An Intelligent Model to Predict Breaking Strength of Rotor Spun Yarns Using Gene Expression Programming

Exploring relationships between characteristics of a yarn and influencing factors is momentous subject to optimize the selection of the variables. Different modelling methodologies have been used to predict spun yarn properties. Developing a prediction approach with higher degree of precision is a s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of engineered fibers and fabrics Ročník 7; číslo 2
Hlavní autoři: Moghassem, Abdolrasool, Fallahpour, Alireza, Shanbeh, Mohsen
Médium: Journal Article
Jazyk:angličtina
Vydáno: London, England SAGE Publications 01.06.2012
Témata:
ISSN:1558-9250, 1558-9250
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Exploring relationships between characteristics of a yarn and influencing factors is momentous subject to optimize the selection of the variables. Different modelling methodologies have been used to predict spun yarn properties. Developing a prediction approach with higher degree of precision is a subject that has received attention by the researchers. In the last decade, Artificial Neural Network (ANN) has been developed successfully for textile nonlinear processes. In spite of the precision, ANN is a black box and does not indicate inter-relationship between input and output parameters. Hence, Gene Expression Programming (GEP) is presented here as an intelligent algorithm to predict breaking strength of rotor spun yarns based on draw frame parameters as one of the most important stages in spinning line. Forty eight samples were produced and different models were evaluated. Prediction performance of the GEP was compared with that of ANN using Mean Square Error (MSE) and correlation coefficient (R2-Value) parameters on test data. The results showed a better capability of the GEP model in comparison to the ANN model. The R2-value and MSE were 97% and 0.071 respectively which means desirable predictive power of GEP algorithm. Finally, an equation was extracted to predict breaking strength of the yarns with a high degree of accuracy using GEP algorithm.
AbstractList Exploring relationships between characteristics of a yarn and influencing factors is momentous subject to optimize the selection of the variables. Different modelling methodologies have been used to predict spun yarn properties. Developing a prediction approach with higher degree of precision is a subject that has received attention by the researchers. In the last decade, Artificial Neural Network (ANN) has been developed successfully for textile nonlinear processes. In spite of the precision, ANN is a black box and does not indicate inter-relationship between input and output parameters. Hence, Gene Expression Programming (GEP) is presented here as an intelligent algorithm to predict breaking strength of rotor spun yarns based on draw frame parameters as one of the most important stages in spinning line. Forty eight samples were produced and different models were evaluated. Prediction performance of the GEP was compared with that of ANN using Mean Square Error (MSE) and correlation coefficient (R2-Value) parameters on test data. The results showed a better capability of the GEP model in comparison to the ANN model. The R2-value and MSE were 97% and 0.071 respectively which means desirable predictive power of GEP algorithm. Finally, an equation was extracted to predict breaking strength of the yarns with a high degree of accuracy using GEP algorithm.
Exploring relationships between characteristics of a yarn and influencing factors is momentous subject to optimize the selection of the variables. Different modelling methodologies have been used to predict spun yarn properties. Developing a prediction approach with higher degree of precision is a subject that has received attention by the researchers. In the last decade, Artificial Neural Network (ANN) has been developed successfully for textile nonlinear processes. In spite of the precision, ANN is a black box and does not indicate inter-relationship between input and output parameters. Hence, Gene Expression Programming (GEP) is presented here as an intelligent algorithm to predict breaking strength of rotor spun yarns based on draw frame parameters as one of the most important stages in spinning line. Forty eight samples were produced and different models were evaluated. Prediction performance of the GEP was compared with that of ANN using Mean Square Error (MSE) and correlation coefficient (R 2 -Value) parameters on test data. The results showed a better capability of the GEP model in comparison to the ANN model. The R 2 -value and MSE were 97% and 0.071 respectively which means desirable predictive power of GEP algorithm. Finally, an equation was extracted to predict breaking strength of the yarns with a high degree of accuracy using GEP algorithm.
Author Fallahpour, Alireza
Shanbeh, Mohsen
Moghassem, Abdolrasool
Author_xml – sequence: 1
  givenname: Abdolrasool
  surname: Moghassem
  fullname: Moghassem, Abdolrasool
  email: moghassem.ar@qaemshahriau.ac.ir
– sequence: 2
  givenname: Alireza
  surname: Fallahpour
  fullname: Fallahpour, Alireza
– sequence: 3
  givenname: Mohsen
  surname: Shanbeh
  fullname: Shanbeh, Mohsen
BookMark eNp9kEFOwzAQRS1UJNrCBVj5AqG2EzvJslSlVCoCUbpgFTnxJLikdmW7Urk9icoCgdTVjP7M-5r5IzQw1gBCt5TcUZqmE8p5ljNOKCMkJYQRdoGGvRj16uBXf4VG3m8J4XnMyRA1U4OXJkDb6gZMwE9WQYuDxS8OlK4CvncgP7Vp8Do4ME34wLbGrzZYh9f7g8Hv0hmPN75fWYABPD_uHXivrek8bOPkbtfNrtFlLVsPNz91jDYP87fZY7R6Xixn01VUxTENUcljIGmiREZZToRKOEihalGntGIiFyrmvFR5xspYpDxRLFF5JVWZS6pqkvB4jLKTb-Ws9w7qotJBhu6a4KRuC0qKPrDif2Adyv6ge6d30n2dhyYnyMsGiq09ONO9d474BgZ1fG8
CitedBy_id crossref_primary_10_1108_IJHMA_08_2012_0039
crossref_primary_10_1007_s00170_021_07444_1
crossref_primary_10_1515_aut_2015_0026
crossref_primary_10_1108_IJCST_01_2015_0015
Cites_doi 10.1080/00405000701679632
10.1108/RJTA-14-01-2010-B001
10.1080/00405009508658772
10.1177/0040517506067331
10.1177/004051757504500409
10.1177/0040517508097792
10.1177/004051759706700203
10.1177/004051756703700807
10.1177/004051750407400902
10.1080/00405000903080837
10.1533/joti.2005.0135
10.1108/RJTA-11-04-2007-B008
10.1080/00405000802131178
10.1533/joti.2004.0073
10.1016/j.ins.2007.06.029
10.1177/004051750407400806
10.1016/j.eswa.2008.07.017
10.1177/004051750007001001
10.1177/004051759706700109
ContentType Journal Article
Copyright 2012 SAGE Publications
Copyright_xml – notice: 2012 SAGE Publications
DBID AAYXX
CITATION
DOI 10.1177/155892501200700202
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-9250
ExternalDocumentID 10_1177_155892501200700202
10.1177_155892501200700202
GroupedDBID 0R~
29K
2WC
54M
5GY
5VS
AASGM
ABQXT
ACDXX
ACROE
ADBBV
ADEBD
ADMLS
ADOGD
AEDFJ
AENEX
AEWDL
AFCOW
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
BCNDV
BDDNI
C1A
D-I
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HH5
J8X
KQ8
ML~
M~E
OK1
RNS
ROL
SAFTQ
SAUOL
SCDPB
SCNPE
SFC
TR2
TTC
AAYXX
ABJCF
ACHEB
AFFHD
AFKRA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
KB.
M7S
OVT
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
ID FETCH-LOGICAL-c331t-b53e074d6812906d45ea6df6f71c2696d355bd982b36754d24d9cadb9a1df0453
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309685200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1558-9250
IngestDate Tue Nov 18 22:06:27 EST 2025
Sat Nov 29 08:15:15 EST 2025
Tue Jun 17 22:43:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Rotor spun yarn
Draw frame
Breaking strength
Production speed
Break draft
Artificial neural network
Gene expression programming
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-b53e074d6812906d45ea6df6f71c2696d355bd982b36754d24d9cadb9a1df0453
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/155892501200700202
ParticipantIDs crossref_citationtrail_10_1177_155892501200700202
crossref_primary_10_1177_155892501200700202
sage_journals_10_1177_155892501200700202
PublicationCentury 2000
PublicationDate 20120600
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 6
  year: 2012
  text: 20120600
PublicationDecade 2010
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Journal of engineered fibers and fabrics
PublicationYear 2012
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Silva, Paiva, Balestrassi, Silva 2009; 17
Majumdar, Majumdar, Sarkar 2005; 30
Turhan, Tokat, Eren 2007; 177
Ertugrul, Ucar 2000; 70
Sette, Boullart, Langenhove, Kiekens 1997; 67
Unal, Koc 2010; 101
Majumdar, Mitra, Banerjee, Majumdar 2010; 14
Ferreira 2001; 13
Babay, Cheikhrouhou, Vermeulen, Rabenasolo, Castelain 2004; 96
Submramanian, Venkatachalam, Submramanian 2007; 32
Zeng, Wang, Yu 2004; 74
Ramesh, Rajamanickam, Jayaraman 1995; 86
Chen, Zhang, Chen, Li 2007; 11
Dayik 2009; 79
Plonsker, Backer 1967; 37
Balasubramanian 1975; 45
Erol, Sagbas 2009; 17
Beltran, Wang, Wang 2004; 74
Rajamanickam, Hansen, Jayaraman 1997; 67
Das, Ishtiaque, Niyogi 2006; 76
Beltran, Wang, Wang 2005; 97
Ishtiaque, Mukhopadhyay, Kumar 2009; 100
Ishtiaque, Mukhopadhyay, Kumar 2008; 99
Baykasoglu, Oztas, Ozbay 2009; 36
Erol R. (bibr9-155892501200700202) 2009; 17
bibr24-155892501200700202
bibr22-155892501200700202
Nasiri M. (bibr19-155892501200700202) 2005
Ferreira C. (bibr27-155892501200700202) 2001; 13
bibr1-155892501200700202
bibr2-155892501200700202
Principe J. C. (bibr15-155892501200700202) 1999
bibr20-155892501200700202
bibr21-155892501200700202
bibr26-155892501200700202
bibr25-155892501200700202
bibr11-155892501200700202
Fausett L. (bibr14-155892501200700202) 1994
bibr6-155892501200700202
Submramanian S. N. (bibr23-155892501200700202) 2007; 32
bibr3-155892501200700202
bibr4-155892501200700202
bibr5-155892501200700202
Silva E. A. (bibr7-155892501200700202) 2009; 17
bibr8-155892501200700202
bibr16-155892501200700202
bibr18-155892501200700202
Majumdar A. (bibr17-155892501200700202) 2005; 30
bibr10-155892501200700202
bibr13-155892501200700202
bibr12-155892501200700202
References_xml – volume: 79
  start-page: 963
  year: 2009
  end-page: 972
  article-title: Prediction of Yarn Properties Using Evaluation Programming;
  publication-title: Textile Research Journal
– volume: 32
  start-page: 409
  year: 2007
  end-page: 413
  article-title: Prediction and Optimization of Yarn Properties Using Genetic Algorithm/Artificial Neural Network;
  publication-title: Indian Journal of Fibre and Textile Research
– volume: 13
  start-page: 87
  year: 2001
  end-page: 129
  article-title: Gene Expression Programming; A New Adaptive Algorithm for Solving Problems;
  publication-title: Complex Systems
– volume: 37
  start-page: 673
  year: 1967
  end-page: 687
  article-title: The Dynamics of Roller Drafting, Part I: Drafting Force Measurement;
  publication-title: Textile Research Journal
– volume: 70
  start-page: 845
  year: 2000
  end-page: 851
  article-title: Predicting Bursting Strength of Cotton Plain Knitted Fabrics Using Intelligent Techniques;
  publication-title: Textile Research Journal
– volume: 17
  start-page: 57
  year: 2009
  end-page: 62
  article-title: New Modelling and Process Optimisation Approach for the False-Twist Texturing of Polyester;
  publication-title: Fibres and Textiles in Eastern Europe
– volume: 177
  start-page: 5237
  year: 2007
  end-page: 5252
  article-title: Statistical and Computational Intelligence Tools for the Analysis of Warp Tension in Different Back-rest Oscillations;
  publication-title: Information Science
– volume: 14
  start-page: 1
  year: 2010
  end-page: 17
  article-title: Soft Computing Applications in Fabrics and Clothing; A Comprehensive Review;
  publication-title: Research Journal of Textile and Apparel
– volume: 76
  start-page: 913
  year: 2006
  end-page: 921
  article-title: Optimization of Fibre Friction, Top Arm Pressure and Roller Setting at Various Drafting Stages;
  publication-title: Textile Research Journal
– volume: 86
  start-page: 459
  year: 1995
  end-page: 469
  article-title: The Prediction of Yarn Tensile Properties by Using Artificial Neural Networks;
  publication-title: The Journal of the Textile Institute
– volume: 99
  start-page: 533
  year: 2008
  end-page: 538
  article-title: Influence of Draw Frame Speed and Its Preparatory Process on Ring-Yarn Properties;
  publication-title: Journal of The Textile Institute
– volume: 36
  start-page: 6145
  year: 2009
  end-page: 6155
  article-title: Prediction and Multi-Objective Optimization of High-Strength Concrete Parameters via Soft Computing Approaches;
  publication-title: Expert Systems with Applications
– volume: 11
  start-page: 80
  year: 2007
  end-page: 86
  article-title: A Soft Computing Model for Predicting Yarn Breaking Strength;
  publication-title: Research Journal of Textile and Apparel
– volume: 96
  start-page: 185
  year: 2004
  end-page: 192
  article-title: The Optimal Neural Network Architecture for Predicting Cotton Yarn Hairiness;
  publication-title: Journal of the Textile Institute
– volume: 17
  start-page: 40
  year: 2009
  end-page: 42
  article-title: Multiple Response Optimisation of the Staple-Yarn Production Process for Hairiness, Strength and Cost;
  publication-title: Fibres and Textiles in Eastern Europe
– volume: 97
  start-page: 129
  year: 2005
  end-page: 136
  article-title: Predicting the Pilling Tendency of Wool Knits;
  publication-title: Journal of the Textile Institute
– volume: 67
  start-page: 39
  year: 1997
  end-page: 44
  article-title: Analysis of the Modelling Methodologies for Predicting the Strength of Air-jet Spun Yarns;
  publication-title: Textile Research Journal
– volume: 101
  start-page: 996
  year: 2010
  end-page: 1005
  article-title: Optimization of the Production Cost and/or Selected Performance Properties of Towel Fabrics;
  publication-title: Journal of the Textile Institute
– volume: 45
  start-page: 322
  year: 1975
  end-page: 325
  article-title: The Effect of Top-Roller Weighting, Apron Spacing and Top-Roller Setting Upon Yarn Quality;
  publication-title: Textile Research Journal
– volume: 74
  start-page: 757
  year: 2004
  end-page: 763
  article-title: Predicting Worsted Spinning Performance with an Artificial Neural Network Model;
  publication-title: Textile Research Journal
– volume: 100
  start-page: 657
  year: 2009
  end-page: 667
  article-title: Impact of High-Speed Draw Frame and Its Preparatory on Packing and Related Characteristics of Ring Spun Yarn;
  publication-title: Journal of The Textile Institute
– volume: 67
  start-page: 84
  year: 1997
  end-page: 92
  article-title: Optimizing the Fibre-to-Yarn Production Process with a Combined Neural Network/Genetic Algorithm Approach;
  publication-title: Textile Research Journal
– volume: 30
  start-page: 19
  year: 2005
  end-page: 25
  article-title: Application of Linear Regression, Artificial Neural Network and Neuro-Fuzzy Algorithms to Predict the Breaking Elongation of Rotor-Spun Yarns;
  publication-title: Indian Journal of Fibers & Textile Research
– volume: 74
  start-page: 689
  year: 2004
  end-page: 694
  article-title: Predicting the Tensile Properties of Air-Jet Spun Yarns;
  publication-title: Textile Research Journal
– ident: bibr5-155892501200700202
  doi: 10.1080/00405000701679632
– ident: bibr26-155892501200700202
  doi: 10.1108/RJTA-14-01-2010-B001
– ident: bibr25-155892501200700202
  doi: 10.1080/00405009508658772
– ident: bibr3-155892501200700202
  doi: 10.1177/0040517506067331
– ident: bibr4-155892501200700202
  doi: 10.1177/004051757504500409
– volume-title: Neural and Adaptive Systems
  year: 1999
  ident: bibr15-155892501200700202
– ident: bibr13-155892501200700202
  doi: 10.1177/0040517508097792
– ident: bibr1-155892501200700202
  doi: 10.1177/004051759706700203
– volume-title: Proceeding of International Conference on Computational intelligence for Modelling, Control and Automation
  year: 2005
  ident: bibr19-155892501200700202
– volume: 32
  start-page: 409
  year: 2007
  ident: bibr23-155892501200700202
  publication-title: Indian Journal of Fibre and Textile Research
– ident: bibr2-155892501200700202
  doi: 10.1177/004051756703700807
– ident: bibr16-155892501200700202
  doi: 10.1177/004051750407400902
– volume-title: Fundamentals of Neural Networks
  year: 1994
  ident: bibr14-155892501200700202
– ident: bibr8-155892501200700202
  doi: 10.1080/00405000903080837
– volume: 13
  start-page: 87
  year: 2001
  ident: bibr27-155892501200700202
  publication-title: Complex Systems
– ident: bibr18-155892501200700202
  doi: 10.1533/joti.2005.0135
– volume: 30
  start-page: 19
  year: 2005
  ident: bibr17-155892501200700202
  publication-title: Indian Journal of Fibers & Textile Research
– ident: bibr11-155892501200700202
  doi: 10.1108/RJTA-11-04-2007-B008
– ident: bibr6-155892501200700202
  doi: 10.1080/00405000802131178
– volume: 17
  start-page: 40
  year: 2009
  ident: bibr9-155892501200700202
  publication-title: Fibres and Textiles in Eastern Europe
– ident: bibr20-155892501200700202
  doi: 10.1533/joti.2004.0073
– ident: bibr22-155892501200700202
  doi: 10.1016/j.ins.2007.06.029
– ident: bibr24-155892501200700202
  doi: 10.1177/004051750407400806
– ident: bibr10-155892501200700202
  doi: 10.1016/j.eswa.2008.07.017
– ident: bibr21-155892501200700202
  doi: 10.1177/004051750007001001
– ident: bibr12-155892501200700202
  doi: 10.1177/004051759706700109
– volume: 17
  start-page: 57
  year: 2009
  ident: bibr7-155892501200700202
  publication-title: Fibres and Textiles in Eastern Europe
SSID ssj0059350
Score 1.9291573
Snippet Exploring relationships between characteristics of a yarn and influencing factors is momentous subject to optimize the selection of the variables. Different...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
Title An Intelligent Model to Predict Breaking Strength of Rotor Spun Yarns Using Gene Expression Programming
URI https://journals.sagepub.com/doi/full/10.1177/155892501200700202
Volume 7
WOSCitedRecordID wos000309685200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1558-9250
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0059350
  issn: 1558-9250
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbtIf2UPqk6QsdeigsLvFT1nEpCb1sCCSF9LRIlrQubKXF64TQQ_9J_2tnZNnrsktID70YI0bCaD5Lo9HMN4R84Fmi4yMlI64Ei7JUllGZKxMxLplhPM9MVvliE-z0tLy85GeTye8-F-Z6xawtb274-r-qGtpA2Zg6-w_qHgaFBngHpcMT1A7POyk-uPk6ns3WFztboYV51uCdDLoDtK9A5S-k7bKtPR-Jg7P39Hx9ZaffRINRM96HgKTUyIbcBctaTCvAaK4f_X63a9XqwG8IdqzBYJSOAtoI2YzC6uduWYPRrj0WZ1K5VSM2zg3BHifo3a_XMGqXgwPL8s9h-zivhZXae4Pmrt6EVLbguMAIkGLsuOhuzPb6JsHGgVU46RhpP-k9bWHpZiOEJvs3BH8ljZ2xb4yeWbSQk-32NwQlBvHFrvA9cj9hOceIwfmv436jz3nqCwAPX9bnZCGbwc4Yf9k9o6BBb8dcPCGPg6rorAPOUzLR9hl5NKKlfE6WM0tHEKIeQrR1NECI9hCiPYSoM9RDiCKEqIcQ9RCiCCG6hRAdQegF-XpyfPH5SxQKckRVmsZtJPNUg8mpkLOOHxUqy7UolCkMi6uk4IUC41UqXiYyhXNoppJM8UooyUWsDJwd0pfkwDqrXxEqtC5MISsFs5hxUZUMDt5VxmBWVcpKfUjifroWVWCrx6Ipq0UcCOp3p_iQTIc-646r5Vbpj6iFRfh1N7eIvr676BvycIv1t-Sgba70O_Kgum6_b5r3Hj9_AKPlku4
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+Model+to+Predict+Breaking+Strength+of+Rotor+Spun+Yarns+Using+Gene+Expression+Programming&rft.jtitle=Journal+of+engineered+fibers+and+fabrics&rft.au=Moghassem%2C+Abdolrasool&rft.au=Fallahpour%2C+Alireza&rft.au=Shanbeh%2C+Mohsen&rft.date=2012-06-01&rft.pub=SAGE+Publications&rft.issn=1558-9250&rft.eissn=1558-9250&rft.volume=7&rft.issue=2&rft_id=info:doi/10.1177%2F155892501200700202&rft.externalDocID=10.1177_155892501200700202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-9250&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-9250&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-9250&client=summon