Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics

During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Current applied physics Ročník 21; s. 50 - 57
Hlavní autoři: Kibbou, M., Haman, Z., Bouziani, I., Khossossi, N., Benhouria, Y., Essaoudi, I., Ainane, A., Ahuja, R.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2021
한국물리학회
Témata:
ISSN:1567-1739, 1878-1675
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this study, First-Principles density functional theory (DFT) calculations were performed on the structural, stability, electronic and optical properties of the transition metal-based double perovskites materials Cs2InGaX6 (X = Cl, Br, or I). Our results reveal that all these materials exhibit excellent thermodynamic and structural stability owing to their negative formation energies and Goldsmith's factors. It is also observed that Cs2InGaCl6, Cs2InGaBr6, and Cs2InGaI6 materials exhibit band gaps calculated by different functional (GGA-PBE and TB-mpj) in visible-range between 0.89 and 3.24 eV. Furthermore, the computed optical properties reveal strong absorption in UV, visible, and IR range with high optical conductivity and low reflectivity. These obtained results predict that the three transition metal-based double perovskites materials carries promising application in nano-electronic and optoelectronic device applications and can be considered as photovoltaic absorber materials. Schematic illustration of the halide double perovskite absorption over the whole light spectra. [Display omitted] •Electronic and Optical properties of Cs2InGaX6(X: Cl, Br and I) were investigated.•Structural stability was demonstrated.•Semiconductor behavior with indirect and direct bandgaps was shown.•High optical conductivity and low reflectivity were found.•Strong absorption coefficient over the whole light spectra was revealed.
AbstractList During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this study, First-Principles density functional theory (DFT) calculations were performed on the structural, stability, electronic and optical properties of the transition metal-based double perovskites materials Cs2InGaX6 (X = Cl, Br, or I). Our results reveal that all these materials exhibit excellent thermodynamic and structural stability owing to their negative formation energies and Goldsmith’s factors. It is also observed that Cs2InGaCl6, Cs2InGaBr6, and Cs2InGaI6 materials exhibit band gaps calculated by different functional (GGA-PBE and TB-mpj) in visible-range between 0.89 and 3.24 eV. Furthermore, the computed optical properties reveal strong absorption in UV, visible, and IR range with high optical conductivity and low reflectivity. These obtained results predict that the three transition metal-based double perovskites materials carries promising application in nano-electronic and optoelectronic device applications and can be considered as photovoltaic absorber materials. KCI Citation Count: 0
During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this study, First-Principles density functional theory (DFT) calculations were performed on the structural, stability, electronic and optical properties of the transition metal-based double perovskites materials Cs2InGaX6 (X = Cl, Br, or I). Our results reveal that all these materials exhibit excellent thermodynamic and structural stability owing to their negative formation energies and Goldsmith's factors. It is also observed that Cs2InGaCl6, Cs2InGaBr6, and Cs2InGaI6 materials exhibit band gaps calculated by different functional (GGA-PBE and TB-mpj) in visible-range between 0.89 and 3.24 eV. Furthermore, the computed optical properties reveal strong absorption in UV, visible, and IR range with high optical conductivity and low reflectivity. These obtained results predict that the three transition metal-based double perovskites materials carries promising application in nano-electronic and optoelectronic device applications and can be considered as photovoltaic absorber materials. Schematic illustration of the halide double perovskite absorption over the whole light spectra. [Display omitted] •Electronic and Optical properties of Cs2InGaX6(X: Cl, Br and I) were investigated.•Structural stability was demonstrated.•Semiconductor behavior with indirect and direct bandgaps was shown.•High optical conductivity and low reflectivity were found.•Strong absorption coefficient over the whole light spectra was revealed.
Author Bouziani, I.
Kibbou, M.
Ahuja, R.
Essaoudi, I.
Haman, Z.
Khossossi, N.
Benhouria, Y.
Ainane, A.
Author_xml – sequence: 1
  givenname: M.
  surname: Kibbou
  fullname: Kibbou, M.
  organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco
– sequence: 2
  givenname: Z.
  surname: Haman
  fullname: Haman, Z.
  organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco
– sequence: 3
  givenname: I.
  surname: Bouziani
  fullname: Bouziani, I.
  organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco
– sequence: 4
  givenname: N.
  orcidid: 0000-0002-3914-4162
  surname: Khossossi
  fullname: Khossossi, N.
  organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco
– sequence: 5
  givenname: Y.
  surname: Benhouria
  fullname: Benhouria, Y.
  organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco
– sequence: 6
  givenname: I.
  surname: Essaoudi
  fullname: Essaoudi, I.
  organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco
– sequence: 7
  givenname: A.
  surname: Ainane
  fullname: Ainane, A.
  email: ainane@pks.mpg.de
  organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco
– sequence: 8
  givenname: R.
  surname: Ahuja
  fullname: Ahuja, R.
  organization: Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002679684$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1vEzEQhi1UJNrCD-DmI5W6wd4kdhbEoYR-rFQJhIrUmzWZHSdOtnY0dov4990lnDj0NB96n5HmORFHMUUS4r1WE620-bidIOwntarHeaKUfSWO9cIuKm3s_Gjo58ZW2k6bN-Ik560amJmaHYvHZa7beA33Rn64_7Lsz-VXPpeJZXv2SV4-EK8pFtnGxGuIAeUN9KEj-S09rnqSP4jTU96FQln-DmUjKW4gInUy7UuinrBwGjHcAAMW4pBLwPxWvPbQZ3r3r56KX1eXd8ub6vb7dbu8uK1wOtWlAqNtrVZoFRrsyDdKmZn31qOCxmu1qOfgV9p0BNpbalZ2MQM9r0EBoa2b6ak4O9yN7N0Og0sQ_tZ1cjt2Fz_vWtdYpa1RQ1YfssgpZybv9hwegP84rdzo2G3d4NiNjsfV4Hhg7H8MhgIlpFgYQv8i-flA0vD-UyB2GQON6gIP1lyXwgv0M0dbmHQ
CitedBy_id crossref_primary_10_1016_j_cocom_2025_e01070
crossref_primary_10_1016_j_jssc_2022_123698
crossref_primary_10_1016_j_jpcs_2022_111184
crossref_primary_10_1038_s41598_023_39230_2
crossref_primary_10_1016_j_physe_2022_115229
crossref_primary_10_1016_j_chemphys_2023_111897
crossref_primary_10_1016_j_physb_2023_415094
crossref_primary_10_1088_1402_4896_ad1669
crossref_primary_10_1088_1402_4896_ad38e9
crossref_primary_10_1016_j_physb_2025_417239
crossref_primary_10_1140_epjb_s10051_022_00381_2
crossref_primary_10_1088_2515_7655_ace07c
crossref_primary_10_1007_s10904_025_03711_w
crossref_primary_10_1016_j_jpcs_2024_112477
crossref_primary_10_1016_j_mseb_2023_116768
crossref_primary_10_1007_s11082_024_07321_7
crossref_primary_10_1016_j_optmat_2023_114737
crossref_primary_10_1016_j_jssc_2022_123262
crossref_primary_10_1016_j_cplett_2023_140678
crossref_primary_10_1016_j_spmi_2021_107024
crossref_primary_10_1007_s11082_023_06111_x
crossref_primary_10_1016_j_matchemphys_2022_126978
crossref_primary_10_1016_j_physe_2021_114900
crossref_primary_10_1002_qua_27370
crossref_primary_10_1007_s11082_025_08299_6
crossref_primary_10_1016_j_comptc_2024_114970
crossref_primary_10_1016_j_physb_2022_414252
crossref_primary_10_1016_j_physb_2024_416632
crossref_primary_10_1002_cphc_202400891
crossref_primary_10_1016_j_solener_2022_07_049
crossref_primary_10_1016_j_mssp_2024_108717
crossref_primary_10_3390_cryst14010086
crossref_primary_10_1016_j_jmmm_2024_172180
crossref_primary_10_1016_j_jpcs_2024_111954
crossref_primary_10_1007_s10904_025_03695_7
crossref_primary_10_1016_j_mseb_2023_116830
crossref_primary_10_1016_j_mssp_2022_107047
crossref_primary_10_1007_s10853_023_09229_1
crossref_primary_10_1016_j_commatsci_2025_113900
crossref_primary_10_1557_s43578_025_01565_z
crossref_primary_10_1007_s10904_024_03250_w
crossref_primary_10_1016_j_chemphys_2024_112449
crossref_primary_10_1088_1402_4896_ade349
crossref_primary_10_1016_j_cjph_2023_11_007
crossref_primary_10_1016_j_jssc_2022_123557
crossref_primary_10_1016_j_mseb_2025_118250
crossref_primary_10_1016_j_mssp_2022_107165
crossref_primary_10_1016_j_physb_2024_415831
crossref_primary_10_1007_s10904_024_03051_1
crossref_primary_10_1016_j_ijhydene_2024_04_257
crossref_primary_10_1016_j_physb_2025_417537
crossref_primary_10_1007_s00339_022_05596_9
crossref_primary_10_1007_s10904_024_03375_y
crossref_primary_10_1002_adts_202400129
crossref_primary_10_1038_s41598_024_54386_1
crossref_primary_10_1007_s11082_024_07199_5
crossref_primary_10_1016_j_jpcs_2022_110791
crossref_primary_10_1039_D4RA04462B
crossref_primary_10_1016_j_apsusc_2021_149561
crossref_primary_10_1016_j_cplett_2023_140933
crossref_primary_10_1142_S2047684123500379
crossref_primary_10_1016_j_jssc_2022_123046
crossref_primary_10_1016_j_mseb_2022_116088
crossref_primary_10_1088_1402_4896_ad1b84
crossref_primary_10_1007_s10832_025_00382_4
crossref_primary_10_1016_j_mtcomm_2024_110794
crossref_primary_10_1016_j_ssc_2023_115162
crossref_primary_10_1016_j_ijhydene_2024_02_237
crossref_primary_10_1016_j_jssc_2023_124238
crossref_primary_10_1016_j_physb_2023_414732
crossref_primary_10_1007_s11082_024_07200_1
crossref_primary_10_1016_j_mtcomm_2023_105431
crossref_primary_10_1016_j_ijhydene_2025_151222
crossref_primary_10_1016_j_apsusc_2022_152997
crossref_primary_10_1007_s10971_025_06713_9
crossref_primary_10_1016_j_inoche_2024_112527
Cites_doi 10.1103/PhysRevApplied.10.041001
10.3390/cryst10020062
10.1103/PhysRevLett.91.146401
10.1021/acs.nanolett.5b02369
10.1002/adma.201803792
10.1088/1402-4896/ab461a
10.1103/PhysRev.140.A1133
10.1016/j.mseb.2019.114484
10.1002/anie.201909525
10.1063/1.1979470
10.1088/1367-2630/7/1/126
10.1103/PhysRevB.89.155204
10.1103/PhysRevLett.102.226401
10.1021/jacs.7b02227
10.1016/j.cpc.2006.03.005
10.1039/C6CP03969C
10.1103/PhysRev.136.B864
10.1038/s41598-018-37132-2
10.1021/acs.chemmater.5b04231
10.1021/acsenergylett.6b00471
10.1021/jacs.8b07983
10.1039/C7TA06816F
10.1016/j.joule.2018.06.017
10.1039/C9NR01645G
10.1021/acsenergylett.6b00254
10.1021/acs.jpclett.7b01042
10.1038/srep04467
10.1103/PhysRevB.88.165203
10.1021/acs.jpclett.6b02682
10.1016/j.jmmm.2019.01.060
10.1016/j.jmmm.2019.165833
10.1038/s41598-017-13172-y
10.1021/acs.chemmater.9b01294
10.1016/j.chemphys.2018.09.023
10.1016/j.spmi.2020.106524
10.1016/j.physa.2018.08.153
10.1016/j.jmmm.2018.07.033
10.1016/0010-4655(90)90187-6
ContentType Journal Article
Copyright 2020 Korean Physical Society
Copyright_xml – notice: 2020 Korean Physical Society
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.cap.2020.10.007
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
EndPage 57
ExternalDocumentID oai_kci_go_kr_ARTI_9701760
10_1016_j_cap_2020_10_007
S156717392030239X
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
~HD
9DU
AAYXX
CITATION
9ZL
AACTN
AAIAV
ABPIF
ABPTK
ABYKQ
ACYCR
AFKWA
AJBFU
AJOXV
AMFUW
RIG
ID FETCH-LOGICAL-c331t-a61720bc70c6cdef90064ff7fc0a9f10825afb16dea1f7e9b784a152a0aec7293
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598138400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1567-1739
IngestDate Fri Nov 17 19:23:27 EST 2023
Sat Nov 29 06:59:40 EST 2025
Tue Nov 18 21:39:18 EST 2025
Sat Nov 22 16:52:09 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords New halide double-perovskites
Strong absorption
Optoelectronic application
Structural stability
Cs2InGaX6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-a61720bc70c6cdef90064ff7fc0a9f10825afb16dea1f7e9b784a152a0aec7293
ORCID 0000-0002-3914-4162
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9701760
crossref_primary_10_1016_j_cap_2020_10_007
crossref_citationtrail_10_1016_j_cap_2020_10_007
elsevier_sciencedirect_doi_10_1016_j_cap_2020_10_007
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationTitle Current applied physics
PublicationYear 2021
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Savory, Walsh, Scanlon (bib33) 2016; 1
Bouziani, Benhouria, Essaoudi, Ainane, Ahuja (bib25) 2018; 512
Han, Mao, Yang, Zhang, Yang, Wei, Deng, Han (bib35) 2019; 58
McClure, Ball, Windl, Woodward (bib12) 2016; 28
Blaha, Schwarz, Madsen, Kvasnicka (bib21) 2001
Tao, Perdew, Staroverov, Scuseria (bib22) 2003; 91
Xiao, Song, Yan (bib16) 2019; 31
Sadhanala, Ahmad, Zhao, Giesbrecht, Pearce, Deschler, Hoye, Gödel, Bein, Docampo, Dutton, De Volder, Friend (bib7) 2015; 15
Volonakis, Haghighirad, Milot, Sio, Filip, Wenger, Johnston, Herz, Snaith, Giustino (bib15) 2017; 8
Roknuzzaman, Ostrikov, Wang, Du, Tesfamichael (bib11) 2017; 7
Kuzmenko (bib38) 2005; 76
Locardi, Cirignano, Baranov, Dang, Prato, Drago, Ferretti, Pinchetti, Fanciulli, Brovelli, De Trizio, Manna (bib13) 2018; 140
Mosconi, Umari, De Angelis (bib2) 2016; 18
Bouziani, Benhouria, Essaoudi, Ainane, Ahuja (bib24) 2018; 466
Li, Zhao, Yang, Du, Zhang (bib9) 2018; 10
Meng, Wang, Xiao, Wang, Mitzi, Yan (bib14) 2017; 8
Ambrosch-Draxl, Sofo (bib32) 2006; 175
Greul, Petrus, Binek, Docampo, Bein (bib4) 2017; 5
Kibbou, Benhouria, Boujnah, Essaoudi, Ainane, Ahuja (bib23) 2020; 495
Rinke, Qteish, Neugebauer, Freysoldt, Scheffler (bib28) 2005; 7
Zhao, Yang, Ren, Sun, Xiao, Zhang (bib8) 2018; 2
Bouziani, Benhouria, Essaoudi, Ainane, Ahuja (bib26) 2019; 477
Umari, Mosconi, De Angelis (bib3) 2014; 4
Xiao, Du, Meng, Wang, Mitzi, Yan (bib34) 2017; 139
Blaha, Schwarz, Sorantin, Trickey (bib20) 1990; 59
Tran, Blaha (bib29) 2009; 102
Bouziani, Benhouria, Essaoudi, Ainane, Ahuja (bib27) 2020; 253
Brivio, Butler, Walsh, Van Schilfgaarde (bib1) 2014; 89
Hohenberg, Kohn (bib18) 1964; 136
Werner, Barraud, Walter, Bräuninger, Sahli, Sacchetto, Tétreault, Paviet-Salomon, Moon, Allebé, Despeisse, Nicolay, De Wolf, Niesen, Ballif (bib5) 2016; 1
Bouziani, Haman, Kibbou, Benhouria, Essaoudi, Ainane, Ahuja (bib30) 2020; 142
Kohn, Sham (bib19) 1965; 140
Chen, Ye, Zuo, Zheng, Ong (bib37) 2019; 31
Roknuzzaman, Zhang, Ostrikov, Du, Wang, Wang, Tesfamichael (bib6) 2019; 9
Hernández-Haro, Ortega-Castro, Martynov, Nazmitdinov, Frontera (bib39) 2019; 516
Bouziani, Kibbou, Haman, Benhouria, Essaoudi, Ainane, Ahuja (bib31) 2020; 95
Usman, Yan (bib36) 2020; 10
Huang, Lambrecht (bib10) 2013; 88
Pham, Holmes, Aydil, Gagliardi (bib17) 2019; 11
Mosconi (10.1016/j.cap.2020.10.007_bib2) 2016; 18
Greul (10.1016/j.cap.2020.10.007_bib4) 2017; 5
Meng (10.1016/j.cap.2020.10.007_bib14) 2017; 8
Kuzmenko (10.1016/j.cap.2020.10.007_bib38) 2005; 76
Xiao (10.1016/j.cap.2020.10.007_bib34) 2017; 139
Blaha (10.1016/j.cap.2020.10.007_bib21) 2001
Sadhanala (10.1016/j.cap.2020.10.007_bib7) 2015; 15
Hohenberg (10.1016/j.cap.2020.10.007_bib18) 1964; 136
Bouziani (10.1016/j.cap.2020.10.007_bib30) 2020; 142
Zhao (10.1016/j.cap.2020.10.007_bib8) 2018; 2
Savory (10.1016/j.cap.2020.10.007_bib33) 2016; 1
Xiao (10.1016/j.cap.2020.10.007_bib16) 2019; 31
Bouziani (10.1016/j.cap.2020.10.007_bib24) 2018; 466
Werner (10.1016/j.cap.2020.10.007_bib5) 2016; 1
Rinke (10.1016/j.cap.2020.10.007_bib28) 2005; 7
Roknuzzaman (10.1016/j.cap.2020.10.007_bib11) 2017; 7
McClure (10.1016/j.cap.2020.10.007_bib12) 2016; 28
Bouziani (10.1016/j.cap.2020.10.007_bib27) 2020; 253
Brivio (10.1016/j.cap.2020.10.007_bib1) 2014; 89
Bouziani (10.1016/j.cap.2020.10.007_bib26) 2019; 477
Li (10.1016/j.cap.2020.10.007_bib9) 2018; 10
Huang (10.1016/j.cap.2020.10.007_bib10) 2013; 88
Han (10.1016/j.cap.2020.10.007_bib35) 2019; 58
Bouziani (10.1016/j.cap.2020.10.007_bib31) 2020; 95
Kibbou (10.1016/j.cap.2020.10.007_bib23) 2020; 495
Umari (10.1016/j.cap.2020.10.007_bib3) 2014; 4
Pham (10.1016/j.cap.2020.10.007_bib17) 2019; 11
Blaha (10.1016/j.cap.2020.10.007_bib20) 1990; 59
Locardi (10.1016/j.cap.2020.10.007_bib13) 2018; 140
Volonakis (10.1016/j.cap.2020.10.007_bib15) 2017; 8
Hernández-Haro (10.1016/j.cap.2020.10.007_bib39) 2019; 516
Ambrosch-Draxl (10.1016/j.cap.2020.10.007_bib32) 2006; 175
Tao (10.1016/j.cap.2020.10.007_bib22) 2003; 91
Tran (10.1016/j.cap.2020.10.007_bib29) 2009; 102
Usman (10.1016/j.cap.2020.10.007_bib36) 2020; 10
Roknuzzaman (10.1016/j.cap.2020.10.007_bib6) 2019; 9
Kohn (10.1016/j.cap.2020.10.007_bib19) 1965; 140
Bouziani (10.1016/j.cap.2020.10.007_bib25) 2018; 512
Chen (10.1016/j.cap.2020.10.007_bib37) 2019; 31
References_xml – volume: 1
  start-page: 949
  year: 2016
  end-page: 955
  ident: bib33
  article-title: Can Pb-free halide double perovskites support high-efficiency solar cells?
  publication-title: ACS Energy Lett
– volume: 516
  start-page: 225
  year: 2019
  end-page: 231
  ident: bib39
  article-title: DFT prediction of band gap in organic-inorganic metal halide perovskites: an exchange-correlation functional benchmark study
  publication-title: Chem. Phys.
– volume: 18
  start-page: 27158
  year: 2016
  end-page: 27164
  ident: bib2
  article-title: Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis
  publication-title: Phys. Chem. Chem. Phys.
– volume: 4
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib3
  article-title: Relativistic GW calculations on CH3 NH3 PbI 3 and CH3 NH3 SnI3 perovskites for solar cell applications
  publication-title: Sci. Rep.
– volume: 477
  start-page: 220
  year: 2019
  end-page: 225
  ident: bib26
  article-title: Half-metallic ferromagnetic behavior in (Ga, Cr) N and (Ga, Cr, V) N compounds for spintronic technologies: ab-initio and Monte Carlo methods
  publication-title: J. Magn. Magn Mater.
– volume: 95
  year: 2020
  ident: bib31
  article-title: Electronic and optical properties of {ZnO} nanosheet doped and codoped with Be and/or Mg for ultraviolet optoelectronic technologies: density functional calculations
  publication-title: Phys. Scripta
– volume: 28
  start-page: 1348
  year: 2016
  end-page: 1354
  ident: bib12
  article-title: Cs2AgBiX6(X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors
  publication-title: Chem. Mater.
– volume: 8
  start-page: 772
  year: 2017
  end-page: 778
  ident: bib15
  article-title: Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap
  publication-title: J. Phys. Chem. Lett.
– volume: 140
  start-page: A1133
  year: 1965
  ident: bib19
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
– volume: 140
  start-page: 12989
  year: 2018
  end-page: 12995
  ident: bib13
  article-title: Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2005
  ident: bib28
  article-title: Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors
  publication-title: New J. Phys.
– volume: 11
  start-page: 11173
  year: 2019
  end-page: 11182
  ident: bib17
  article-title: Lead-free double perovskites Cs2InCuCl6 and (CH3NH3)2InCuCl6: electronic, optical, and electrical properties
  publication-title: Nanoscale
– volume: 175
  start-page: 1
  year: 2006
  end-page: 14
  ident: bib32
  article-title: Linear optical properties of solids within the full-potential linearized augmented planewave method
  publication-title: Comput. Phys. Commun.
– volume: 5
  start-page: 19972
  year: 2017
  end-page: 19981
  ident: bib4
  article-title: Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications
  publication-title: J. Mater. Chem. A.
– volume: 495
  year: 2020
  ident: bib23
  article-title: The electronic , magnetic and electrical properties of Mn2FeReO6 : ab-intio calculations and Monte-Carlo simulation
  publication-title: J. Magn. Magn Mater.
– volume: 10
  year: 2020
  ident: bib36
  article-title: Recent advancements in crystalline Pb-free halide double perovskites
  publication-title: Crystals
– volume: 31
  start-page: 3564
  year: 2019
  end-page: 3572
  ident: bib37
  article-title: Graph networks as a universal machine learning framework for molecules and crystals
  publication-title: Chem. Mater.
– volume: 91
  start-page: 3
  year: 2003
  end-page: 6
  ident: bib22
  article-title: Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids
  publication-title: Phys. Rev. Lett.
– volume: 512
  start-page: 1249
  year: 2018
  end-page: 1259
  ident: bib25
  article-title: Magnetoelectronic properties of GaN codoped with (V, Mn) impurities for spintronic devices: abinitio and Monte Carlo studies
  publication-title: Phys. Stat. Mech. Appl.
– volume: 76
  start-page: 1
  year: 2005
  end-page: 9
  ident: bib38
  article-title: Kramers-Kronig constrained variational analysis of optical spectra
  publication-title: Rev. Sci. Instrum.
– volume: 8
  start-page: 2999
  year: 2017
  end-page: 3007
  ident: bib14
  article-title: Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites
  publication-title: J. Phys. Chem. Lett.
– volume: 466
  start-page: 420
  year: 2018
  end-page: 429
  ident: bib24
  article-title: Magnetoelectronic properties of Vanadium impurities co-doped (Cd, Cr) Te compound for spintronic devices: frst principles calculations and Monte Carlo simulation
  publication-title: J. Magn. Magn Mater.
– volume: 253
  start-page: 114484
  year: 2020
  ident: bib27
  article-title: High Curie temperature in halfmetallic ferromagnets (Zn, Cr, Ti)Se and (Zn, Cr, Ti)Te for spintronic devices: ab initio and Monte Carlo treatments
  publication-title: Mater. Sci. Eng. B
– volume: 58
  start-page: 17231
  year: 2019
  end-page: 17235
  ident: bib35
  article-title: Lead-free sodium–indium double perovskite nanocrystals through doping silver cations for bright yellow emission
  publication-title: Angew. Chem. Int. Ed.
– volume: 89
  start-page: 1
  year: 2014
  end-page: 6
  ident: bib1
  article-title: Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers
  publication-title: Phys. Rev. B Condens. Matter
– volume: 9
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib6
  article-title: Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications
  publication-title: Sci. Rep.
– volume: 31
  start-page: 1
  year: 2019
  end-page: 22
  ident: bib16
  article-title: From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives
  publication-title: Adv. Mater.
– volume: 15
  start-page: 6095
  year: 2015
  end-page: 6101
  ident: bib7
  article-title: Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications
  publication-title: Nano Lett.
– volume: 139
  start-page: 6054
  year: 2017
  end-page: 6057
  ident: bib34
  article-title: Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study
  publication-title: J. Am. Chem. Soc.
– volume: 59
  start-page: 399
  year: 1990
  end-page: 415
  ident: bib20
  article-title: Full-potential, linearized augmented plane wave programs for crystalline systems
  publication-title: Comput. Phys. Commun.
– volume: 142
  year: 2020
  ident: bib30
  article-title: Ab initio study of electronic and optical properties of penta-SiC2 and -SiGeC4 monolayers for solar energy conversion
  publication-title: Superlattice. Microst.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib11
  article-title: Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations
  publication-title: Sci. Rep.
– volume: 102
  start-page: 5
  year: 2009
  end-page: 8
  ident: bib29
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
  publication-title: Phys. Rev. Lett.
– volume: 10
  year: 2018
  ident: bib9
  article-title: Intrinsic defect properties in halide double perovskites for optoelectronic applications
  publication-title: Phys. Rev. Appl.
– volume: 136
  start-page: B864
  year: 1964
  ident: bib18
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
– volume: 1
  start-page: 474
  year: 2016
  end-page: 480
  ident: bib5
  article-title: Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells
  publication-title: ACS Energy Lett
– year: 2001
  ident: bib21
  article-title: Wien2k: an Augmented Plane Wave+local Orbitals Program for Calculating Crystal Properties
– volume: 2
  start-page: 1662
  year: 2018
  end-page: 1673
  ident: bib8
  article-title: Rational design of halide double perovskites for optoelectronic applications
  publication-title: Joule
– volume: 88
  start-page: 1
  year: 2013
  end-page: 12
  ident: bib10
  article-title: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3
  publication-title: Phys. Rev. B Condens. Matter
– volume: 10
  year: 2018
  ident: 10.1016/j.cap.2020.10.007_bib9
  article-title: Intrinsic defect properties in halide double perovskites for optoelectronic applications
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.041001
– volume: 10
  year: 2020
  ident: 10.1016/j.cap.2020.10.007_bib36
  article-title: Recent advancements in crystalline Pb-free halide double perovskites
  publication-title: Crystals
  doi: 10.3390/cryst10020062
– volume: 91
  start-page: 3
  year: 2003
  ident: 10.1016/j.cap.2020.10.007_bib22
  article-title: Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.146401
– volume: 15
  start-page: 6095
  year: 2015
  ident: 10.1016/j.cap.2020.10.007_bib7
  article-title: Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02369
– volume: 31
  start-page: 1
  year: 2019
  ident: 10.1016/j.cap.2020.10.007_bib16
  article-title: From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803792
– volume: 95
  year: 2020
  ident: 10.1016/j.cap.2020.10.007_bib31
  article-title: Electronic and optical properties of {ZnO} nanosheet doped and codoped with Be and/or Mg for ultraviolet optoelectronic technologies: density functional calculations
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/ab461a
– volume: 140
  start-page: A1133
  year: 1965
  ident: 10.1016/j.cap.2020.10.007_bib19
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 253
  start-page: 114484
  year: 2020
  ident: 10.1016/j.cap.2020.10.007_bib27
  article-title: High Curie temperature in halfmetallic ferromagnets (Zn, Cr, Ti)Se and (Zn, Cr, Ti)Te for spintronic devices: ab initio and Monte Carlo treatments
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2019.114484
– volume: 58
  start-page: 17231
  year: 2019
  ident: 10.1016/j.cap.2020.10.007_bib35
  article-title: Lead-free sodium–indium double perovskite nanocrystals through doping silver cations for bright yellow emission
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201909525
– volume: 76
  start-page: 1
  year: 2005
  ident: 10.1016/j.cap.2020.10.007_bib38
  article-title: Kramers-Kronig constrained variational analysis of optical spectra
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.1979470
– volume: 7
  year: 2005
  ident: 10.1016/j.cap.2020.10.007_bib28
  article-title: Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/7/1/126
– volume: 89
  start-page: 1
  year: 2014
  ident: 10.1016/j.cap.2020.10.007_bib1
  article-title: Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.89.155204
– volume: 102
  start-page: 5
  year: 2009
  ident: 10.1016/j.cap.2020.10.007_bib29
  article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.226401
– volume: 139
  start-page: 6054
  year: 2017
  ident: 10.1016/j.cap.2020.10.007_bib34
  article-title: Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02227
– volume: 175
  start-page: 1
  year: 2006
  ident: 10.1016/j.cap.2020.10.007_bib32
  article-title: Linear optical properties of solids within the full-potential linearized augmented planewave method
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.03.005
– volume: 18
  start-page: 27158
  year: 2016
  ident: 10.1016/j.cap.2020.10.007_bib2
  article-title: Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP03969C
– volume: 136
  start-page: B864
  year: 1964
  ident: 10.1016/j.cap.2020.10.007_bib18
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 9
  start-page: 1
  year: 2019
  ident: 10.1016/j.cap.2020.10.007_bib6
  article-title: Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37132-2
– volume: 28
  start-page: 1348
  year: 2016
  ident: 10.1016/j.cap.2020.10.007_bib12
  article-title: Cs2AgBiX6(X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04231
– volume: 1
  start-page: 949
  year: 2016
  ident: 10.1016/j.cap.2020.10.007_bib33
  article-title: Can Pb-free halide double perovskites support high-efficiency solar cells?
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.6b00471
– volume: 140
  start-page: 12989
  year: 2018
  ident: 10.1016/j.cap.2020.10.007_bib13
  article-title: Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07983
– volume: 5
  start-page: 19972
  year: 2017
  ident: 10.1016/j.cap.2020.10.007_bib4
  article-title: Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA06816F
– volume: 2
  start-page: 1662
  year: 2018
  ident: 10.1016/j.cap.2020.10.007_bib8
  article-title: Rational design of halide double perovskites for optoelectronic applications
  publication-title: Joule
  doi: 10.1016/j.joule.2018.06.017
– volume: 11
  start-page: 11173
  year: 2019
  ident: 10.1016/j.cap.2020.10.007_bib17
  article-title: Lead-free double perovskites Cs2InCuCl6 and (CH3NH3)2InCuCl6: electronic, optical, and electrical properties
  publication-title: Nanoscale
  doi: 10.1039/C9NR01645G
– volume: 1
  start-page: 474
  year: 2016
  ident: 10.1016/j.cap.2020.10.007_bib5
  article-title: Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells
  publication-title: ACS Energy Lett
  doi: 10.1021/acsenergylett.6b00254
– volume: 8
  start-page: 2999
  year: 2017
  ident: 10.1016/j.cap.2020.10.007_bib14
  article-title: Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b01042
– volume: 4
  start-page: 1
  year: 2014
  ident: 10.1016/j.cap.2020.10.007_bib3
  article-title: Relativistic GW calculations on CH3 NH3 PbI 3 and CH3 NH3 SnI3 perovskites for solar cell applications
  publication-title: Sci. Rep.
  doi: 10.1038/srep04467
– volume: 88
  start-page: 1
  year: 2013
  ident: 10.1016/j.cap.2020.10.007_bib10
  article-title: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3
  publication-title: Phys. Rev. B Condens. Matter
  doi: 10.1103/PhysRevB.88.165203
– volume: 8
  start-page: 772
  year: 2017
  ident: 10.1016/j.cap.2020.10.007_bib15
  article-title: Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02682
– volume: 477
  start-page: 220
  year: 2019
  ident: 10.1016/j.cap.2020.10.007_bib26
  article-title: Half-metallic ferromagnetic behavior in (Ga, Cr) N and (Ga, Cr, V) N compounds for spintronic technologies: ab-initio and Monte Carlo methods
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2019.01.060
– year: 2001
  ident: 10.1016/j.cap.2020.10.007_bib21
– volume: 495
  year: 2020
  ident: 10.1016/j.cap.2020.10.007_bib23
  article-title: The electronic , magnetic and electrical properties of Mn2FeReO6 : ab-intio calculations and Monte-Carlo simulation
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2019.165833
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.cap.2020.10.007_bib11
  article-title: Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-13172-y
– volume: 31
  start-page: 3564
  year: 2019
  ident: 10.1016/j.cap.2020.10.007_bib37
  article-title: Graph networks as a universal machine learning framework for molecules and crystals
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01294
– volume: 516
  start-page: 225
  year: 2019
  ident: 10.1016/j.cap.2020.10.007_bib39
  article-title: DFT prediction of band gap in organic-inorganic metal halide perovskites: an exchange-correlation functional benchmark study
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2018.09.023
– volume: 142
  year: 2020
  ident: 10.1016/j.cap.2020.10.007_bib30
  article-title: Ab initio study of electronic and optical properties of penta-SiC2 and -SiGeC4 monolayers for solar energy conversion
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2020.106524
– volume: 512
  start-page: 1249
  year: 2018
  ident: 10.1016/j.cap.2020.10.007_bib25
  article-title: Magnetoelectronic properties of GaN codoped with (V, Mn) impurities for spintronic devices: abinitio and Monte Carlo studies
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2018.08.153
– volume: 466
  start-page: 420
  year: 2018
  ident: 10.1016/j.cap.2020.10.007_bib24
  article-title: Magnetoelectronic properties of Vanadium impurities co-doped (Cd, Cr) Te compound for spintronic devices: frst principles calculations and Monte Carlo simulation
  publication-title: J. Magn. Magn Mater.
  doi: 10.1016/j.jmmm.2018.07.033
– volume: 59
  start-page: 399
  year: 1990
  ident: 10.1016/j.cap.2020.10.007_bib20
  article-title: Full-potential, linearized augmented plane wave programs for crystalline systems
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/0010-4655(90)90187-6
SSID ssj0016404
Score 2.5458367
Snippet During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Cs2InGaX6
New halide double-perovskites
Optoelectronic application
Strong absorption
Structural stability
물리학
Title Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics
URI https://dx.doi.org/10.1016/j.cap.2020.10.007
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002679684
Volume 21
WOSCitedRecordID wos000598138400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2021, 21(1), , pp.50-57
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AIEXJ
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9qT8EX8RPPLxZRUHuRfDUfgg93tXpROPpwQvBl2Wx2vdyVpKRpOfxT_GudySZprnKH9yCUNFmSZcn8svOb2Z0ZQl6J1LeUKRxDge4x3HHiGoFy0Gq1VeAGqbJlUheb8I-OgjgOZ4PB7zYWZj338zw4Pw8X_1XU0AbCxtDZa4i76xQa4ByEDkcQOxz_SfCTpR3lX3jsIXmMXzufJnphoRZNUY4iMP7RDzDVgZcVTBG6tJMYHQIpTyWSaoynmsmyWC_Ru9uEwMn8RO8XKBZV0aufIy4mfe7z3Tb9E2_IrnakbBaQsiQpVrVT9n3Pl66dsj-6poNi9SvTxadGUdf67QQUPPwyHTHW91_YVs9_0Uy5Hqap1CmN2jlZR003k6rOTNuoZ53O-q-JX_sgTnHXGBj9NrZgVvSNlmtX9reUX7clsd3tdsqgC4ZdwDWrExXs2P44DIZkZz-axl-7NSrPrYtTduNv18zr3YNb47iM9dzIS9XjM8d3yZ3GEKH7GkD3yEDm98mtmZbPA7LqYETfxB8n8z16UO7RoqTR2w-0hQ7toEM1dKiGDu1BhyJ0aAsdehE6dAs6D8n3z9PjyaHRlOgwhONYlcGRAJuJ8E3hiVSqECmuUr4SJg-Vhf4HrhLLSyW3lC_DxA9cDpSRm1wKsOucR2SYF7l8TCi-zyQMZMrxDGior8aO7XDJA0fYltglZvsKmWjy12MZlTm7VHS75F33yEInb7nqZreVC2vYp2aVDDB21WMvQYbsTGQMM7Xj_8-CnZUM7NGIhT5oPM98cp2BPCW3N9_JMzKsypV8Tm6KdZUtyxcNCv8ANr2tKw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cs2InGaX6+%28X%3DCl%2C+Br%2C+or+I%29%3A+Emergent+Inorganic+Halide+Double+Perovskites+with+enhanced+optoelectronic+characteristics&rft.jtitle=Current+applied+physics&rft.au=Kibbou%2C+M.&rft.au=Haman%2C+Z.&rft.au=Bouziani%2C+I.&rft.au=Khossossi%2C+N.&rft.date=2021-01-01&rft.issn=1567-1739&rft.volume=21&rft.spage=50&rft.epage=57&rft_id=info:doi/10.1016%2Fj.cap.2020.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cap_2020_10_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon