Artificial Neural Network-Based Fault Identification for Grid-connected Electric Traction Network

Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the presence of railway traction load is an important process to ensure power supply system reliability of the grid-connected traction network. An...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE access Ročník 12; s. 1
Hlavní autoři: Myint, Shwe, Dey, Prasenjit, Kirawanich, P., Sumpavakup, Chaiyut
Médium: Journal Article
Jazyk:angličtina
Vydáno: IEEE 01.01.2024
Témata:
ISSN:2169-3536, 2169-3536
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the presence of railway traction load is an important process to ensure power supply system reliability of the grid-connected traction network. An artificial neural network (ANN) based fault classifier has been proposed. The input features to the classifier are derived from multiple detail coefficients of modal current traveling wave signals using the three-level discrete wavelet transform (DWT) with the Daubechies-6 mother wavelet (db6). The Bayesian regularization backpropagation as a supervised machine learning algorithm performs through more than a thousand fault scenarios. The robustness of the proposed DWT-ANN algorithm is verified by testing with the IEEE 9-bus network connected with the large railway traction system through MATLAB Simulink simulations. The superiority in fault identification performance of the proposed algorithm is evident with the highest accuracy of 100% when compared with similar methods.
AbstractList Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the presence of railway traction load is an important process to ensure power supply system reliability of the grid-connected traction network. An artificial neural network (ANN) based fault classifier has been proposed. The input features to the classifier are derived from multiple detail coefficients of modal current traveling wave signals using the three-level discrete wavelet transform (DWT) with the Daubechies-6 mother wavelet (db6). The Bayesian regularization backpropagation as a supervised machine learning algorithm performs through more than a thousand fault scenarios. The robustness of the proposed DWT-ANN algorithm is verified by testing with the IEEE 9-bus network connected with the large railway traction system through MATLAB Simulink simulations. The superiority in fault identification performance of the proposed algorithm is evident with the highest accuracy of 100% when compared with similar methods.
Author Dey, Prasenjit
Kirawanich, P.
Sumpavakup, Chaiyut
Myint, Shwe
Author_xml – sequence: 1
  givenname: Shwe
  surname: Myint
  fullname: Myint, Shwe
  organization: Department of Electrical Engineering, Mahidol University, Salaya, Nakhon Pathom, THAILAND
– sequence: 2
  givenname: Prasenjit
  orcidid: 0000-0002-4872-832X
  surname: Dey
  fullname: Dey, Prasenjit
  organization: The Cluster of Logistics and Rail Engineering, Mahidol University, Salaya, Nakhon Pathom, THAILAND
– sequence: 3
  givenname: P.
  orcidid: 0000-0003-2577-1007
  surname: Kirawanich
  fullname: Kirawanich, P.
  organization: Department of Electrical Engineering, Mahidol University, Salaya, Nakhon Pathom, THAILAND
– sequence: 4
  givenname: Chaiyut
  orcidid: 0000-0001-7959-1488
  surname: Sumpavakup
  fullname: Sumpavakup, Chaiyut
  organization: Research Centre for Combustion Technology and Alternative Energy, CTAE and College of Industrial Technology King Mongkut's University of Technology, North Bangkok, Bangkok, Thailand
BookMark eNpNkF9PwjAUxRuDiYh8An3YFxj237rtEQkgCdEH8Lkpt3emOFfTjRi_vWUjxr6c5uScX3LPLRk1vkFC7hmdMUbLx_lisdztZpxyOROyKAvKr8iYM1WmIhNq9O9_Q6Zte6TxFdHK8jEx89C5yoEzdfKCp9BL9-3DR_pkWrTJypzqLtlYbPqc6ZxvksqHZB2cTcE3DUIXc8s6anCQ7IOBPnTh3JHrytQtTi86IW-r5X7xnG5f15vFfJuCEKxLjRHAKMhCFYpzFJDJnHFFS45Ic2ZR5Qd1AKhQoc0plVYx4HmmjLA0GmJCNgPXenPUX8F9mvCjvXG6N3x41ybeCjVqRnkuuQVWKCkrFCbCK0BhWVYCHkxkiYEFwbdtwOqPx6g-j66H0fV5dH0ZPbYehpZDxH-NXMZDMvELZlWAgw
CODEN IAECCG
Cites_doi 10.1049/els2.12075
10.1007/s00202-024-02329-4
10.1016/j.apenergy.2023.120932
10.3390/en16166023
10.1007/s40534-022-00284-z
10.1016/j.ijepes.2022.108793
10.1016/j.epsr.2023.109962
10.1049/iet-smt.2017.0231
10.1007/s44196-024-00434-7
10.1016/j.epsr.2017.10.023
10.3390/engproc2023059071
10.1080/1448837X.2024.2346002
10.1109/TPWRD.2019.2962275
10.1002/2050-7038.12288
10.25236/ajets.2023.060109
10.1016/j.rser.2017.05.206
10.1016/j.tej.2016.08.006
10.3390/s23218948
10.1016/j.epsr.2017.07.028
10.1080/00218464.2021.2001335
10.1016/j.scs.2021.103094
10.3390/en16031163
10.1007/s42452-019-1672-0
10.1016/j.ijepes.2022.108622
10.3390/electronics12234808
10.11591/ijeecs.v17.i2.pp551-563
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2024.3489802
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_102742dc18644fe3ae67fce3d159ceba
10_1109_ACCESS_2024_3489802
10741265
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
ID FETCH-LOGICAL-c331t-aa3c10c4868622e3c547126092ee071de67b6bccfe6ed7004d61c2756a3d0d703
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001351385700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-3536
IngestDate Fri Oct 03 12:44:34 EDT 2025
Sat Nov 29 04:27:11 EST 2025
Wed Aug 27 03:07:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-aa3c10c4868622e3c547126092ee071de67b6bccfe6ed7004d61c2756a3d0d703
ORCID 0000-0002-4872-832X
0000-0003-2577-1007
0000-0001-7959-1488
0000-0003-4776-9688
OpenAccessLink https://ieeexplore.ieee.org/document/10741265
PageCount 1
ParticipantIDs ieee_primary_10741265
crossref_primary_10_1109_ACCESS_2024_3489802
doaj_primary_oai_doaj_org_article_102742dc18644fe3ae67fce3d159ceba
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref1
  doi: 10.1049/els2.12075
– ident: ref20
  doi: 10.1007/s00202-024-02329-4
– ident: ref16
  doi: 10.1016/j.apenergy.2023.120932
– ident: ref26
  doi: 10.3390/en16166023
– ident: ref22
  doi: 10.1007/s40534-022-00284-z
– ident: ref9
  doi: 10.1016/j.ijepes.2022.108793
– ident: ref2
  doi: 10.1016/j.epsr.2023.109962
– ident: ref6
  doi: 10.1049/iet-smt.2017.0231
– ident: ref13
  doi: 10.1007/s44196-024-00434-7
– ident: ref21
  doi: 10.1016/j.epsr.2017.10.023
– ident: ref18
  doi: 10.3390/engproc2023059071
– ident: ref11
  doi: 10.1080/1448837X.2024.2346002
– ident: ref3
  doi: 10.1109/TPWRD.2019.2962275
– ident: ref10
  doi: 10.1002/2050-7038.12288
– ident: ref23
  doi: 10.25236/ajets.2023.060109
– ident: ref5
  doi: 10.1016/j.rser.2017.05.206
– ident: ref4
  doi: 10.1016/j.tej.2016.08.006
– ident: ref8
  doi: 10.3390/s23218948
– ident: ref17
  doi: 10.1016/j.epsr.2017.07.028
– ident: ref25
  doi: 10.1080/00218464.2021.2001335
– ident: ref12
  doi: 10.1016/j.scs.2021.103094
– ident: ref24
  doi: 10.3390/en16031163
– ident: ref15
  doi: 10.1007/s42452-019-1672-0
– ident: ref14
  doi: 10.1016/j.ijepes.2022.108622
– ident: ref7
  doi: 10.3390/electronics12234808
– ident: ref19
  doi: 10.11591/ijeecs.v17.i2.pp551-563
SSID ssj0000816957
Score 2.3134332
Snippet Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
ANN classifier
Backpropagation
Bayes methods
Bayesian Regulation backpropagation
Daubechies-6 mother wavelet
Discrete wavelet transforms
Fault diagnosis
Fault identification
Karrenbauer transform
Power system reliability
Protection
Reliability
Traction power supplies
Traveling wave
Wires
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4qOI8iUPjASSOHHisa1amCqGInWLnPNZqoQKCim_n7OdojCxMEVyIsd5l-Tu2ed3jN2BlNoKtERTLUQZEkFRuVURoElN7lKqRO2LTRSLRblaqZdeqS-XExbkgQNw9FW7xUQDSUme26LQKAsLKAz5YcDah0ZxoXpkyv-Dy0SqvOhkhpJYPY6nU3oiIoRp9iCyUpXdRMrOFXnF_l8lVryHmR-zoy405OMwpBO2h5tTdtgTDDxj2p0Mmg_cyWr4g8_jjibkjgyf6-1by8PuW9tNx3GKS_lTszaRz2oBijH5zFe_WQNfNmFnw66fIXudz5bT56grkhCBEEkbaS0giSEr3VaPFAXk5G6IpKgUkcIHQ3DVsgawKNE4LXsjE3Ca71qYmBrEORts3jd4wbg0Gca5zaCwbj1WEPMwFELYsjam1Ek8Yvc7vKqPoIVReQ4RqyrAWzl4qw7eEZs4TH8udULWvoHMW3Xmrf4y74gNnUV696MQKJX55X90fsUO3IDDjMo1G7TNFm_YPny168_m1r9R3xvuzxg
  priority: 102
  providerName: Directory of Open Access Journals
Title Artificial Neural Network-Based Fault Identification for Grid-connected Electric Traction Network
URI https://ieeexplore.ieee.org/document/10741265
https://doaj.org/article/102742dc18644fe3ae67fce3d159ceba
Volume 12
WOSCitedRecordID wos001351385700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMcDAG1EelQdG0iZx4iQjVC0sVAxFYouc81mqhAoqLSO_nTs7RWVgYEkiJ3EcX6L77nz3nRDXoLVxCh2ZqQ6iDMlAqXJXRYA2tTmHVKnGF5soxuPy5aV6apPVfS4MIvrgM-zxoV_Lt2-wZFdZn4MHk1Tnm2KzKHRI1vpxqHAFiSovWmahJK76t4MBvQTZgGnWU1lZla3vZKV9PEn_r6oqXqmM9v85nAOx16JHeRvEfSg2cHYkdtc4BY-F4ZOBFkIy84bf-VDv6I40lpUjs3xdyJCg61qPnSToKu_nUxsBB74AwVA59AVypiAn85D8sOrnRDyPhpPBQ9TWUYhAqWQRGaMgiSErORskRQU5aSSyY6oUkRCGRV00ugFwqNEy3b3VCTAtvFE2pgZ1KrZmbzM8E1LbDOPcZVA4XrJVZJxYQhmubKwtTRJ3xM1qfuv3QJdRezMjruogjprFUbfi6Ig7lsHPpcx17Rtonuv216H7eTnZQlISdnOoDI3XASpLSAywMR1xwrJZe14Qy_kf7Rdih8cQ_CiXYmsxX-KV2IbPxfRj3vVGOW0fv4Zd_4F9Az0TziM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5BqER7KOVRNaXQPXDEYHttxz6SKCEIiDikUm7WenZWioRClSb9_Z3ZdVA49MDJ1vo13rE138zOfANwgUVhnCbHbqrDKCN2UKrcVRGSTW0uKVW68c0mepNJOZtVT22xuq-FISKffEZXsuvX8u0LriVUdi3Jg0la5Luwl2dZGodyrdeQivSQqPJeyy2UxNX1zWDAr8FeYJpd6aysyjZ6srE_nqb_TV8Vb1ZGB-8U6At8bvGjugkKP4QdWhzBpy1WwWMwcjAQQyjh3vAbn-wd9dlmWTUy6-eVCiW6ro3ZKQav6nY5txFK6gsyEFVD3yJnjmq6DOUPm_ucwK_RcDoYR20nhQi1TlaRMRqTGLNS6kFS0pizTWJPpkqJGGNYKnpN0SA6KsgK4b0tEhRieKNtzAP6K3QWLwv6BqqwGcW5y7DnZNFWs3tiGWe4srG2NEnchcvN_Na_A2FG7R2NuKqDOmpRR92qowt90cHrqcJ27Qd4nuv25-HrZUHZYlIyenOkDcvrkLRlLIbUmC6ciG62nhfU8v0_4z9hfzx9fKgf7ib3p_BR5AlRlR_QWS3XdAYf8O9q_md57j-wf2Wez0Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network-Based+Fault+Identification+for+Grid-connected+Electric+Traction+Network&rft.jtitle=IEEE+access&rft.au=Myint%2C+Shwe&rft.au=Dey%2C+Prasenjit&rft.au=Kirawanich%2C+P.&rft.au=Sumpavakup%2C+Chaiyut&rft.date=2024-01-01&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2024.3489802&rft.externalDocID=10741265
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon