Two-stage physics-based Wiener process models for online RUL prediction in field vibration data

•We propose the two-stage physics-based Wiener process models.•An online stage division principle is developed to detect the change point.•An online remaining useful life prediction framework is constructed.•A dataset of wheel tread vibration demonstrates the superiority of the proposed method. Due...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mechanical systems and signal processing Ročník 152; s. 107378
Hlavní autoři: Yan, Bingxin, Ma, Xiaobing, Huang, Guifa, Zhao, Yu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin Elsevier Ltd 01.05.2021
Elsevier BV
Témata:
ISSN:0888-3270, 1096-1216
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We propose the two-stage physics-based Wiener process models.•An online stage division principle is developed to detect the change point.•An online remaining useful life prediction framework is constructed.•A dataset of wheel tread vibration demonstrates the superiority of the proposed method. Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage features in engineering practice. Other minor factors are also the key issues affecting the health evolution process, including the component structure, assembly accuracy, and working environment. Ignoring such a mechanism may lead to imprecise in degradation modeling, life prognostic, and ultimately lead to safety risk. Besides, achieving high accuracy of prognostic emphasizes the influence of random effect in the degradation process. The contribution of this study lies in addressing this issue by proposing two-stage physics-based Wiener process models integrating: (a) fatigue crack mechanism and crack growth law, and (b) other minor factors. A general prognostic framework is formulated by jointly employing the online change point detection, parameter estimation, and remaining useful life (RUL) prediction, which has good statistic inference and applicability in two general nonlinear systems, i.e., power-law and exponential-law. A joint implement of offline two-step parameter estimation method and the online Bayesian update method is executed, making full advantage of historical and in-service data, based on which the RUL prediction transcends into an imperative PHM module. A practical case study on the vibration dataset of wheel treads demonstrates the practically implement ability of the proposed method in achieving high accuracy of RUL prediction.
AbstractList Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage features in engineering practice. Other minor factors are also the key issues affecting the health evolution process, including the component structure, assembly accuracy, and working environment. Ignoring such a mechanism may lead to imprecise in degradation modeling, life prognostic, and ultimately lead to safety risk. Besides, achieving high accuracy of prognostic emphasizes the influence of random effect in the degradation process. The contribution of this study lies in addressing this issue by proposing two-stage physics-based Wiener process models integrating: (a) fatigue crack mechanism and crack growth law, and (b) other minor factors. A general prognostic framework is formulated by jointly employing the online change point detection, parameter estimation, and remaining useful life (RUL) prediction, which has good statistic inference and applicability in two general nonlinear systems, i.e., power-law and exponential-law. A joint implement of offline two-step parameter estimation method and the online Bayesian update method is executed, making full advantage of historical and in-service data, based on which the RUL prediction transcends into an imperative PHM module. A practical case study on the vibration dataset of wheel treads demonstrates the practically implement ability of the proposed method in achieving high accuracy of RUL prediction.
•We propose the two-stage physics-based Wiener process models.•An online stage division principle is developed to detect the change point.•An online remaining useful life prediction framework is constructed.•A dataset of wheel tread vibration demonstrates the superiority of the proposed method. Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage features in engineering practice. Other minor factors are also the key issues affecting the health evolution process, including the component structure, assembly accuracy, and working environment. Ignoring such a mechanism may lead to imprecise in degradation modeling, life prognostic, and ultimately lead to safety risk. Besides, achieving high accuracy of prognostic emphasizes the influence of random effect in the degradation process. The contribution of this study lies in addressing this issue by proposing two-stage physics-based Wiener process models integrating: (a) fatigue crack mechanism and crack growth law, and (b) other minor factors. A general prognostic framework is formulated by jointly employing the online change point detection, parameter estimation, and remaining useful life (RUL) prediction, which has good statistic inference and applicability in two general nonlinear systems, i.e., power-law and exponential-law. A joint implement of offline two-step parameter estimation method and the online Bayesian update method is executed, making full advantage of historical and in-service data, based on which the RUL prediction transcends into an imperative PHM module. A practical case study on the vibration dataset of wheel treads demonstrates the practically implement ability of the proposed method in achieving high accuracy of RUL prediction.
ArticleNumber 107378
Author Huang, Guifa
Yan, Bingxin
Zhao, Yu
Ma, Xiaobing
Author_xml – sequence: 1
  givenname: Bingxin
  surname: Yan
  fullname: Yan, Bingxin
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
– sequence: 2
  givenname: Xiaobing
  surname: Ma
  fullname: Ma, Xiaobing
  email: maxiaobing@buaa.edu.cn
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
– sequence: 3
  givenname: Guifa
  surname: Huang
  fullname: Huang, Guifa
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
– sequence: 4
  givenname: Yu
  surname: Zhao
  fullname: Zhao, Yu
  organization: School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
BookMark eNqFkMtKAzEUhoNUsFafwE3A9dRcZjIzCxdSvEFBkBaXIU3OaIZpUpNppW9v2nHlQleBk_87l-8cjZx3gNAVJVNKqLhpp_t1jJspI-xQKXlZnaAxJbXIKKNihMakqqqMs5KcofMYW0JInRMxRnLx5bPYq3fAm499tDpmKxXB4DcLDgLeBK8hRrz2BrqIGx-wd511gF-X8_QLxureeoetw42FzuCdXQV1LBnVqwt02qguwuXPO0HLh_vF7Cmbvzw-z-7mmeac9mmm0TpnuilyURZGqBUrOdFVzWglGi1AmKKpOYdSa0ZzkxtBBE9BTnNFGfAJuh76poU_txB72fptcGmkZHmd7i7Kukipekjp4GMM0Eht--OyfVC2k5TIg0_ZyqNPefApB5-J5b_YTbBrFfb_ULcDlezBzkKQUSezOnkLoHtpvP2T_wZJl5MH
CitedBy_id crossref_primary_10_1177_14759217251317090
crossref_primary_10_1016_j_eswa_2024_125995
crossref_primary_10_1109_JSEN_2024_3492019
crossref_primary_10_1088_1361_6501_ad89ee
crossref_primary_10_1002_qre_3177
crossref_primary_10_1016_j_measurement_2024_115159
crossref_primary_10_1016_j_ress_2024_110047
crossref_primary_10_1016_j_ress_2025_111531
crossref_primary_10_1002_qre_3539
crossref_primary_10_1109_JSEN_2024_3510720
crossref_primary_10_1016_j_eswa_2023_120588
crossref_primary_10_1080_00224065_2025_2522412
crossref_primary_10_1016_j_ress_2024_110602
crossref_primary_10_1016_j_ress_2022_109041
crossref_primary_10_1016_j_ress_2025_110802
crossref_primary_10_1109_TR_2024_3382121
crossref_primary_10_1007_s11668_022_01532_4
crossref_primary_10_1016_j_ejor_2024_06_032
crossref_primary_10_1016_j_ress_2023_109182
crossref_primary_10_1002_qre_3740
crossref_primary_10_1016_j_measurement_2022_112232
crossref_primary_10_1088_1742_6596_2184_1_012023
crossref_primary_10_1016_j_cie_2024_110288
crossref_primary_10_1016_j_ress_2024_110014
crossref_primary_10_1109_TII_2023_3278869
crossref_primary_10_1109_TIE_2021_3127035
crossref_primary_10_1016_j_measurement_2023_112739
crossref_primary_10_1088_1361_6501_adb5b2
crossref_primary_10_1109_TR_2023_3273082
crossref_primary_10_1016_j_ymssp_2023_110931
crossref_primary_10_1016_j_ress_2022_108624
crossref_primary_10_1016_j_aei_2023_102066
crossref_primary_10_1016_j_knosys_2025_114217
crossref_primary_10_1016_j_ress_2022_109033
crossref_primary_10_1177_1748006X221141744
crossref_primary_10_1016_j_measurement_2024_116040
crossref_primary_10_1016_j_ymssp_2024_111120
crossref_primary_10_1016_j_est_2025_118041
crossref_primary_10_1016_j_energy_2023_130153
crossref_primary_10_1016_j_est_2022_104313
crossref_primary_10_1088_1361_6501_addbfa
crossref_primary_10_3390_electronics11132026
crossref_primary_10_1007_s42417_025_01981_9
crossref_primary_10_1002_qre_3630
crossref_primary_10_1016_j_est_2025_115371
crossref_primary_10_1117_1_JRS_18_027501
crossref_primary_10_1016_j_ress_2025_111431
crossref_primary_10_1109_TASE_2023_3274635
crossref_primary_10_1016_j_microrel_2022_114609
crossref_primary_10_1016_j_cie_2024_110496
crossref_primary_10_1088_1361_6501_adb76c
crossref_primary_10_3390_math13121972
crossref_primary_10_1080_00423114_2023_2211693
crossref_primary_10_1016_j_ymssp_2022_109677
crossref_primary_10_1016_j_measurement_2025_118770
crossref_primary_10_1109_TR_2024_3362331
crossref_primary_10_1007_s40747_021_00606_4
crossref_primary_10_1016_j_ymssp_2022_109679
crossref_primary_10_1109_TNNLS_2023_3310482
crossref_primary_10_1016_j_jmsy_2025_08_005
crossref_primary_10_1016_j_ymssp_2024_111435
crossref_primary_10_1088_1361_6501_acb808
crossref_primary_10_1016_j_ress_2022_108412
crossref_primary_10_1016_j_ress_2025_110908
crossref_primary_10_1016_j_ymssp_2025_112844
crossref_primary_10_1109_TR_2025_3527128
crossref_primary_10_3390_math11133008
crossref_primary_10_1088_1361_6501_ad646f
crossref_primary_10_1088_1361_6501_adcce4
crossref_primary_10_1016_j_ress_2022_108651
crossref_primary_10_1016_j_ress_2021_108099
crossref_primary_10_1016_j_ymssp_2025_112683
crossref_primary_10_3390_s24113394
crossref_primary_10_1016_j_measurement_2023_112831
crossref_primary_10_3390_pr12020268
crossref_primary_10_1016_j_ymssp_2023_110435
crossref_primary_10_1016_j_ymssp_2022_109029
crossref_primary_10_1016_j_ijfatigue_2023_107504
crossref_primary_10_3390_s24020375
crossref_primary_10_1155_2021_9403401
crossref_primary_10_1016_j_apm_2023_09_007
crossref_primary_10_3390_machines10020072
crossref_primary_10_3390_pr12050849
crossref_primary_10_1177_1748006X251348686
crossref_primary_10_3390_machines11090905
crossref_primary_10_1109_TIM_2024_3481588
Cites_doi 10.1109/TR.2009.2026784
10.1080/0740817X.2012.705451
10.2478/v10164-010-0024-8
10.15224/978-1-63248-123-8-14
10.1016/j.jspi.2011.06.008
10.1177/1475921719861801
10.1109/TIE.2013.2270212
10.1109/TR.2018.2829844
10.1016/j.apm.2020.05.014
10.1109/87.508893
10.1016/j.ress.2012.12.011
10.1016/j.ymssp.2010.11.018
10.1177/1475921718760483
10.1016/j.asoc.2005.10.001
10.1016/j.ymssp.2019.106548
10.2514/6.2013-1940
10.1016/j.ress.2011.03.014
10.1006/mssp.2000.1301
10.1080/00949655.2014.898765
10.1002/asmb.2063
10.1115/1.2920891
10.1016/j.ymssp.2008.06.009
10.1109/TII.2017.2684821
10.1109/ACCESS.2018.2877630
10.1109/TR.2017.2785978
10.1080/00401706.1977.10489586
10.1016/j.ress.2016.06.002
10.1023/A:1009617814586
10.1177/1687814016664660
10.3390/app10020467
10.1115/1.4047302
10.1109/TR.2014.2299155
10.1080/10402009908982232
10.1109/TR.2011.2182221
10.1016/j.ress.2018.04.005
10.1016/j.ymssp.2017.11.016
10.1115/1.4044287
10.1016/j.jsv.2019.115101
10.1080/0740817X.2014.893400
10.1016/j.ejor.2018.02.033
10.1198/000313005X55233
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV May 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV May 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2020.107378
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2020_107378
S0888327020307640
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-badcc42cf54675d6ab2730c892186fc6e6d5f933e7cc214d4d60635d6314a12e3
ISICitedReferencesCount 96
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000634108900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Sun Nov 09 08:23:30 EST 2025
Sat Nov 29 07:12:59 EST 2025
Tue Nov 18 21:16:50 EST 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Online RUL prediction
Wiener process model
Two-stage physics-based models
Wheel tread vibration
Fatigue crack and spall
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-badcc42cf54675d6ab2730c892186fc6e6d5f933e7cc214d4d60635d6314a12e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2492705795
PQPubID 2045429
ParticipantIDs proquest_journals_2492705795
crossref_citationtrail_10_1016_j_ymssp_2020_107378
crossref_primary_10_1016_j_ymssp_2020_107378
elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107378
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jin, Matthews, Zhou (b0015) 2013; 113
Liao, Tian (b0065) 2013; 45
Li, Pan, Chen (b0040) 2015; 45
Altan, Hacioglu (b0205) 2017
Saxena, Saad (b0155) 2007; 7
Gönen, Johnson, Lu, Westfall (b0225) 2005; 59
Bhowmik, Krishnan, Hazra, Pakrashi (b0210) 2018; 18
Wang, Balakrishnan, Guo (b0100) 2015; 85
Heng, Zhang, Tian, Mathew (b0160) 2009; 23
Tripura, Bhowmik, Pakrashi (b0025) 2019; 19
Altan, Hacioglu (b0195) 2018
Huang, Zhao, Wang, Ma, Tang (b0245) 2020; 10
Whitmore, Crowder, Lawless (b0095) 1998; 4
Le, Fouladirad, Barros, Levrat (b0050) 2013; 112
Chhikara, Folks (b0005) 1977; 19
Ye, Xie (b0085) 2015; 31
Wang, Tang, Bae, Xu (b0170) 2018; 67
Huang, Golubovi, Koh, Yang, Li, Fan, Zhang (b0010) 2016; 154
Hoeprich (b0125) 1992; 114
Wang, Hu, Wang, Si (b0055) 2014; 63
Li, Kurfess, Liang (b0150) 2000; 14
Sikorska, Hodkiewicz, Ma (b0110) 2011; 25
Li, Billington, Zhang, Kurfess, Danyluk, Liang (b0130) 1999; 42
Keogh, Chu, Hart, Pazzani (b0220) 2001
Tsai, Tseng, Balakrishnan (b0075) 2011; 141
Mucchielli, Bhowmik, Hazra, Pakrashi (b0090) 2020; 142
Paris, Gomez, Anderson (b0120) 1961; 13
Altan, Hacioglu (b0190) 2020; 138
Si, Wang, Hu, Zhou, Pecht (b0240) 2012; 61
Jasztal, Kocanda, Tomaszek (b0135) 2010; 1
Liao (b0145) 2014; 61
Zhai, Ye (b0060) 2017; 13
A. Altan, O. Aslan, R. Hacioglu, Model predictive control of load transporting system on unmanned aerial vehicle (UAV), in: Fifth International Conference on Advances in Mechanical and Robotics Engineering, 2017.
Wen, Wu, Das, Tseng (b0185) 2018; 176
Pan, Balakrishnan (b0035) 2011; 96
Zhang, Hu, He, Si (b0175) 2019; 68
Zhang, Si, Hu, Lei (b0045) 2018; 271
Ray, Tangirala (b0140) 1996; 4
D. An, J.H. Choi, N.H. Kim, Options for prognostics methods: A review of data-driven and physics-based prognostics, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013.
Bhowmik, Tripura, Hazra, Pakrashi (b0020) 2019; 71
Peng, Tseng (b0070) 2009; 58
Wang, Zhao, Ma (b0180) 2018; 6
Tripura, Gogoi, Hazra (b0030) 2020; 86
Flory, Kharoufeh, Gebraeel (b0080) 2014; 46
Lei, Li, Guo, Li, Yan, Lin (b0105) 2018; 104
Paris, Erdogan (b0235) 1963; 85
Cubillo, Perinpanayagam, Esperon-miguez (b0115) 2016; 8
Bhowmik, Tripura, Hazra, Pakrashi (b0215) 2020; 468
Tripura (10.1016/j.ymssp.2020.107378_b0025) 2019; 19
Altan (10.1016/j.ymssp.2020.107378_b0190) 2020; 138
Wang (10.1016/j.ymssp.2020.107378_b0100) 2015; 85
Zhang (10.1016/j.ymssp.2020.107378_b0045) 2018; 271
Zhai (10.1016/j.ymssp.2020.107378_b0060) 2017; 13
Zhang (10.1016/j.ymssp.2020.107378_b0175) 2019; 68
Sikorska (10.1016/j.ymssp.2020.107378_b0110) 2011; 25
Huang (10.1016/j.ymssp.2020.107378_b0010) 2016; 154
Pan (10.1016/j.ymssp.2020.107378_b0035) 2011; 96
10.1016/j.ymssp.2020.107378_b0200
Li (10.1016/j.ymssp.2020.107378_b0150) 2000; 14
Li (10.1016/j.ymssp.2020.107378_b0040) 2015; 45
Jin (10.1016/j.ymssp.2020.107378_b0015) 2013; 113
Altan (10.1016/j.ymssp.2020.107378_b0205) 2017
Whitmore (10.1016/j.ymssp.2020.107378_b0095) 1998; 4
Chhikara (10.1016/j.ymssp.2020.107378_b0005) 1977; 19
Bhowmik (10.1016/j.ymssp.2020.107378_b0020) 2019; 71
Jasztal (10.1016/j.ymssp.2020.107378_b0135) 2010; 1
Wang (10.1016/j.ymssp.2020.107378_b0055) 2014; 63
Flory (10.1016/j.ymssp.2020.107378_b0080) 2014; 46
Keogh (10.1016/j.ymssp.2020.107378_b0220) 2001
Ye (10.1016/j.ymssp.2020.107378_b0085) 2015; 31
Hoeprich (10.1016/j.ymssp.2020.107378_b0125) 1992; 114
Liao (10.1016/j.ymssp.2020.107378_b0145) 2014; 61
Mucchielli (10.1016/j.ymssp.2020.107378_b0090) 2020; 142
Si (10.1016/j.ymssp.2020.107378_b0240) 2012; 61
Liao (10.1016/j.ymssp.2020.107378_b0065) 2013; 45
Wang (10.1016/j.ymssp.2020.107378_b0180) 2018; 6
Lei (10.1016/j.ymssp.2020.107378_b0105) 2018; 104
Altan (10.1016/j.ymssp.2020.107378_b0195) 2018
Saxena (10.1016/j.ymssp.2020.107378_b0155) 2007; 7
Wang (10.1016/j.ymssp.2020.107378_b0170) 2018; 67
Bhowmik (10.1016/j.ymssp.2020.107378_b0215) 2020; 468
Peng (10.1016/j.ymssp.2020.107378_b0070) 2009; 58
Bhowmik (10.1016/j.ymssp.2020.107378_b0210) 2018; 18
Gönen (10.1016/j.ymssp.2020.107378_b0225) 2005; 59
10.1016/j.ymssp.2020.107378_b0165
Li (10.1016/j.ymssp.2020.107378_b0130) 1999; 42
Paris (10.1016/j.ymssp.2020.107378_b0235) 1963; 85
Tsai (10.1016/j.ymssp.2020.107378_b0075) 2011; 141
Huang (10.1016/j.ymssp.2020.107378_b0245) 2020; 10
Tripura (10.1016/j.ymssp.2020.107378_b0030) 2020; 86
Le (10.1016/j.ymssp.2020.107378_b0050) 2013; 112
Paris (10.1016/j.ymssp.2020.107378_b0120) 1961; 13
Ray (10.1016/j.ymssp.2020.107378_b0140) 1996; 4
Cubillo (10.1016/j.ymssp.2020.107378_b0115) 2016; 8
Heng (10.1016/j.ymssp.2020.107378_b0160) 2009; 23
Wen (10.1016/j.ymssp.2020.107378_b0185) 2018; 176
References_xml – volume: 142
  start-page: 1
  year: 2020
  end-page: 11
  ident: b0090
  article-title: Higher-order stabilized perturbation for recursive eigen-decomposition estimation
  publication-title: J. Vib. Acoust.
– volume: 25
  start-page: 1803
  year: 2011
  end-page: 1836
  ident: b0110
  article-title: Prognostic modelling options for remaining useful life estimation by industry
  publication-title: Mech. Syst. Signal Process.
– volume: 10
  start-page: 467
  year: 2020
  ident: b0245
  article-title: A prognostic framework for wheel treads integrating parameter correlation and multiple uncertainties
  publication-title: Appl. Sci.
– volume: 46
  start-page: 1227
  year: 2014
  end-page: 1241
  ident: b0080
  article-title: A switching diffusion model for lifetime estimation in randomly varying environments
  publication-title: IIE Trans.
– volume: 42
  start-page: 385
  year: 1999
  end-page: 392
  ident: b0130
  article-title: Dynamic prognostic prediction of defect propagation on rolling element bearings
  publication-title: Tribol. Trans.
– volume: 1
  start-page: 37
  year: 2010
  end-page: 51
  ident: b0135
  article-title: Predicting fatigue crack growth and fatigue life under variable amplitude loading
  publication-title: Fatigue Aircraft Struct.
– volume: 13
  start-page: 9
  year: 1961
  end-page: 14
  ident: b0120
  article-title: A rational analytic theory of fatigue
  publication-title: Trend Eng.
– volume: 113
  start-page: 7
  year: 2013
  end-page: 20
  ident: b0015
  article-title: A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 7
  start-page: 441
  year: 2007
  end-page: 454
  ident: b0155
  article-title: Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems
  publication-title: Appl. Soft Comput. J.
– volume: 18
  start-page: 563
  year: 2018
  end-page: 589
  ident: b0210
  article-title: Real-time unified single- and multi-channel structural damage detection using recursive singular spectrum analysis
  publication-title: Struct. Health Monit.
– volume: 85
  start-page: 528
  year: 1963
  end-page: 533
  ident: b0235
  article-title: A critical analysis of crack propagation laws
  publication-title: Journal of Fluids Engineering, Transactions of the ASME
– volume: 141
  start-page: 3725
  year: 2011
  end-page: 3735
  ident: b0075
  article-title: Mis-specification analyses of gamma and Wiener degradation processes
  publication-title: J. Statist. Plann. Inference
– volume: 468
  year: 2020
  ident: b0215
  article-title: Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection
  publication-title: J. Sound Vib.
– volume: 114
  start-page: 328
  year: 1992
  end-page: 333
  ident: b0125
  article-title: Rolling element bearing fatigue damage propagation
  publication-title: J. Tribol.
– volume: 6
  start-page: 65227
  year: 2018
  end-page: 65238
  ident: b0180
  article-title: Remaining useful life prediction using a novel two-stage Wiener process with stage correlation
  publication-title: IEEE Access
– volume: 61
  start-page: 50
  year: 2012
  end-page: 67
  ident: b0240
  article-title: Remaining useful life estimation based on a nonlinear diffusion degradation process
  publication-title: IEEE Trans. Reliab.
– volume: 23
  start-page: 724
  year: 2009
  end-page: 739
  ident: b0160
  article-title: Rotating machinery prognostics: State of the art, challenges and opportunities
  publication-title: Mech. Syst. Sig. Process.
– volume: 176
  start-page: 113
  year: 2018
  end-page: 124
  ident: b0185
  article-title: Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 59
  start-page: 252
  year: 2005
  end-page: 257
  ident: b0225
  article-title: The Bayesian Two-Sample t Test
  publication-title: Am. Statist.
– volume: 13
  start-page: 2911
  year: 2017
  end-page: 2921
  ident: b0060
  article-title: RUL prediction of deteriorating products using an adaptive Wiener process model
  publication-title: IEEE Trans. Ind. Inf.
– volume: 63
  start-page: 208
  year: 2014
  end-page: 222
  ident: b0055
  article-title: An additive Wiener process-based prognostic model for hybrid deteriorating systems
  publication-title: IEEE Trans. Reliab.
– volume: 61
  start-page: 2464
  year: 2014
  end-page: 2472
  ident: b0145
  article-title: Discovering prognostic features using genetic programming in remaining useful life prediction
  publication-title: IEEE Trans. Ind. Electron.
– volume: 19
  start-page: 461
  year: 1977
  end-page: 468
  ident: b0005
  article-title: The inverse Gaussian distribution as a lifetime model
  publication-title: Technomitrics.
– reference: D. An, J.H. Choi, N.H. Kim, Options for prognostics methods: A review of data-driven and physics-based prognostics, in: 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2013.
– start-page: 289
  year: 2001
  end-page: 296
  ident: b0220
  article-title: An online algorithm for segmenting time series
  publication-title: Proceedings 2001 IEEE International Conference on Data Mining
– volume: 138
  start-page: 106548
  year: 2020
  ident: b0190
  article-title: Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances
  publication-title: Mech. Syst. Signal Process.
– reference: A. Altan, O. Aslan, R. Hacioglu, Model predictive control of load transporting system on unmanned aerial vehicle (UAV), in: Fifth International Conference on Advances in Mechanical and Robotics Engineering, 2017.
– volume: 71
  year: 2019
  ident: b0020
  article-title: First-order eigen-perturbation techniques for real-time damage detection of vibrating systems: theory and applications
  publication-title: Appl. Mech. Rev.
– volume: 112
  start-page: 165
  year: 2013
  end-page: 175
  ident: b0050
  article-title: Remaining useful life estimation based on stochastic deterioration models: A comparative study
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 154
  start-page: 152
  year: 2016
  end-page: 159
  ident: b0010
  article-title: Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 67
  start-page: 688
  year: 2018
  end-page: 700
  ident: b0170
  article-title: Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors
  publication-title: IEEE Trans. Reliab.
– volume: 271
  start-page: 775
  year: 2018
  end-page: 796
  ident: b0045
  article-title: Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods
  publication-title: Eur. J. Oper. Res.
– volume: 104
  start-page: 799
  year: 2018
  end-page: 834
  ident: b0105
  article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction
  publication-title: Mech. Syst. Sig. Process.
– volume: 8
  start-page: 1
  year: 2016
  end-page: 21
  ident: b0115
  article-title: A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery
  publication-title: Adv. Mech. Eng.
– volume: 68
  start-page: 689
  year: 2019
  end-page: 709
  ident: b0175
  article-title: A novel lifetime estimation method for two-phase degrading systems
  publication-title: IEEE Trans. Reliab.
– volume: 85
  start-page: 1742
  year: 2015
  end-page: 1764
  ident: b0100
  article-title: Residual life estimation based on nonlinear-multivariate Wiener processes
  publication-title: J. Stat. Comput. Simul.
– volume: 45
  start-page: 964
  year: 2013
  end-page: 980
  ident: b0065
  article-title: A framework for predicting the remaining useful life of a single unit under time-varying operating conditions
  publication-title: IIE Trans.
