b0090) 2020; 142 Si (10.1016/j.ymssp.2020.107378_b0240) 2012; 61 Liao (10.1016/j.ymssp.2020.107378_b0065) 2013; 45 Wang (10.1016/j.ymssp.2020.107378_b0180) 2018; 6 Lei (10.1016/j.ymssp.2020.107378_b0105) 2018; 104 Altan (10.1016/j.ymssp.2020.107378_b0195) 2018 Saxena (10.1016/j.ymssp.2020.107378_b0155) 2007; 7 Wang (10.1016/j.ymssp.2020.107378_b0170) 2018; 67 Bhowmik (10.1016/j.ymssp.2020.107378_b0215) 2020; 468 Peng (10.1016/j.ymssp.2020.107378_b0070) 2009; 58 Bhowmik (10.1016/j.ymssp.2020.107378_b0210) 2018; 18 Gönen (10.1016/j.ymssp.2020.107378_b0225) 2005; 59 10.1016/j.ymssp.2020.107378_b0165 Li (10.1016/j.ymssp.2020.107378_b0130) 1999; 42 Paris (10.1016/j.ymssp.2020.107378_b0235) 1963; 85 Tsai (10.1016/j.ymssp.2020.107378_b0075) 2011; 141 Huang (10.1016/j.ymssp.2020.107378_b0245) 2020; 10 Tripura (10.1016/j.ymssp.2020.107378_b0030) 2020; 86 Le (10.1016/j.ymssp.2020.107378_b0050) 2013; 112 Paris (10.1016/j.ymssp.2020.107378_b0120) 1961; 13 Ray (10.1016/j.ymssp.2020.107378_b0140) 1996; 4 Cubillo (10.1016/j.ymssp.2020.107378_b0115) 2016; 8 Heng (10.1016/j.ymssp.2020.107378_b0160) 2009; 23 Wen (10.1016/j.ymssp.2020.107378_b0185) 2018; 176 |
| References_xml | – volume: 142 start-page: 1 year: 2020 end-page: 11 ident: b0090 article-title: Higher-order stabilized perturbation for recursive eigen-decomposition estimation publication-title: J. Vib. Acoust. – volume: 25 start-page: 1803 year: 2011 end-page: 1836 ident: b0110 article-title: Prognostic modelling options for remaining useful life estimation by industry publication-title: Mech. Syst. Signal Process. – volume: 10 start-page: 467 year: 2020 ident: b0245 article-title: A prognostic framework for wheel treads integrating parameter correlation and multiple uncertainties publication-title: Appl. Sci. – volume: 46 start-page: 1227 year: 2014 end-page: 1241 ident: b0080 article-title: A switching diffusion model for lifetime estimation in randomly varying environments publication-title: IIE Trans. – volume: 42 start-page: 385 year: 1999 end-page: 392 ident: b0130 article-title: Dynamic prognostic prediction of defect propagation on rolling element bearings publication-title: Tribol. Trans. – volume: 1 start-page: 37 year: 2010 end-page: 51 ident: b0135 article-title: Predicting fatigue crack growth and fatigue life under variable amplitude loading publication-title: Fatigue Aircraft Struct. – volume: 13 start-page: 9 year: 1961 end-page: 14 ident: b0120 article-title: A rational analytic theory of fatigue publication-title: Trend Eng. – volume: 113 start-page: 7 year: 2013 end-page: 20 ident: b0015 article-title: A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft publication-title: Reliab. Eng. Syst. Saf. – volume: 7 start-page: 441 year: 2007 end-page: 454 ident: b0155 article-title: Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems publication-title: Appl. Soft Comput. J. – volume: 18 start-page: 563 year: 2018 end-page: 589 ident: b0210 article-title: Real-time unified single- and multi-channel structural damage detection using recursive singular spectrum analysis publication-title: Struct. Health Monit. – volume: 85 start-page: 528 year: 1963 end-page: 533 ident: b0235 article-title: A critical analysis of crack propagation laws publication-title: Journal of Fluids Engineering, Transactions of the ASME – volume: 141 start-page: 3725 year: 2011 end-page: 3735 ident: b0075 article-title: Mis-specification analyses of gamma and Wiener degradation processes publication-title: J. Statist. Plann. Inference – volume: 468 year: 2020 ident: b0215 article-title: Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection publication-title: J. Sound Vib. – volume: 114 start-page: 328 year: 1992 end-page: 333 ident: b0125 article-title: Rolling element bearing fatigue damage propagation publication-title: J. Tribol. – volume: 6 start-page: 65227 year: 2018 end-page: 65238 ident: b0180 article-title: Remaining useful life prediction using a novel two-stage Wiener process with stage correlation publication-title: IEEE Access – volume: 61 start-page: 50 year: 2012 end-page: 67 ident: b0240 article-title: Remaining useful life estimation based on a nonlinear diffusion degradation process publication-title: IEEE Trans. Reliab. – volume: 23 start-page: 724 year: 2009 end-page: 739 ident: b0160 article-title: Rotating machinery prognostics: State of the art, challenges and opportunities publication-title: Mech. Syst. Sig. Process. – volume: 176 start-page: 113 year: 2018 end-page: 124 ident: b0185 article-title: Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity publication-title: Reliab. Eng. Syst. Saf. – volume: 59 start-page: 252 year: 2005 end-page: 257 ident: b0225 article-title: The Bayesian Two-Sample t Test publication-title: Am. Statist. – volume: 13 start-page: 2911 year: 2017 end-page: 2921 ident: b0060 article-title: RUL prediction of deteriorating products using an adaptive Wiener process model publication-title: IEEE Trans. Ind. Inf. – volume: 63 start-page: 208 year: 2014 end-page: 222 ident: b0055 article-title: An additive Wiener process-based prognostic model for hybrid deteriorating systems publication-title: IEEE Trans. Reliab. – volume: 61 start-page: 2464 year: 2014 end-page: 2472 ident: b0145 article-title: Discovering prognostic features using genetic programming in remaining useful life prediction publication-title: IEEE Trans. Ind. Electron. – volume: 19 start-page: 461 year: 1977 end-page: 468 ident: b0005 article-title: The inverse Gaussian distribution as a lifetime model publication-title: Technomitrics. – reference: D. An, J.H. Choi, N.H. Kim, Options for prognostics methods: A review of data-driven and physics-based prognostics, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013. – start-page: 289 year: 2001 end-page: 296 ident: b0220 article-title: An online algorithm for segmenting time series publication-title: Proceedings 2001 IEEE International Conference on Data Mining – volume: 138 start-page: 106548 year: 2020 ident: b0190 article-title: Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances publication-title: Mech. Syst. Signal Process. – reference: A. Altan, O. Aslan, R. Hacioglu, Model predictive control of load transporting system on unmanned aerial vehicle (UAV), in: Fifth International Conference on Advances in Mechanical and Robotics Engineering, 2017. – volume: 71 year: 2019 ident: b0020 article-title: First-order eigen-perturbation techniques for real-time damage detection of vibrating systems: theory and applications publication-title: Appl. Mech. Rev. – volume: 112 start-page: 165 year: 2013 end-page: 175 ident: b0050 article-title: Remaining useful life estimation based on stochastic deterioration models: A comparative study publication-title: Reliab. Eng. Syst. Saf. – volume: 154 start-page: 152 year: 2016 end-page: 159 ident: b0010 article-title: Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test publication-title: Reliab. Eng. Syst. Saf. – volume: 67 start-page: 688 year: 2018 end-page: 700 ident: b0170 article-title: Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors publication-title: IEEE Trans. Reliab. – volume: 271 start-page: 775 year: 2018 end-page: 796 ident: b0045 article-title: Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods publication-title: Eur. J. Oper. Res. – volume: 104 start-page: 799 year: 2018 end-page: 834 ident: b0105 article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction publication-title: Mech. Syst. Sig. Process. – volume: 8 start-page: 1 year: 2016 end-page: 21 ident: b0115 article-title: A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery publication-title: Adv. Mech. Eng. – volume: 68 start-page: 689 year: 2019 end-page: 709 ident: b0175 article-title: A novel lifetime estimation method for two-phase degrading systems publication-title: IEEE Trans. Reliab. – volume: 85 start-page: 1742 year: 2015 end-page: 1764 ident: b0100 article-title: Residual life estimation based on nonlinear-multivariate Wiener processes publication-title: J. Stat. Comput. Simul. – volume: 45 start-page: 964 year: 2013 end-page: 980 ident: b0065 article-title: A framework for predicting the remaining useful life of a single unit under time-varying operating conditions publication-title: IIE Trans. – volume: 4 start-page: 229 year: 1998 end-page: 251 ident: b0095 article-title: Failure inference from a marker process based on a bivariate wiener model publication-title: Lifetime Data Anal. – year: 2018 ident: b0195 article-title: Hammerstein model performance of three axes gimbal system on Unmanned Aerial Vehicle (UAV) for route tracking publication-title: 26th Signal Processing and Communications Applications Conference (SIU) – volume: 45 start-page: 955 year: 2015 end-page: 963 ident: b0040 article-title: Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels publication-title: IEEE Trans. Cybern. – volume: 86 start-page: 115 year: 2020 end-page: 141 ident: b0030 article-title: An Ito-Taylor weak 3.0 method for stochastic dynamics of nonlinear systems publication-title: Appl. Math. Model. – year: 2017 ident: b0205 article-title: Modeling of three-axis gimbal system on unmanned air vehicle (UAV) under external disturbances publication-title: 25th Signal Processing and Communications Applications Conference (SIU) – volume: 96 start-page: 949 year: 2011 end-page: 957 ident: b0035 article-title: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes publication-title: Reliab. Eng. Syst. Saf. – volume: 31 start-page: 16 year: 2015 end-page: 32 ident: b0085 article-title: Stochastic modelling and analysis of degradation for highly reliable products publication-title: Appl. Stochastic Models Bus. Ind. – volume: 14 start-page: 747 year: 2000 end-page: 762 ident: b0150 article-title: Stochastic prognostics for rolling element bearings publication-title: Mech. Syst. Sig. Process. – volume: 19 start-page: 810 year: 2019 end-page: 837 ident: b0025 article-title: Real-time damage detection of degrading systems publication-title: Struct. Health Monit. – volume: 58 start-page: 444 year: 2009 end-page: 455 ident: b0070 article-title: Mis-specification analysis of linear degradation models publication-title: IEEE Trans. Reliab. – volume: 4 start-page: 443 year: 1996 end-page: 451 ident: b0140 article-title: Stochastic modeling of fatigue crack dynamics for on-line failure prognostics publication-title: IEEE Trans. Control Syst. Technol. – volume: 85 start-page: 528 issue: 4 year: 1963 ident: 10.1016/j.ymssp.2020.107378_b0235 article-title: A critical analysis of crack propagation laws publication-title: Journal of Fluids Engineering, Transactions of the ASME – volume: 58 start-page: 444 issue: 3 year: 2009 ident: 10.1016/j.ymssp.2020.107378_b0070 article-title: Mis-specification analysis of linear degradation models publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2009.2026784 – volume: 45 start-page: 964 issue: 9 year: 2013 ident: 10.1016/j.ymssp.2020.107378_b0065 article-title: A framework for predicting the remaining useful life of a single unit under time-varying operating conditions publication-title: IIE Trans. doi: 10.1080/0740817X.2012.705451 – volume: 1 start-page: 37 year: 2010 ident: 10.1016/j.ymssp.2020.107378_b0135 article-title: Predicting fatigue crack growth and fatigue life under variable amplitude loading publication-title: Fatigue Aircraft Struct. doi: 10.2478/v10164-010-0024-8 – ident: 10.1016/j.ymssp.2020.107378_b0200 doi: 10.15224/978-1-63248-123-8-14 – volume: 141 start-page: 3725 issue: 12 year: 2011 ident: 10.1016/j.ymssp.2020.107378_b0075 article-title: Mis-specification analyses of gamma and Wiener degradation processes publication-title: J. Statist. Plann. Inference doi: 10.1016/j.jspi.2011.06.008 – volume: 19 start-page: 810 issue: 3 year: 2019 ident: 10.1016/j.ymssp.2020.107378_b0025 article-title: Real-time damage detection of degrading systems publication-title: Struct. Health Monit. doi: 10.1177/1475921719861801 – volume: 61 start-page: 2464 issue: 5 year: 2014 ident: 10.1016/j.ymssp.2020.107378_b0145 article-title: Discovering prognostic features using genetic programming in remaining useful life prediction publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2270212 – volume: 68 start-page: 689 issue: 2 year: 2019 ident: 10.1016/j.ymssp.2020.107378_b0175 article-title: A novel lifetime estimation method for two-phase degrading systems publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2018.2829844 – volume: 86 start-page: 115 year: 2020 ident: 10.1016/j.ymssp.2020.107378_b0030 article-title: An Ito-Taylor weak 3.0 method for stochastic dynamics of nonlinear systems publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.05.014 – volume: 4 start-page: 443 issue: 4 year: 1996 ident: 10.1016/j.ymssp.2020.107378_b0140 article-title: Stochastic modeling of fatigue crack dynamics for on-line failure prognostics publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/87.508893 – volume: 113 start-page: 7 issue: 1 year: 2013 ident: 10.1016/j.ymssp.2020.107378_b0015 article-title: A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2012.12.011 – volume: 25 start-page: 1803 issue: 5 year: 2011 ident: 10.1016/j.ymssp.2020.107378_b0110 article-title: Prognostic modelling options for remaining useful life estimation by industry publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2010.11.018 – volume: 18 start-page: 563 issue: 2 year: 2018 ident: 10.1016/j.ymssp.2020.107378_b0210 article-title: Real-time unified single- and multi-channel structural damage detection using recursive singular spectrum analysis publication-title: Struct. Health Monit. doi: 10.1177/1475921718760483 – volume: 13 start-page: 9 year: 1961 ident: 10.1016/j.ymssp.2020.107378_b0120 article-title: A rational analytic theory of fatigue publication-title: Trend Eng. – volume: 7 start-page: 441 issue: 1 year: 2007 ident: 10.1016/j.ymssp.2020.107378_b0155 article-title: Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems publication-title: Appl. Soft Comput. J. doi: 10.1016/j.asoc.2005.10.001 – volume: 138 start-page: 106548 year: 2020 ident: 10.1016/j.ymssp.2020.107378_b0190 article-title: Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2019.106548 – ident: 10.1016/j.ymssp.2020.107378_b0165 doi: 10.2514/6.2013-1940 – volume: 96 start-page: 949 year: 2011 ident: 10.1016/j.ymssp.2020.107378_b0035 article-title: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.03.014 – volume: 14 start-page: 747 issue: 5 year: 2000 ident: 10.1016/j.ymssp.2020.107378_b0150 article-title: Stochastic prognostics for rolling element bearings publication-title: Mech. Syst. Sig. Process. doi: 10.1006/mssp.2000.1301 – year: 2017 ident: 10.1016/j.ymssp.2020.107378_b0205 article-title: Modeling of three-axis gimbal system on unmanned air vehicle (UAV) under external disturbances – volume: 85 start-page: 1742 issue: 9 year: 2015 ident: 10.1016/j.ymssp.2020.107378_b0100 article-title: Residual life estimation based on nonlinear-multivariate Wiener processes publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2014.898765 – year: 2018 ident: 10.1016/j.ymssp.2020.107378_b0195 article-title: Hammerstein model performance of three axes gimbal system on Unmanned Aerial Vehicle (UAV) for route tracking – volume: 31 start-page: 16 issue: 1 year: 2015 ident: 10.1016/j.ymssp.2020.107378_b0085 article-title: Stochastic modelling and analysis of degradation for highly reliable products publication-title: Appl. Stochastic Models Bus. Ind. doi: 10.1002/asmb.2063 – volume: 114 start-page: 328 issue: 2 year: 1992 ident: 10.1016/j.ymssp.2020.107378_b0125 article-title: Rolling element bearing fatigue damage propagation publication-title: J. Tribol. doi: 10.1115/1.2920891 – volume: 23 start-page: 724 issue: 3 year: 2009 ident: 10.1016/j.ymssp.2020.107378_b0160 article-title: Rotating machinery prognostics: State of the art, challenges and opportunities publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2008.06.009 – volume: 13 start-page: 2911 issue: 6 year: 2017 ident: 10.1016/j.ymssp.2020.107378_b0060 article-title: RUL prediction of deteriorating products using an adaptive Wiener process model publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2684821 – volume: 112 start-page: 165 issue: 4 year: 2013 ident: 10.1016/j.ymssp.2020.107378_b0050 article-title: Remaining useful life estimation based on stochastic deterioration models: A comparative study publication-title: Reliab. Eng. Syst. Saf. – volume: 6 start-page: 65227 year: 2018 ident: 10.1016/j.ymssp.2020.107378_b0180 article-title: Remaining useful life prediction using a novel two-stage Wiener process with stage correlation publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2877630 – start-page: 289 year: 2001 ident: 10.1016/j.ymssp.2020.107378_b0220 article-title: An online algorithm for segmenting time series – volume: 67 start-page: 688 issue: 2 year: 2018 ident: 10.1016/j.ymssp.2020.107378_b0170 article-title: Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2017.2785978 – volume: 19 start-page: 461 issue: 4 year: 1977 ident: 10.1016/j.ymssp.2020.107378_b0005 article-title: The inverse Gaussian distribution as a lifetime model publication-title: Technomitrics. doi: 10.1080/00401706.1977.10489586 – volume: 154 start-page: 152 year: 2016 ident: 10.1016/j.ymssp.2020.107378_b0010 article-title: Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2016.06.002 – volume: 4 start-page: 229 issue: 3 year: 1998 ident: 10.1016/j.ymssp.2020.107378_b0095 article-title: Failure inference from a marker process based on a bivariate wiener model publication-title: Lifetime Data Anal. doi: 10.1023/A:1009617814586 – volume: 8 start-page: 1 issue: 8 year: 2016 ident: 10.1016/j.ymssp.2020.107378_b0115 article-title: A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery publication-title: Adv. Mech. Eng. doi: 10.1177/1687814016664660 – volume: 10 start-page: 467 issue: 2 year: 2020 ident: 10.1016/j.ymssp.2020.107378_b0245 article-title: A prognostic framework for wheel treads integrating parameter correlation and multiple uncertainties publication-title: Appl. Sci. doi: 10.3390/app10020467 – volume: 142 start-page: 1 year: 2020 ident: 10.1016/j.ymssp.2020.107378_b0090 article-title: Higher-order stabilized perturbation for recursive eigen-decomposition estimation publication-title: J. Vib. Acoust. doi: 10.1115/1.4047302 – volume: 63 start-page: 208 issue: 1 year: 2014 ident: 10.1016/j.ymssp.2020.107378_b0055 article-title: An additive Wiener process-based prognostic model for hybrid deteriorating systems publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2014.2299155 – volume: 42 start-page: 385 issue: 2 year: 1999 ident: 10.1016/j.ymssp.2020.107378_b0130 article-title: Dynamic prognostic prediction of defect propagation on rolling element bearings publication-title: Tribol. Trans. doi: 10.1080/10402009908982232 – volume: 45 start-page: 955 issue: 5 year: 2015 ident: 10.1016/j.ymssp.2020.107378_b0040 article-title: Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels publication-title: IEEE Trans. Cybern. – volume: 61 start-page: 50 issue: 1 year: 2012 ident: 10.1016/j.ymssp.2020.107378_b0240 article-title: Remaining useful life estimation based on a nonlinear diffusion degradation process publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2011.2182221 – volume: 176 start-page: 113 year: 2018 ident: 10.1016/j.ymssp.2020.107378_b0185 article-title: Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2018.04.005 – volume: 104 start-page: 799 year: 2018 ident: 10.1016/j.ymssp.2020.107378_b0105 article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction publication-title: Mech. Syst. Sig. Process. doi: 10.1016/j.ymssp.2017.11.016 – volume: 71 issue: 6 year: 2019 ident: 10.1016/j.ymssp.2020.107378_b0020 article-title: First-order eigen-perturbation techniques for real-time damage detection of vibrating systems: theory and applications publication-title: Appl. Mech. Rev. doi: 10.1115/1.4044287 – volume: 468 year: 2020 ident: 10.1016/j.ymssp.2020.107378_b0215 article-title: Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.115101 – volume: 46 start-page: 1227 issue: 11 year: 2014 ident: 10.1016/j.ymssp.2020.107378_b0080 article-title: A switching diffusion model for lifetime estimation in randomly varying environments publication-title: IIE Trans. doi: 10.1080/0740817X.2014.893400 – volume: 271 start-page: 775 year: 2018 ident: 10.1016/j.ymssp.2020.107378_b0045 article-title: Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.02.033 – volume: 59 start-page: 252 issue: 3 year: 2005 ident: 10.1016/j.ymssp.2020.107378_b0225 article-title: The Bayesian Two-Sample t Test publication-title: Am. Statist. doi: 10.1198/000313005X55233 |
| SSID | ssj0009406 |
| Score | 2.6159542 |
| Snippet | •We propose the two-stage physics-based Wiener process models.•An online stage division principle is developed to detect the change point.•An online remaining... Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107378 |
| SubjectTerms | Accuracy Crack propagation Degradation Failure mechanisms Fatigue crack and spall Fatigue failure Fracture mechanics Mathematical models Nonlinear systems Online RUL prediction Parameter estimation Rotating machinery Statistical inference Treads Two-stage physics-based models Vibration Wheel tread vibration Wiener process model Working conditions |
| Title | Two-stage physics-based Wiener process models for online RUL prediction in field vibration data |
| URI | https://dx.doi.org/10.1016/j.ymssp.2020.107378 https://www.proquest.com/docview/2492705795 |
| Volume | 152 |
| WOSCitedRecordID | wos000634108900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE_RUpAP3Jagxo88jgWVl2iFUCstXKzETkqqkq6a3e3yA_jfzNiO04dY0QOXaGXZjrXzeTyezHxDyMuiFMZIUUdJgaTatUmjojAgEC15kuoqZWVmi02k-_vZZJJ_GY1-97kwi5O0bbPlMp_-V1FDGwgbU2dvIO4wKTTAbxA6PEHs8Pw3wZ-fRmDyHVXea9FFeFIZ2P_IMD2euswAVwLHkjGMHVvG-OvhZ6QMMI3uAyBteNt4gTdq2-QT2YI1u1dh3rBLrHTM5_ZbBMaEYIKXe1N_NqJqcd7WN9C0bAIq96z9OmkKTEU7GnDmPdnv500dzo7vPwrr2_02v-iuYPEQHBi0WhZx5qqFBBXsWGy9EoUbKXd1fa7pd-dqOH7962fXIdsow7a-92U27SunXIg97MPajpWdROEkyk1yi6yzVOagHNd3Pu5OPg3szcIWaQ1r7-mrbKDgtbX8zcS5cthbC-bgPrnnrx50x0HmARlV7UNy9wIh5SOiAnjoJfBQBx7qRUodeCiAhzrwUAAPHcBDm5Za8NAAHorgeUwO3-0evP0Q-RIckeY8nsE7jNaC6VrCgSpNUpRg7m7rLMdSZrVOqsTIOue8SrVmsTDCwIWYQ0ceiyJmFX9C1trTtnpKKI4WyFeZI0dkafJEZLLUcluYGCy1bIOw_l9T2vPTY5mUE7VCYhvkVRg0dfQsq7snvTiUtzCd5agAYKsHbvXCU36vdwrJNlNM5pabN1vGM3Jn2BpbZG12Nq-ek9t6MWu6sxcefH8AZCSqfw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+physics-based+Wiener+process+models+for+online+RUL+prediction+in+field+vibration+data&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Yan%2C+Bingxin&rft.au=Ma%2C+Xiaobing&rft.au=Huang%2C+Guifa&rft.au=Zhao%2C+Yu&rft.date=2021-05-01&rft.issn=0888-3270&rft.volume=152&rft.spage=107378&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2020_107378 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |