Convex Computation of the Maximum Controlled Invariant Set For Polynomial Control Systems

We characterize the maximum controlled invariant (MCI) set for discrete- as well as continuous-time nonlinear dynamical systems as the solution of an infinite-dimensional linear programming problem. For systems with polynomial dynamics and compact semialgebraic state and control constraints, we desc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on control and optimization Ročník 52; číslo 5; s. 2944 - 2969
Hlavní autoři: Korda, Milan, Henrion, Didier, Jones, Colin N.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Society for Industrial and Applied Mathematics 01.01.2014
Témata:
ISSN:0363-0129, 1095-7138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We characterize the maximum controlled invariant (MCI) set for discrete- as well as continuous-time nonlinear dynamical systems as the solution of an infinite-dimensional linear programming problem. For systems with polynomial dynamics and compact semialgebraic state and control constraints, we describe a hierarchy of finite-dimensional linear matrix inequality (LMI) relaxations whose optimal values converge to the volume of the MCI set; dual to these LMI relaxations are sum-of-squares (SOS) problems providing a converging sequence of outer approximations to the MCI set. The approach is simple and readily applicable in the sense that the approximations are the outcome of a single semidefinite program with no additional input apart from the problem description. A number of numerical examples illustrate the approach.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0363-0129
1095-7138
DOI:10.1137/130914565