– volume: 4
  start-page: 229
  year: 1998
  end-page: 251
  ident: b0095
  article-title: Failure inference from a marker process based on a bivariate wiener model
  publication-title: Lifetime Data Anal.
– year: 2018
  ident: b0195
  article-title: Hammerstein model performance of three axes gimbal system on Unmanned Aerial Vehicle (UAV) for route tracking
  publication-title: 26th Signal Processing and Communications Applications Conference (SIU)
– volume: 45
  start-page: 955
  year: 2015
  end-page: 963
  ident: b0040
  article-title: Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels
  publication-title: IEEE Trans. Cybern.
– volume: 86
  start-page: 115
  year: 2020
  end-page: 141
  ident: b0030
  article-title: An Ito-Taylor weak 3.0 method for stochastic dynamics of nonlinear systems
  publication-title: Appl. Math. Model.
– year: 2017
  ident: b0205
  article-title: Modeling of three-axis gimbal system on unmanned air vehicle (UAV) under external disturbances
  publication-title: 25th Signal Processing and Communications Applications Conference (SIU)
– volume: 96
  start-page: 949
  year: 2011
  end-page: 957
  ident: b0035
  article-title: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 31
  start-page: 16
  year: 2015
  end-page: 32
  ident: b0085
  article-title: Stochastic modelling and analysis of degradation for highly reliable products
  publication-title: Appl. Stochastic Models Bus. Ind.
– volume: 14
  start-page: 747
  year: 2000
  end-page: 762
  ident: b0150
  article-title: Stochastic prognostics for rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
– volume: 19
  start-page: 810
  year: 2019
  end-page: 837
  ident: b0025
  article-title: Real-time damage detection of degrading systems
  publication-title: Struct. Health Monit.
– volume: 58
  start-page: 444
  year: 2009
  end-page: 455
  ident: b0070
  article-title: Mis-specification analysis of linear degradation models
  publication-title: IEEE Trans. Reliab.
– volume: 4
  start-page: 443
  year: 1996
  end-page: 451
  ident: b0140
  article-title: Stochastic modeling of fatigue crack dynamics for on-line failure prognostics
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 85
  start-page: 528
  issue: 4
  year: 1963
  ident: 10.1016/j.ymssp.2020.107378_b0235
  article-title: A critical analysis of crack propagation laws
  publication-title: Journal of Fluids Engineering, Transactions of the ASME
– volume: 58
  start-page: 444
  issue: 3
  year: 2009
  ident: 10.1016/j.ymssp.2020.107378_b0070
  article-title: Mis-specification analysis of linear degradation models
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2009.2026784
– volume: 45
  start-page: 964
  issue: 9
  year: 2013
  ident: 10.1016/j.ymssp.2020.107378_b0065
  article-title: A framework for predicting the remaining useful life of a single unit under time-varying operating conditions
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2012.705451
– volume: 1
  start-page: 37
  year: 2010
  ident: 10.1016/j.ymssp.2020.107378_b0135
  article-title: Predicting fatigue crack growth and fatigue life under variable amplitude loading
  publication-title: Fatigue Aircraft Struct.
  doi: 10.2478/v10164-010-0024-8
– ident: 10.1016/j.ymssp.2020.107378_b0200
  doi: 10.15224/978-1-63248-123-8-14
– volume: 141
  start-page: 3725
  issue: 12
  year: 2011
  ident: 10.1016/j.ymssp.2020.107378_b0075
  article-title: Mis-specification analyses of gamma and Wiener degradation processes
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/j.jspi.2011.06.008
– volume: 19
  start-page: 810
  issue: 3
  year: 2019
  ident: 10.1016/j.ymssp.2020.107378_b0025
  article-title: Real-time damage detection of degrading systems
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921719861801
– volume: 61
  start-page: 2464
  issue: 5
  year: 2014
  ident: 10.1016/j.ymssp.2020.107378_b0145
  article-title: Discovering prognostic features using genetic programming in remaining useful life prediction
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2270212
– volume: 68
  start-page: 689
  issue: 2
  year: 2019
  ident: 10.1016/j.ymssp.2020.107378_b0175
  article-title: A novel lifetime estimation method for two-phase degrading systems
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2829844
– volume: 86
  start-page: 115
  year: 2020
  ident: 10.1016/j.ymssp.2020.107378_b0030
  article-title: An Ito-Taylor weak 3.0 method for stochastic dynamics of nonlinear systems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.05.014
– volume: 4
  start-page: 443
  issue: 4
  year: 1996
  ident: 10.1016/j.ymssp.2020.107378_b0140
  article-title: Stochastic modeling of fatigue crack dynamics for on-line failure prognostics
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/87.508893
– volume: 113
  start-page: 7
  issue: 1
  year: 2013
  ident: 10.1016/j.ymssp.2020.107378_b0015
  article-title: A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries in spacecraft
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2012.12.011
– volume: 25
  start-page: 1803
  issue: 5
  year: 2011
  ident: 10.1016/j.ymssp.2020.107378_b0110
  article-title: Prognostic modelling options for remaining useful life estimation by industry
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2010.11.018
– volume: 18
  start-page: 563
  issue: 2
  year: 2018
  ident: 10.1016/j.ymssp.2020.107378_b0210
  article-title: Real-time unified single- and multi-channel structural damage detection using recursive singular spectrum analysis
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718760483
– volume: 13
  start-page: 9
  year: 1961
  ident: 10.1016/j.ymssp.2020.107378_b0120
  article-title: A rational analytic theory of fatigue
  publication-title: Trend Eng.
– volume: 7
  start-page: 441
  issue: 1
  year: 2007
  ident: 10.1016/j.ymssp.2020.107378_b0155
  article-title: Evolving an artificial neural network classifier for condition monitoring of rotating mechanical systems
  publication-title: Appl. Soft Comput. J.
  doi: 10.1016/j.asoc.2005.10.001
– volume: 138
  start-page: 106548
  year: 2020
  ident: 10.1016/j.ymssp.2020.107378_b0190
  article-title: Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106548
– ident: 10.1016/j.ymssp.2020.107378_b0165
  doi: 10.2514/6.2013-1940
– volume: 96
  start-page: 949
  year: 2011
  ident: 10.1016/j.ymssp.2020.107378_b0035
  article-title: Reliability modeling of degradation of products with multiple performance characteristics based on gamma processes
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.03.014
– volume: 14
  start-page: 747
  issue: 5
  year: 2000
  ident: 10.1016/j.ymssp.2020.107378_b0150
  article-title: Stochastic prognostics for rolling element bearings
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1006/mssp.2000.1301
– year: 2017
  ident: 10.1016/j.ymssp.2020.107378_b0205
  article-title: Modeling of three-axis gimbal system on unmanned air vehicle (UAV) under external disturbances
– volume: 85
  start-page: 1742
  issue: 9
  year: 2015
  ident: 10.1016/j.ymssp.2020.107378_b0100
  article-title: Residual life estimation based on nonlinear-multivariate Wiener processes
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2014.898765
– year: 2018
  ident: 10.1016/j.ymssp.2020.107378_b0195
  article-title: Hammerstein model performance of three axes gimbal system on Unmanned Aerial Vehicle (UAV) for route tracking
– volume: 31
  start-page: 16
  issue: 1
  year: 2015
  ident: 10.1016/j.ymssp.2020.107378_b0085
  article-title: Stochastic modelling and analysis of degradation for highly reliable products
  publication-title: Appl. Stochastic Models Bus. Ind.
  doi: 10.1002/asmb.2063
– volume: 114
  start-page: 328
  issue: 2
  year: 1992
  ident: 10.1016/j.ymssp.2020.107378_b0125
  article-title: Rolling element bearing fatigue damage propagation
  publication-title: J. Tribol.
  doi: 10.1115/1.2920891
– volume: 23
  start-page: 724
  issue: 3
  year: 2009
  ident: 10.1016/j.ymssp.2020.107378_b0160
  article-title: Rotating machinery prognostics: State of the art, challenges and opportunities
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2008.06.009
– volume: 13
  start-page: 2911
  issue: 6
  year: 2017
  ident: 10.1016/j.ymssp.2020.107378_b0060
  article-title: RUL prediction of deteriorating products using an adaptive Wiener process model
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2684821
– volume: 112
  start-page: 165
  issue: 4
  year: 2013
  ident: 10.1016/j.ymssp.2020.107378_b0050
  article-title: Remaining useful life estimation based on stochastic deterioration models: A comparative study
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 6
  start-page: 65227
  year: 2018
  ident: 10.1016/j.ymssp.2020.107378_b0180
  article-title: Remaining useful life prediction using a novel two-stage Wiener process with stage correlation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877630
– start-page: 289
  year: 2001
  ident: 10.1016/j.ymssp.2020.107378_b0220
  article-title: An online algorithm for segmenting time series
– volume: 67
  start-page: 688
  issue: 2
  year: 2018
  ident: 10.1016/j.ymssp.2020.107378_b0170
  article-title: Bayesian approach for two-phase degradation data based on change-point Wiener process with measurement errors
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2017.2785978
– volume: 19
  start-page: 461
  issue: 4
  year: 1977
  ident: 10.1016/j.ymssp.2020.107378_b0005
  article-title: The inverse Gaussian distribution as a lifetime model
  publication-title: Technomitrics.
  doi: 10.1080/00401706.1977.10489586
– volume: 154
  start-page: 152
  year: 2016
  ident: 10.1016/j.ymssp.2020.107378_b0010
  article-title: Lumen degradation modeling of white-light LEDs in step stress accelerated degradation test
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2016.06.002
– volume: 4
  start-page: 229
  issue: 3
  year: 1998
  ident: 10.1016/j.ymssp.2020.107378_b0095
  article-title: Failure inference from a marker process based on a bivariate wiener model
  publication-title: Lifetime Data Anal.
  doi: 10.1023/A:1009617814586
– volume: 8
  start-page: 1
  issue: 8
  year: 2016
  ident: 10.1016/j.ymssp.2020.107378_b0115
  article-title: A review of physics-based models in prognostics: Application to gears and bearings of rotating machinery
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814016664660
– volume: 10
  start-page: 467
  issue: 2
  year: 2020
  ident: 10.1016/j.ymssp.2020.107378_b0245
  article-title: A prognostic framework for wheel treads integrating parameter correlation and multiple uncertainties
  publication-title: Appl. Sci.
  doi: 10.3390/app10020467
– volume: 142
  start-page: 1
  year: 2020
  ident: 10.1016/j.ymssp.2020.107378_b0090
  article-title: Higher-order stabilized perturbation for recursive eigen-decomposition estimation
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4047302
– volume: 63
  start-page: 208
  issue: 1
  year: 2014
  ident: 10.1016/j.ymssp.2020.107378_b0055
  article-title: An additive Wiener process-based prognostic model for hybrid deteriorating systems
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2014.2299155
– volume: 42
  start-page: 385
  issue: 2
  year: 1999
  ident: 10.1016/j.ymssp.2020.107378_b0130
  article-title: Dynamic prognostic prediction of defect propagation on rolling element bearings
  publication-title: Tribol. Trans.
  doi: 10.1080/10402009908982232
– volume: 45
  start-page: 955
  issue: 5
  year: 2015
  ident: 10.1016/j.ymssp.2020.107378_b0040
  article-title: Reliability modeling and life estimation using an expectation maximization based Wiener degradation model for momentum wheels
  publication-title: IEEE Trans. Cybern.
– volume: 61
  start-page: 50
  issue: 1
  year: 2012
  ident: 10.1016/j.ymssp.2020.107378_b0240
  article-title: Remaining useful life estimation based on a nonlinear diffusion degradation process
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2011.2182221
– volume: 176
  start-page: 113
  year: 2018
  ident: 10.1016/j.ymssp.2020.107378_b0185
  article-title: Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2018.04.005
– volume: 104
  start-page: 799
  year: 2018
  ident: 10.1016/j.ymssp.2020.107378_b0105
  article-title: Machinery health prognostics: A systematic review from data acquisition to RUL prediction
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2017.11.016
– volume: 71
  issue: 6
  year: 2019
  ident: 10.1016/j.ymssp.2020.107378_b0020
  article-title: First-order eigen-perturbation techniques for real-time damage detection of vibrating systems: theory and applications
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.4044287
– volume: 468
  year: 2020
  ident: 10.1016/j.ymssp.2020.107378_b0215
  article-title: Real time structural modal identification using recursive canonical correlation analysis and application towards online structural damage detection
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.115101
– volume: 46
  start-page: 1227
  issue: 11
  year: 2014
  ident: 10.1016/j.ymssp.2020.107378_b0080
  article-title: A switching diffusion model for lifetime estimation in randomly varying environments
  publication-title: IIE Trans.
  doi: 10.1080/0740817X.2014.893400
– volume: 271
  start-page: 775
  year: 2018
  ident: 10.1016/j.ymssp.2020.107378_b0045
  article-title: Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2018.02.033
– volume: 59
  start-page: 252
  issue: 3
  year: 2005
  ident: 10.1016/j.ymssp.2020.107378_b0225
  article-title: The Bayesian Two-Sample t Test
  publication-title: Am. Statist.
  doi: 10.1198/000313005X55233
SSID ssj0009406
Score 2.6159542
Snippet •We propose the two-stage physics-based Wiener process models.•An online stage division principle is developed to detect the change point.•An online remaining...
Due to most failure mechanisms, such as fatigue crack growth and fatigue spall, the degradation process of rotating machinery commonly exhibits two-stage...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107378
SubjectTerms Accuracy
Crack propagation
Degradation
Failure mechanisms
Fatigue crack and spall
Fatigue failure
Fracture mechanics
Mathematical models
Nonlinear systems
Online RUL prediction
Parameter estimation
Rotating machinery
Statistical inference
Treads
Two-stage physics-based models
Vibration
Wheel tread vibration
Wiener process model
Working conditions
Title Two-stage physics-based Wiener process models for online RUL prediction in field vibration data
URI https://dx.doi.org/10.1016/j.ymssp.2020.107378
https://www.proquest.com/docview/2492705795
Volume 152
WOSCitedRecordID wos000634108900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE_RUpAP3Jagxo88jgWVl2iFUCstXKzETkqqkq6a3e3yA_jfzNiO04dY0QOXaGXZjrXzeTyezHxDyMuiFMZIUUdJgaTatUmjojAgEC15kuoqZWVmi02k-_vZZJJ_GY1-97kwi5O0bbPlMp_-V1FDGwgbU2dvIO4wKTTAbxA6PEHs8Pw3wZ-fRmDyHVXea9FFeFIZ2P_IMD2euswAVwLHkjGMHVvG-OvhZ6QMMI3uAyBteNt4gTdq2-QT2YI1u1dh3rBLrHTM5_ZbBMaEYIKXe1N_NqJqcd7WN9C0bAIq96z9OmkKTEU7GnDmPdnv500dzo7vPwrr2_02v-iuYPEQHBi0WhZx5qqFBBXsWGy9EoUbKXd1fa7pd-dqOH7962fXIdsow7a-92U27SunXIg97MPajpWdROEkyk1yi6yzVOagHNd3Pu5OPg3szcIWaQ1r7-mrbKDgtbX8zcS5cthbC-bgPrnnrx50x0HmARlV7UNy9wIh5SOiAnjoJfBQBx7qRUodeCiAhzrwUAAPHcBDm5Za8NAAHorgeUwO3-0evP0Q-RIckeY8nsE7jNaC6VrCgSpNUpRg7m7rLMdSZrVOqsTIOue8SrVmsTDCwIWYQ0ceiyJmFX9C1trTtnpKKI4WyFeZI0dkafJEZLLUcluYGCy1bIOw_l9T2vPTY5mUE7VCYhvkVRg0dfQsq7snvTiUtzCd5agAYKsHbvXCU36vdwrJNlNM5pabN1vGM3Jn2BpbZG12Nq-ek9t6MWu6sxcefH8AZCSqfw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-stage+physics-based+Wiener+process+models+for+online+RUL+prediction+in+field+vibration+data&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Yan%2C+Bingxin&rft.au=Ma%2C+Xiaobing&rft.au=Huang%2C+Guifa&rft.au=Zhao%2C+Yu&rft.date=2021-05-01&rft.issn=0888-3270&rft.volume=152&rft.spage=107378&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107378&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2020_107378
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon