Artificial Neural Network-Based Fault Identification for Grid-connected Electric Traction Network
Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the presence of railway traction load is an important process to ensure power supply system reliability of the grid-connected traction network. An...
Saved in:
| Published in: | IEEE access Vol. 12; p. 1 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
IEEE
01.01.2024
|
| Subjects: | |
| ISSN: | 2169-3536, 2169-3536 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the presence of railway traction load is an important process to ensure power supply system reliability of the grid-connected traction network. An artificial neural network (ANN) based fault classifier has been proposed. The input features to the classifier are derived from multiple detail coefficients of modal current traveling wave signals using the three-level discrete wavelet transform (DWT) with the Daubechies-6 mother wavelet (db6). The Bayesian regularization backpropagation as a supervised machine learning algorithm performs through more than a thousand fault scenarios. The robustness of the proposed DWT-ANN algorithm is verified by testing with the IEEE 9-bus network connected with the large railway traction system through MATLAB Simulink simulations. The superiority in fault identification performance of the proposed algorithm is evident with the highest accuracy of 100% when compared with similar methods. |
|---|---|
| AbstractList | Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the presence of railway traction load is an important process to ensure power supply system reliability of the grid-connected traction network. An artificial neural network (ANN) based fault classifier has been proposed. The input features to the classifier are derived from multiple detail coefficients of modal current traveling wave signals using the three-level discrete wavelet transform (DWT) with the Daubechies-6 mother wavelet (db6). The Bayesian regularization backpropagation as a supervised machine learning algorithm performs through more than a thousand fault scenarios. The robustness of the proposed DWT-ANN algorithm is verified by testing with the IEEE 9-bus network connected with the large railway traction system through MATLAB Simulink simulations. The superiority in fault identification performance of the proposed algorithm is evident with the highest accuracy of 100% when compared with similar methods. |
| Author | Dey, Prasenjit Kirawanich, P. Sumpavakup, Chaiyut Myint, Shwe |
| Author_xml | – sequence: 1 givenname: Shwe surname: Myint fullname: Myint, Shwe organization: Department of Electrical Engineering, Mahidol University, Salaya, Nakhon Pathom, THAILAND – sequence: 2 givenname: Prasenjit orcidid: 0000-0002-4872-832X surname: Dey fullname: Dey, Prasenjit organization: The Cluster of Logistics and Rail Engineering, Mahidol University, Salaya, Nakhon Pathom, THAILAND – sequence: 3 givenname: P. orcidid: 0000-0003-2577-1007 surname: Kirawanich fullname: Kirawanich, P. organization: Department of Electrical Engineering, Mahidol University, Salaya, Nakhon Pathom, THAILAND – sequence: 4 givenname: Chaiyut orcidid: 0000-0001-7959-1488 surname: Sumpavakup fullname: Sumpavakup, Chaiyut organization: Research Centre for Combustion Technology and Alternative Energy, CTAE and College of Industrial Technology King Mongkut's University of Technology, North Bangkok, Bangkok, Thailand |
| BookMark | eNpNkF9PwjAUxRuDiYh8An3YFxj237rtEQkgCdEH8Lkpt3emOFfTjRi_vWUjxr6c5uScX3LPLRk1vkFC7hmdMUbLx_lisdztZpxyOROyKAvKr8iYM1WmIhNq9O9_Q6Zte6TxFdHK8jEx89C5yoEzdfKCp9BL9-3DR_pkWrTJypzqLtlYbPqc6ZxvksqHZB2cTcE3DUIXc8s6anCQ7IOBPnTh3JHrytQtTi86IW-r5X7xnG5f15vFfJuCEKxLjRHAKMhCFYpzFJDJnHFFS45Ic2ZR5Qd1AKhQoc0plVYx4HmmjLA0GmJCNgPXenPUX8F9mvCjvXG6N3x41ybeCjVqRnkuuQVWKCkrFCbCK0BhWVYCHkxkiYEFwbdtwOqPx6g-j66H0fV5dH0ZPbYehpZDxH-NXMZDMvELZlWAgw |
| CODEN | IAECCG |
| Cites_doi | 10.1049/els2.12075 10.1007/s00202-024-02329-4 10.1016/j.apenergy.2023.120932 10.3390/en16166023 10.1007/s40534-022-00284-z 10.1016/j.ijepes.2022.108793 10.1016/j.epsr.2023.109962 10.1049/iet-smt.2017.0231 10.1007/s44196-024-00434-7 10.1016/j.epsr.2017.10.023 10.3390/engproc2023059071 10.1080/1448837X.2024.2346002 10.1109/TPWRD.2019.2962275 10.1002/2050-7038.12288 10.25236/ajets.2023.060109 10.1016/j.rser.2017.05.206 10.1016/j.tej.2016.08.006 10.3390/s23218948 10.1016/j.epsr.2017.07.028 10.1080/00218464.2021.2001335 10.1016/j.scs.2021.103094 10.3390/en16031163 10.1007/s42452-019-1672-0 10.1016/j.ijepes.2022.108622 10.3390/electronics12234808 10.11591/ijeecs.v17.i2.pp551-563 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
| DOI | 10.1109/ACCESS.2024.3489802 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_102742dc18644fe3ae67fce3d159ceba 10_1109_ACCESS_2024_3489802 10741265 |
| Genre | orig-research |
| GroupedDBID | 0R~ 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS 4.4 AAYXX AGSQL CITATION EJD |
| ID | FETCH-LOGICAL-c331t-aa3c10c4868622e3c547126092ee071de67b6bccfe6ed7004d61c2756a3d0d703 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001351385700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:44:34 EDT 2025 Sat Nov 29 04:27:11 EST 2025 Wed Aug 27 03:07:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-aa3c10c4868622e3c547126092ee071de67b6bccfe6ed7004d61c2756a3d0d703 |
| ORCID | 0000-0002-4872-832X 0000-0003-2577-1007 0000-0001-7959-1488 0000-0003-4776-9688 |
| OpenAccessLink | https://doaj.org/article/102742dc18644fe3ae67fce3d159ceba |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10741265 crossref_primary_10_1109_ACCESS_2024_3489802 doaj_primary_oai_doaj_org_article_102742dc18644fe3ae67fce3d159ceba |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref1 doi: 10.1049/els2.12075 – ident: ref20 doi: 10.1007/s00202-024-02329-4 – ident: ref16 doi: 10.1016/j.apenergy.2023.120932 – ident: ref26 doi: 10.3390/en16166023 – ident: ref22 doi: 10.1007/s40534-022-00284-z – ident: ref9 doi: 10.1016/j.ijepes.2022.108793 – ident: ref2 doi: 10.1016/j.epsr.2023.109962 – ident: ref6 doi: 10.1049/iet-smt.2017.0231 – ident: ref13 doi: 10.1007/s44196-024-00434-7 – ident: ref21 doi: 10.1016/j.epsr.2017.10.023 – ident: ref18 doi: 10.3390/engproc2023059071 – ident: ref11 doi: 10.1080/1448837X.2024.2346002 – ident: ref3 doi: 10.1109/TPWRD.2019.2962275 – ident: ref10 doi: 10.1002/2050-7038.12288 – ident: ref23 doi: 10.25236/ajets.2023.060109 – ident: ref5 doi: 10.1016/j.rser.2017.05.206 – ident: ref4 doi: 10.1016/j.tej.2016.08.006 – ident: ref8 doi: 10.3390/s23218948 – ident: ref17 doi: 10.1016/j.epsr.2017.07.028 – ident: ref25 doi: 10.1080/00218464.2021.2001335 – ident: ref12 doi: 10.1016/j.scs.2021.103094 – ident: ref24 doi: 10.3390/en16031163 – ident: ref15 doi: 10.1007/s42452-019-1672-0 – ident: ref14 doi: 10.1016/j.ijepes.2022.108622 – ident: ref7 doi: 10.3390/electronics12234808 – ident: ref19 doi: 10.11591/ijeecs.v17.i2.pp551-563 |
| SSID | ssj0000816957 |
| Score | 2.3134332 |
| Snippet | Identifying the fault type and faulted phase prior to protection coordination and restoration of the remaining healthy part of the utility power grid in the... |
| SourceID | doaj crossref ieee |
| SourceType | Open Website Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy ANN classifier Backpropagation Bayes methods Bayesian Regulation backpropagation Daubechies-6 mother wavelet Discrete wavelet transforms Fault diagnosis Fault identification Karrenbauer transform Power system reliability Protection Reliability Traction power supplies Traveling wave Wires |
| SummonAdditionalLinks | – databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) dbid: RIE link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoxQADzyLKSx4YSdvESeyMbdXCgCqGInWLnPNFqoRaFFJ-P2c7rcrAwJTIeV38JbqH775j7LEUZEaHYRFACWkQa3JQlNFRQJ4HuQ-xBgmOxPVVzmZqscjemmJ1VwuDiC75DHt2163lmzVsbKisb5MHwyhNWqwlZeqLtXYBFdtBIktkwywUDrL-cDymlyAfMIp7IlaZamInW-3jSPp_dVVxSmV6-k9xzthJYz3yoYf7nB3g6oId73EKXjJtD3paCG6ZN9zGpXoHI9JYhk_15qPmvkC3bCJ2nExX_lwtTQA28QXIDOUT1yBnCXxe-eKH7X067H06mY9fgqaPQgBChHWgtYBwALGy1SARCkhII5Efk0WIZGEYTGWRFgAlpmgs3b1JQ7C08FqYAQ2IK9ZerVd4zTimBooChExQxqXCQhdS6azMIgUJqqLLnrbzm396uozcuRmDLPdw5BaOvIGjy0YWg92pluvaDdA8582vQ9fb5WQDoSLbrUShSd4SUBiyxIAk6LKOxWbveR6Wmz_Gb9mRlcHHUe5Yu642eM8O4bteflUP7qP6AQCqzJk priority: 102 providerName: IEEE |
| Title | Artificial Neural Network-Based Fault Identification for Grid-connected Electric Traction Network |
| URI | https://ieeexplore.ieee.org/document/10741265 https://doaj.org/article/102742dc18644fe3ae67fce3d159ceba |
| Volume | 12 |
| WOSCitedRecordID | wos001351385700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4qOI8lF5YCSQxElsj23VwgAVQ5G6RfbZkSqhgkLKyG_nbKcoTCwsieREjvMuyd1zfO8Iua4YhtFJoiOooIgyhQRFGJVGyDyQPmQKOHgR10c-n4vlUj53Sn25NWFBHjgAh2-1-5loIBHouSvLlC14BZYZ9MNgtQ-NYi47ZMp_g0VSyJy3MkNJLO9GkwneERLCNLtlmZCinUjZuiKv2P-rxIr3MLNDctCGhnQUhnREduz6mOx3BANPiHIHg-YDdbIafufXcUdjdEeGztTmtaEh-7Zqp-MoxqX0vl6ZyK9qAYwx6dRXv1kBXdQhs2HbT5-8zKaLyUPUFkmIgLGkiZRikMSQCZfqkVoGObobJCkytRbDB4Nw6UIDVLawxmnZmyIBp_mumImxgZ2S3vptbc8ItYUBrYHx3PKsEgiu5kLJSqYCciv0gNxs8SrfgxZG6TlELMsAb-ngLVt4B2TsMP051QlZ-wY0b9mat_zLvAPSdxbpXA9DoLTIz_-j8wuy5wYcZlQuSa-pN_aK7MJns_qoh_6Jwu3T13To8wK_AXZ40eY |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BQQIGnkWUpwdGAkmchzNC1QKiVAxFYouc80WqhAoqLb-fs50iGBiYEjmvi79E9_DddwDntWQzOoqqAGvMgkSzg6KMjgP2PNh9SDTm6EhcB_lwqF5eiqemWN3VwhCRSz6jS7vr1vLNG85tqOzKJg9GcZYuw0qaJHHoy7W-Qyq2h0SR5g23UBQWV9fdLr8Ge4FxcikTVagmerLQP46m_1dfFadW-lv_FGgbNhv7UVx7wHdgiSa7sPGDVXAPtD3oiSGE5d5wG5fsHdywzjKir-evM-FLdOsmZifYeBW307EJ0Ka-IBuiouda5IxRjKa-_GFxnzY893uj7l3QdFIIUMpoFmgtMQoxUbYeJCaJKesk9mSKmIhtDENZXmUVYk0ZGUt4b7IILTG8libkAbkPrcnbhA5AUGawqlDmKeVJrajSVa50URexwpRU1YGLxfyW754wo3SORliUHo7SwlE2cHTgxmLwfaplu3YDPM9l8_Pw9XZB2WCk2HqrSWqWt0aShm0xZAk60LbY_Hieh-Xwj_EzWLsbPQ7Kwf3w4QjWrTw-qnIMrdl0Tiewip-z8cf01H1gX8uVz-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Neural+Network-Based+Fault+Identification+for+Grid-Connected+Electric+Traction+Network&rft.jtitle=IEEE+access&rft.au=Myint%2C+Shwe&rft.au=Dey%2C+Prasenjit&rft.au=Kirawanich%2C+Phumin&rft.au=Sumpavakup%2C+Chaiyut&rft.date=2024-01-01&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=12&rft.spage=162238&rft.epage=162250&rft_id=info:doi/10.1109%2FACCESS.2024.3489802&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2024_3489802 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |