Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics
During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this...
Uloženo v:
| Vydáno v: | Current applied physics Ročník 21; s. 50 - 57 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.01.2021
한국물리학회 |
| Témata: | |
| ISSN: | 1567-1739, 1878-1675 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this study, First-Principles density functional theory (DFT) calculations were performed on the structural, stability, electronic and optical properties of the transition metal-based double perovskites materials Cs2InGaX6 (X = Cl, Br, or I). Our results reveal that all these materials exhibit excellent thermodynamic and structural stability owing to their negative formation energies and Goldsmith's factors. It is also observed that Cs2InGaCl6, Cs2InGaBr6, and Cs2InGaI6 materials exhibit band gaps calculated by different functional (GGA-PBE and TB-mpj) in visible-range between 0.89 and 3.24 eV. Furthermore, the computed optical properties reveal strong absorption in UV, visible, and IR range with high optical conductivity and low reflectivity. These obtained results predict that the three transition metal-based double perovskites materials carries promising application in nano-electronic and optoelectronic device applications and can be considered as photovoltaic absorber materials.
Schematic illustration of the halide double perovskite absorption over the whole light spectra. [Display omitted]
•Electronic and Optical properties of Cs2InGaX6(X: Cl, Br and I) were investigated.•Structural stability was demonstrated.•Semiconductor behavior with indirect and direct bandgaps was shown.•High optical conductivity and low reflectivity were found.•Strong absorption coefficient over the whole light spectra was revealed. |
|---|---|
| AbstractList | During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this study, First-Principles density functional theory (DFT) calculations were performed on the structural, stability, electronic and optical properties of the transition metal-based double perovskites materials Cs2InGaX6 (X = Cl, Br, or I). Our results reveal that all these materials exhibit excellent thermodynamic and structural stability owing to their negative formation energies and Goldsmith’s factors. It is also observed that Cs2InGaCl6, Cs2InGaBr6, and Cs2InGaI6 materials exhibit band gaps calculated by different functional (GGA-PBE and TB-mpj) in visible-range between 0.89 and 3.24 eV.
Furthermore, the computed optical properties reveal strong absorption in UV, visible, and IR range with high optical conductivity and low reflectivity. These obtained results predict that the three transition metal-based double perovskites materials carries promising application in nano-electronic and optoelectronic device applications and can be considered as photovoltaic absorber materials. KCI Citation Count: 0 During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative to lead based hybrid halide organic–inorganic perovskites materials, with outstanding Stability, Structural and electronic properties. In this study, First-Principles density functional theory (DFT) calculations were performed on the structural, stability, electronic and optical properties of the transition metal-based double perovskites materials Cs2InGaX6 (X = Cl, Br, or I). Our results reveal that all these materials exhibit excellent thermodynamic and structural stability owing to their negative formation energies and Goldsmith's factors. It is also observed that Cs2InGaCl6, Cs2InGaBr6, and Cs2InGaI6 materials exhibit band gaps calculated by different functional (GGA-PBE and TB-mpj) in visible-range between 0.89 and 3.24 eV. Furthermore, the computed optical properties reveal strong absorption in UV, visible, and IR range with high optical conductivity and low reflectivity. These obtained results predict that the three transition metal-based double perovskites materials carries promising application in nano-electronic and optoelectronic device applications and can be considered as photovoltaic absorber materials. Schematic illustration of the halide double perovskite absorption over the whole light spectra. [Display omitted] •Electronic and Optical properties of Cs2InGaX6(X: Cl, Br and I) were investigated.•Structural stability was demonstrated.•Semiconductor behavior with indirect and direct bandgaps was shown.•High optical conductivity and low reflectivity were found.•Strong absorption coefficient over the whole light spectra was revealed. |
| Author | Bouziani, I. Kibbou, M. Ahuja, R. Essaoudi, I. Haman, Z. Khossossi, N. Benhouria, Y. Ainane, A. |
| Author_xml | – sequence: 1 givenname: M. surname: Kibbou fullname: Kibbou, M. organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco – sequence: 2 givenname: Z. surname: Haman fullname: Haman, Z. organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco – sequence: 3 givenname: I. surname: Bouziani fullname: Bouziani, I. organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco – sequence: 4 givenname: N. orcidid: 0000-0002-3914-4162 surname: Khossossi fullname: Khossossi, N. organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco – sequence: 5 givenname: Y. surname: Benhouria fullname: Benhouria, Y. organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco – sequence: 6 givenname: I. surname: Essaoudi fullname: Essaoudi, I. organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco – sequence: 7 givenname: A. surname: Ainane fullname: Ainane, A. email: ainane@pks.mpg.de organization: Laboratoire de Physique des Matériaux et Modélisation des Systèmes, (LP2MS) Unité Associée Au CNRST-URAC 08, University of Moulay Ismail, Faculty of Sciences, Physics Department, B.P. 11201, Meknes, Morocco – sequence: 8 givenname: R. surname: Ahuja fullname: Ahuja, R. organization: Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120, Uppsala, Sweden |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002679684$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kE1vEzEQhi1UJNrCD-DmI5W6wd4kdhbEoYR-rFQJhIrUmzWZHSdOtnY0dov4990lnDj0NB96n5HmORFHMUUS4r1WE620-bidIOwntarHeaKUfSWO9cIuKm3s_Gjo58ZW2k6bN-Ik560amJmaHYvHZa7beA33Rn64_7Lsz-VXPpeJZXv2SV4-EK8pFtnGxGuIAeUN9KEj-S09rnqSP4jTU96FQln-DmUjKW4gInUy7UuinrBwGjHcAAMW4pBLwPxWvPbQZ3r3r56KX1eXd8ub6vb7dbu8uK1wOtWlAqNtrVZoFRrsyDdKmZn31qOCxmu1qOfgV9p0BNpbalZ2MQM9r0EBoa2b6ak4O9yN7N0Og0sQ_tZ1cjt2Fz_vWtdYpa1RQ1YfssgpZybv9hwegP84rdzo2G3d4NiNjsfV4Hhg7H8MhgIlpFgYQv8i-flA0vD-UyB2GQON6gIP1lyXwgv0M0dbmHQ |
| CitedBy_id | crossref_primary_10_1016_j_cocom_2025_e01070 crossref_primary_10_1016_j_jssc_2022_123698 crossref_primary_10_1016_j_jpcs_2022_111184 crossref_primary_10_1038_s41598_023_39230_2 crossref_primary_10_1016_j_physe_2022_115229 crossref_primary_10_1016_j_chemphys_2023_111897 crossref_primary_10_1016_j_physb_2023_415094 crossref_primary_10_1088_1402_4896_ad1669 crossref_primary_10_1088_1402_4896_ad38e9 crossref_primary_10_1016_j_physb_2025_417239 crossref_primary_10_1140_epjb_s10051_022_00381_2 crossref_primary_10_1088_2515_7655_ace07c crossref_primary_10_1007_s10904_025_03711_w crossref_primary_10_1016_j_jpcs_2024_112477 crossref_primary_10_1016_j_mseb_2023_116768 crossref_primary_10_1007_s11082_024_07321_7 crossref_primary_10_1016_j_optmat_2023_114737 crossref_primary_10_1016_j_jssc_2022_123262 crossref_primary_10_1016_j_cplett_2023_140678 crossref_primary_10_1016_j_spmi_2021_107024 crossref_primary_10_1007_s11082_023_06111_x crossref_primary_10_1016_j_matchemphys_2022_126978 crossref_primary_10_1016_j_physe_2021_114900 crossref_primary_10_1002_qua_27370 crossref_primary_10_1007_s11082_025_08299_6 crossref_primary_10_1016_j_comptc_2024_114970 crossref_primary_10_1016_j_physb_2022_414252 crossref_primary_10_1016_j_physb_2024_416632 crossref_primary_10_1002_cphc_202400891 crossref_primary_10_1016_j_solener_2022_07_049 crossref_primary_10_1016_j_mssp_2024_108717 crossref_primary_10_3390_cryst14010086 crossref_primary_10_1016_j_jmmm_2024_172180 crossref_primary_10_1016_j_jpcs_2024_111954 crossref_primary_10_1007_s10904_025_03695_7 crossref_primary_10_1016_j_mseb_2023_116830 crossref_primary_10_1016_j_mssp_2022_107047 crossref_primary_10_1007_s10853_023_09229_1 crossref_primary_10_1016_j_commatsci_2025_113900 crossref_primary_10_1557_s43578_025_01565_z crossref_primary_10_1007_s10904_024_03250_w crossref_primary_10_1016_j_chemphys_2024_112449 crossref_primary_10_1088_1402_4896_ade349 crossref_primary_10_1016_j_cjph_2023_11_007 crossref_primary_10_1016_j_jssc_2022_123557 crossref_primary_10_1016_j_mseb_2025_118250 crossref_primary_10_1016_j_mssp_2022_107165 crossref_primary_10_1016_j_physb_2024_415831 crossref_primary_10_1007_s10904_024_03051_1 crossref_primary_10_1016_j_ijhydene_2024_04_257 crossref_primary_10_1016_j_physb_2025_417537 crossref_primary_10_1007_s00339_022_05596_9 crossref_primary_10_1007_s10904_024_03375_y crossref_primary_10_1002_adts_202400129 crossref_primary_10_1038_s41598_024_54386_1 crossref_primary_10_1007_s11082_024_07199_5 crossref_primary_10_1016_j_jpcs_2022_110791 crossref_primary_10_1039_D4RA04462B crossref_primary_10_1016_j_apsusc_2021_149561 crossref_primary_10_1016_j_cplett_2023_140933 crossref_primary_10_1142_S2047684123500379 crossref_primary_10_1016_j_jssc_2022_123046 crossref_primary_10_1016_j_mseb_2022_116088 crossref_primary_10_1088_1402_4896_ad1b84 crossref_primary_10_1007_s10832_025_00382_4 crossref_primary_10_1016_j_mtcomm_2024_110794 crossref_primary_10_1016_j_ssc_2023_115162 crossref_primary_10_1016_j_ijhydene_2024_02_237 crossref_primary_10_1016_j_jssc_2023_124238 crossref_primary_10_1016_j_physb_2023_414732 crossref_primary_10_1007_s11082_024_07200_1 crossref_primary_10_1016_j_mtcomm_2023_105431 crossref_primary_10_1016_j_ijhydene_2025_151222 crossref_primary_10_1016_j_apsusc_2022_152997 crossref_primary_10_1007_s10971_025_06713_9 crossref_primary_10_1016_j_inoche_2024_112527 |
| Cites_doi | 10.1103/PhysRevApplied.10.041001 10.3390/cryst10020062 10.1103/PhysRevLett.91.146401 10.1021/acs.nanolett.5b02369 10.1002/adma.201803792 10.1088/1402-4896/ab461a 10.1103/PhysRev.140.A1133 10.1016/j.mseb.2019.114484 10.1002/anie.201909525 10.1063/1.1979470 10.1088/1367-2630/7/1/126 10.1103/PhysRevB.89.155204 10.1103/PhysRevLett.102.226401 10.1021/jacs.7b02227 10.1016/j.cpc.2006.03.005 10.1039/C6CP03969C 10.1103/PhysRev.136.B864 10.1038/s41598-018-37132-2 10.1021/acs.chemmater.5b04231 10.1021/acsenergylett.6b00471 10.1021/jacs.8b07983 10.1039/C7TA06816F 10.1016/j.joule.2018.06.017 10.1039/C9NR01645G 10.1021/acsenergylett.6b00254 10.1021/acs.jpclett.7b01042 10.1038/srep04467 10.1103/PhysRevB.88.165203 10.1021/acs.jpclett.6b02682 10.1016/j.jmmm.2019.01.060 10.1016/j.jmmm.2019.165833 10.1038/s41598-017-13172-y 10.1021/acs.chemmater.9b01294 10.1016/j.chemphys.2018.09.023 10.1016/j.spmi.2020.106524 10.1016/j.physa.2018.08.153 10.1016/j.jmmm.2018.07.033 10.1016/0010-4655(90)90187-6 |
| ContentType | Journal Article |
| Copyright | 2020 Korean Physical Society |
| Copyright_xml | – notice: 2020 Korean Physical Society |
| DBID | AAYXX CITATION ACYCR |
| DOI | 10.1016/j.cap.2020.10.007 |
| DatabaseName | CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1878-1675 |
| EndPage | 57 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_9701760 10_1016_j_cap_2020_10_007 S156717392030239X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ACDAQ ACFVG ACGFS ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- ~HD 9DU AAYXX CITATION 9ZL AACTN AAIAV ABPIF ABPTK ABYKQ ACYCR AFKWA AJBFU AJOXV AMFUW RIG |
| ID | FETCH-LOGICAL-c331t-a61720bc70c6cdef90064ff7fc0a9f10825afb16dea1f7e9b784a152a0aec7293 |
| ISICitedReferencesCount | 85 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000598138400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1567-1739 |
| IngestDate | Fri Nov 17 19:23:27 EST 2023 Sat Nov 29 06:59:40 EST 2025 Tue Nov 18 21:39:18 EST 2025 Sat Nov 22 16:52:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | New halide double-perovskites Strong absorption Optoelectronic application Structural stability Cs2InGaX6 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-a61720bc70c6cdef90064ff7fc0a9f10825afb16dea1f7e9b784a152a0aec7293 |
| ORCID | 0000-0002-3914-4162 |
| PageCount | 8 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9701760 crossref_primary_10_1016_j_cap_2020_10_007 crossref_citationtrail_10_1016_j_cap_2020_10_007 elsevier_sciencedirect_doi_10_1016_j_cap_2020_10_007 |
| PublicationCentury | 2000 |
| PublicationDate | January 2021 2021-01-00 2021-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Current applied physics |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V 한국물리학회 |
| Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
| References | Savory, Walsh, Scanlon (bib33) 2016; 1 Bouziani, Benhouria, Essaoudi, Ainane, Ahuja (bib25) 2018; 512 Han, Mao, Yang, Zhang, Yang, Wei, Deng, Han (bib35) 2019; 58 McClure, Ball, Windl, Woodward (bib12) 2016; 28 Blaha, Schwarz, Madsen, Kvasnicka (bib21) 2001 Tao, Perdew, Staroverov, Scuseria (bib22) 2003; 91 Xiao, Song, Yan (bib16) 2019; 31 Sadhanala, Ahmad, Zhao, Giesbrecht, Pearce, Deschler, Hoye, Gödel, Bein, Docampo, Dutton, De Volder, Friend (bib7) 2015; 15 Volonakis, Haghighirad, Milot, Sio, Filip, Wenger, Johnston, Herz, Snaith, Giustino (bib15) 2017; 8 Roknuzzaman, Ostrikov, Wang, Du, Tesfamichael (bib11) 2017; 7 Kuzmenko (bib38) 2005; 76 Locardi, Cirignano, Baranov, Dang, Prato, Drago, Ferretti, Pinchetti, Fanciulli, Brovelli, De Trizio, Manna (bib13) 2018; 140 Mosconi, Umari, De Angelis (bib2) 2016; 18 Bouziani, Benhouria, Essaoudi, Ainane, Ahuja (bib24) 2018; 466 Li, Zhao, Yang, Du, Zhang (bib9) 2018; 10 Meng, Wang, Xiao, Wang, Mitzi, Yan (bib14) 2017; 8 Ambrosch-Draxl, Sofo (bib32) 2006; 175 Greul, Petrus, Binek, Docampo, Bein (bib4) 2017; 5 Kibbou, Benhouria, Boujnah, Essaoudi, Ainane, Ahuja (bib23) 2020; 495 Rinke, Qteish, Neugebauer, Freysoldt, Scheffler (bib28) 2005; 7 Zhao, Yang, Ren, Sun, Xiao, Zhang (bib8) 2018; 2 Bouziani, Benhouria, Essaoudi, Ainane, Ahuja (bib26) 2019; 477 Umari, Mosconi, De Angelis (bib3) 2014; 4 Xiao, Du, Meng, Wang, Mitzi, Yan (bib34) 2017; 139 Blaha, Schwarz, Sorantin, Trickey (bib20) 1990; 59 Tran, Blaha (bib29) 2009; 102 Bouziani, Benhouria, Essaoudi, Ainane, Ahuja (bib27) 2020; 253 Brivio, Butler, Walsh, Van Schilfgaarde (bib1) 2014; 89 Hohenberg, Kohn (bib18) 1964; 136 Werner, Barraud, Walter, Bräuninger, Sahli, Sacchetto, Tétreault, Paviet-Salomon, Moon, Allebé, Despeisse, Nicolay, De Wolf, Niesen, Ballif (bib5) 2016; 1 Bouziani, Haman, Kibbou, Benhouria, Essaoudi, Ainane, Ahuja (bib30) 2020; 142 Kohn, Sham (bib19) 1965; 140 Chen, Ye, Zuo, Zheng, Ong (bib37) 2019; 31 Roknuzzaman, Zhang, Ostrikov, Du, Wang, Wang, Tesfamichael (bib6) 2019; 9 Hernández-Haro, Ortega-Castro, Martynov, Nazmitdinov, Frontera (bib39) 2019; 516 Bouziani, Kibbou, Haman, Benhouria, Essaoudi, Ainane, Ahuja (bib31) 2020; 95 Usman, Yan (bib36) 2020; 10 Huang, Lambrecht (bib10) 2013; 88 Pham, Holmes, Aydil, Gagliardi (bib17) 2019; 11 Mosconi (10.1016/j.cap.2020.10.007_bib2) 2016; 18 Greul (10.1016/j.cap.2020.10.007_bib4) 2017; 5 Meng (10.1016/j.cap.2020.10.007_bib14) 2017; 8 Kuzmenko (10.1016/j.cap.2020.10.007_bib38) 2005; 76 Xiao (10.1016/j.cap.2020.10.007_bib34) 2017; 139 Blaha (10.1016/j.cap.2020.10.007_bib21) 2001 Sadhanala (10.1016/j.cap.2020.10.007_bib7) 2015; 15 Hohenberg (10.1016/j.cap.2020.10.007_bib18) 1964; 136 Bouziani (10.1016/j.cap.2020.10.007_bib30) 2020; 142 Zhao (10.1016/j.cap.2020.10.007_bib8) 2018; 2 Savory (10.1016/j.cap.2020.10.007_bib33) 2016; 1 Xiao (10.1016/j.cap.2020.10.007_bib16) 2019; 31 Bouziani (10.1016/j.cap.2020.10.007_bib24) 2018; 466 Werner (10.1016/j.cap.2020.10.007_bib5) 2016; 1 Rinke (10.1016/j.cap.2020.10.007_bib28) 2005; 7 Roknuzzaman (10.1016/j.cap.2020.10.007_bib11) 2017; 7 McClure (10.1016/j.cap.2020.10.007_bib12) 2016; 28 Bouziani (10.1016/j.cap.2020.10.007_bib27) 2020; 253 Brivio (10.1016/j.cap.2020.10.007_bib1) 2014; 89 Bouziani (10.1016/j.cap.2020.10.007_bib26) 2019; 477 Li (10.1016/j.cap.2020.10.007_bib9) 2018; 10 Huang (10.1016/j.cap.2020.10.007_bib10) 2013; 88 Han (10.1016/j.cap.2020.10.007_bib35) 2019; 58 Bouziani (10.1016/j.cap.2020.10.007_bib31) 2020; 95 Kibbou (10.1016/j.cap.2020.10.007_bib23) 2020; 495 Umari (10.1016/j.cap.2020.10.007_bib3) 2014; 4 Pham (10.1016/j.cap.2020.10.007_bib17) 2019; 11 Blaha (10.1016/j.cap.2020.10.007_bib20) 1990; 59 Locardi (10.1016/j.cap.2020.10.007_bib13) 2018; 140 Volonakis (10.1016/j.cap.2020.10.007_bib15) 2017; 8 Hernández-Haro (10.1016/j.cap.2020.10.007_bib39) 2019; 516 Ambrosch-Draxl (10.1016/j.cap.2020.10.007_bib32) 2006; 175 Tao (10.1016/j.cap.2020.10.007_bib22) 2003; 91 Tran (10.1016/j.cap.2020.10.007_bib29) 2009; 102 Usman (10.1016/j.cap.2020.10.007_bib36) 2020; 10 Roknuzzaman (10.1016/j.cap.2020.10.007_bib6) 2019; 9 Kohn (10.1016/j.cap.2020.10.007_bib19) 1965; 140 Bouziani (10.1016/j.cap.2020.10.007_bib25) 2018; 512 Chen (10.1016/j.cap.2020.10.007_bib37) 2019; 31 |
| References_xml | – volume: 1 start-page: 949 year: 2016 end-page: 955 ident: bib33 article-title: Can Pb-free halide double perovskites support high-efficiency solar cells? publication-title: ACS Energy Lett – volume: 516 start-page: 225 year: 2019 end-page: 231 ident: bib39 article-title: DFT prediction of band gap in organic-inorganic metal halide perovskites: an exchange-correlation functional benchmark study publication-title: Chem. Phys. – volume: 18 start-page: 27158 year: 2016 end-page: 27164 ident: bib2 article-title: Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 1 year: 2014 end-page: 7 ident: bib3 article-title: Relativistic GW calculations on CH3 NH3 PbI 3 and CH3 NH3 SnI3 perovskites for solar cell applications publication-title: Sci. Rep. – volume: 477 start-page: 220 year: 2019 end-page: 225 ident: bib26 article-title: Half-metallic ferromagnetic behavior in (Ga, Cr) N and (Ga, Cr, V) N compounds for spintronic technologies: ab-initio and Monte Carlo methods publication-title: J. Magn. Magn Mater. – volume: 95 year: 2020 ident: bib31 article-title: Electronic and optical properties of {ZnO} nanosheet doped and codoped with Be and/or Mg for ultraviolet optoelectronic technologies: density functional calculations publication-title: Phys. Scripta – volume: 28 start-page: 1348 year: 2016 end-page: 1354 ident: bib12 article-title: Cs2AgBiX6(X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors publication-title: Chem. Mater. – volume: 8 start-page: 772 year: 2017 end-page: 778 ident: bib15 article-title: Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap publication-title: J. Phys. Chem. Lett. – volume: 140 start-page: A1133 year: 1965 ident: bib19 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. – volume: 140 start-page: 12989 year: 2018 end-page: 12995 ident: bib13 article-title: Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals publication-title: J. Am. Chem. Soc. – volume: 7 year: 2005 ident: bib28 article-title: Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors publication-title: New J. Phys. – volume: 11 start-page: 11173 year: 2019 end-page: 11182 ident: bib17 article-title: Lead-free double perovskites Cs2InCuCl6 and (CH3NH3)2InCuCl6: electronic, optical, and electrical properties publication-title: Nanoscale – volume: 175 start-page: 1 year: 2006 end-page: 14 ident: bib32 article-title: Linear optical properties of solids within the full-potential linearized augmented planewave method publication-title: Comput. Phys. Commun. – volume: 5 start-page: 19972 year: 2017 end-page: 19981 ident: bib4 article-title: Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications publication-title: J. Mater. Chem. A. – volume: 495 year: 2020 ident: bib23 article-title: The electronic , magnetic and electrical properties of Mn2FeReO6 : ab-intio calculations and Monte-Carlo simulation publication-title: J. Magn. Magn Mater. – volume: 10 year: 2020 ident: bib36 article-title: Recent advancements in crystalline Pb-free halide double perovskites publication-title: Crystals – volume: 31 start-page: 3564 year: 2019 end-page: 3572 ident: bib37 article-title: Graph networks as a universal machine learning framework for molecules and crystals publication-title: Chem. Mater. – volume: 91 start-page: 3 year: 2003 end-page: 6 ident: bib22 article-title: Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids publication-title: Phys. Rev. Lett. – volume: 512 start-page: 1249 year: 2018 end-page: 1259 ident: bib25 article-title: Magnetoelectronic properties of GaN codoped with (V, Mn) impurities for spintronic devices: abinitio and Monte Carlo studies publication-title: Phys. Stat. Mech. Appl. – volume: 76 start-page: 1 year: 2005 end-page: 9 ident: bib38 article-title: Kramers-Kronig constrained variational analysis of optical spectra publication-title: Rev. Sci. Instrum. – volume: 8 start-page: 2999 year: 2017 end-page: 3007 ident: bib14 article-title: Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites publication-title: J. Phys. Chem. Lett. – volume: 466 start-page: 420 year: 2018 end-page: 429 ident: bib24 article-title: Magnetoelectronic properties of Vanadium impurities co-doped (Cd, Cr) Te compound for spintronic devices: frst principles calculations and Monte Carlo simulation publication-title: J. Magn. Magn Mater. – volume: 253 start-page: 114484 year: 2020 ident: bib27 article-title: High Curie temperature in halfmetallic ferromagnets (Zn, Cr, Ti)Se and (Zn, Cr, Ti)Te for spintronic devices: ab initio and Monte Carlo treatments publication-title: Mater. Sci. Eng. B – volume: 58 start-page: 17231 year: 2019 end-page: 17235 ident: bib35 article-title: Lead-free sodium–indium double perovskite nanocrystals through doping silver cations for bright yellow emission publication-title: Angew. Chem. Int. Ed. – volume: 89 start-page: 1 year: 2014 end-page: 6 ident: bib1 article-title: Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers publication-title: Phys. Rev. B Condens. Matter – volume: 9 start-page: 1 year: 2019 end-page: 7 ident: bib6 article-title: Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications publication-title: Sci. Rep. – volume: 31 start-page: 1 year: 2019 end-page: 22 ident: bib16 article-title: From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives publication-title: Adv. Mater. – volume: 15 start-page: 6095 year: 2015 end-page: 6101 ident: bib7 article-title: Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications publication-title: Nano Lett. – volume: 139 start-page: 6054 year: 2017 end-page: 6057 ident: bib34 article-title: Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study publication-title: J. Am. Chem. Soc. – volume: 59 start-page: 399 year: 1990 end-page: 415 ident: bib20 article-title: Full-potential, linearized augmented plane wave programs for crystalline systems publication-title: Comput. Phys. Commun. – volume: 142 year: 2020 ident: bib30 article-title: Ab initio study of electronic and optical properties of penta-SiC2 and -SiGeC4 monolayers for solar energy conversion publication-title: Superlattice. Microst. – volume: 7 start-page: 1 year: 2017 end-page: 8 ident: bib11 article-title: Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations publication-title: Sci. Rep. – volume: 102 start-page: 5 year: 2009 end-page: 8 ident: bib29 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. – volume: 10 year: 2018 ident: bib9 article-title: Intrinsic defect properties in halide double perovskites for optoelectronic applications publication-title: Phys. Rev. Appl. – volume: 136 start-page: B864 year: 1964 ident: bib18 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. – volume: 1 start-page: 474 year: 2016 end-page: 480 ident: bib5 article-title: Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells publication-title: ACS Energy Lett – year: 2001 ident: bib21 article-title: Wien2k: an Augmented Plane Wave+local Orbitals Program for Calculating Crystal Properties – volume: 2 start-page: 1662 year: 2018 end-page: 1673 ident: bib8 article-title: Rational design of halide double perovskites for optoelectronic applications publication-title: Joule – volume: 88 start-page: 1 year: 2013 end-page: 12 ident: bib10 article-title: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 publication-title: Phys. Rev. B Condens. Matter – volume: 10 year: 2018 ident: 10.1016/j.cap.2020.10.007_bib9 article-title: Intrinsic defect properties in halide double perovskites for optoelectronic applications publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.041001 – volume: 10 year: 2020 ident: 10.1016/j.cap.2020.10.007_bib36 article-title: Recent advancements in crystalline Pb-free halide double perovskites publication-title: Crystals doi: 10.3390/cryst10020062 – volume: 91 start-page: 3 year: 2003 ident: 10.1016/j.cap.2020.10.007_bib22 article-title: Climbing the density functional ladder: nonempirical meta–generalized gradient approximation designed for molecules and solids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.91.146401 – volume: 15 start-page: 6095 year: 2015 ident: 10.1016/j.cap.2020.10.007_bib7 article-title: Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02369 – volume: 31 start-page: 1 year: 2019 ident: 10.1016/j.cap.2020.10.007_bib16 article-title: From lead halide perovskites to lead-free metal halide perovskites and perovskite derivatives publication-title: Adv. Mater. doi: 10.1002/adma.201803792 – volume: 95 year: 2020 ident: 10.1016/j.cap.2020.10.007_bib31 article-title: Electronic and optical properties of {ZnO} nanosheet doped and codoped with Be and/or Mg for ultraviolet optoelectronic technologies: density functional calculations publication-title: Phys. Scripta doi: 10.1088/1402-4896/ab461a – volume: 140 start-page: A1133 year: 1965 ident: 10.1016/j.cap.2020.10.007_bib19 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 253 start-page: 114484 year: 2020 ident: 10.1016/j.cap.2020.10.007_bib27 article-title: High Curie temperature in halfmetallic ferromagnets (Zn, Cr, Ti)Se and (Zn, Cr, Ti)Te for spintronic devices: ab initio and Monte Carlo treatments publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2019.114484 – volume: 58 start-page: 17231 year: 2019 ident: 10.1016/j.cap.2020.10.007_bib35 article-title: Lead-free sodium–indium double perovskite nanocrystals through doping silver cations for bright yellow emission publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201909525 – volume: 76 start-page: 1 year: 2005 ident: 10.1016/j.cap.2020.10.007_bib38 article-title: Kramers-Kronig constrained variational analysis of optical spectra publication-title: Rev. Sci. Instrum. doi: 10.1063/1.1979470 – volume: 7 year: 2005 ident: 10.1016/j.cap.2020.10.007_bib28 article-title: Combining GW calculations with exact-exchange density-functional theory: an analysis of valence-band photoemission for compound semiconductors publication-title: New J. Phys. doi: 10.1088/1367-2630/7/1/126 – volume: 89 start-page: 1 year: 2014 ident: 10.1016/j.cap.2020.10.007_bib1 article-title: Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.89.155204 – volume: 102 start-page: 5 year: 2009 ident: 10.1016/j.cap.2020.10.007_bib29 article-title: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.226401 – volume: 139 start-page: 6054 year: 2017 ident: 10.1016/j.cap.2020.10.007_bib34 article-title: Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = halogen) double perovskites: a combined density functional theory and experimental study publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02227 – volume: 175 start-page: 1 year: 2006 ident: 10.1016/j.cap.2020.10.007_bib32 article-title: Linear optical properties of solids within the full-potential linearized augmented planewave method publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.005 – volume: 18 start-page: 27158 year: 2016 ident: 10.1016/j.cap.2020.10.007_bib2 article-title: Electronic and optical properties of MAPbX3 perovskites (X = I, Br, Cl): a unified DFT and GW theoretical analysis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP03969C – volume: 136 start-page: B864 year: 1964 ident: 10.1016/j.cap.2020.10.007_bib18 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 9 start-page: 1 year: 2019 ident: 10.1016/j.cap.2020.10.007_bib6 article-title: Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications publication-title: Sci. Rep. doi: 10.1038/s41598-018-37132-2 – volume: 28 start-page: 1348 year: 2016 ident: 10.1016/j.cap.2020.10.007_bib12 article-title: Cs2AgBiX6(X = Br, Cl): new visible light absorbing, lead-free halide perovskite semiconductors publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04231 – volume: 1 start-page: 949 year: 2016 ident: 10.1016/j.cap.2020.10.007_bib33 article-title: Can Pb-free halide double perovskites support high-efficiency solar cells? publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.6b00471 – volume: 140 start-page: 12989 year: 2018 ident: 10.1016/j.cap.2020.10.007_bib13 article-title: Colloidal synthesis of double perovskite Cs2AgInCl6 and Mn-doped Cs2AgInCl6 nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07983 – volume: 5 start-page: 19972 year: 2017 ident: 10.1016/j.cap.2020.10.007_bib4 article-title: Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA06816F – volume: 2 start-page: 1662 year: 2018 ident: 10.1016/j.cap.2020.10.007_bib8 article-title: Rational design of halide double perovskites for optoelectronic applications publication-title: Joule doi: 10.1016/j.joule.2018.06.017 – volume: 11 start-page: 11173 year: 2019 ident: 10.1016/j.cap.2020.10.007_bib17 article-title: Lead-free double perovskites Cs2InCuCl6 and (CH3NH3)2InCuCl6: electronic, optical, and electrical properties publication-title: Nanoscale doi: 10.1039/C9NR01645G – volume: 1 start-page: 474 year: 2016 ident: 10.1016/j.cap.2020.10.007_bib5 article-title: Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.6b00254 – volume: 8 start-page: 2999 year: 2017 ident: 10.1016/j.cap.2020.10.007_bib14 article-title: Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.7b01042 – volume: 4 start-page: 1 year: 2014 ident: 10.1016/j.cap.2020.10.007_bib3 article-title: Relativistic GW calculations on CH3 NH3 PbI 3 and CH3 NH3 SnI3 perovskites for solar cell applications publication-title: Sci. Rep. doi: 10.1038/srep04467 – volume: 88 start-page: 1 year: 2013 ident: 10.1016/j.cap.2020.10.007_bib10 article-title: Electronic band structure, phonons, and exciton binding energies of halide perovskites CsSnCl3, CsSnBr3, and CsSnI3 publication-title: Phys. Rev. B Condens. Matter doi: 10.1103/PhysRevB.88.165203 – volume: 8 start-page: 772 year: 2017 ident: 10.1016/j.cap.2020.10.007_bib15 article-title: Cs2InAgCl6: a new lead-free halide double perovskite with direct band gap publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02682 – volume: 477 start-page: 220 year: 2019 ident: 10.1016/j.cap.2020.10.007_bib26 article-title: Half-metallic ferromagnetic behavior in (Ga, Cr) N and (Ga, Cr, V) N compounds for spintronic technologies: ab-initio and Monte Carlo methods publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2019.01.060 – year: 2001 ident: 10.1016/j.cap.2020.10.007_bib21 – volume: 495 year: 2020 ident: 10.1016/j.cap.2020.10.007_bib23 article-title: The electronic , magnetic and electrical properties of Mn2FeReO6 : ab-intio calculations and Monte-Carlo simulation publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2019.165833 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.cap.2020.10.007_bib11 article-title: Towards lead-free perovskite photovoltaics and optoelectronics by ab-initio simulations publication-title: Sci. Rep. doi: 10.1038/s41598-017-13172-y – volume: 31 start-page: 3564 year: 2019 ident: 10.1016/j.cap.2020.10.007_bib37 article-title: Graph networks as a universal machine learning framework for molecules and crystals publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01294 – volume: 516 start-page: 225 year: 2019 ident: 10.1016/j.cap.2020.10.007_bib39 article-title: DFT prediction of band gap in organic-inorganic metal halide perovskites: an exchange-correlation functional benchmark study publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2018.09.023 – volume: 142 year: 2020 ident: 10.1016/j.cap.2020.10.007_bib30 article-title: Ab initio study of electronic and optical properties of penta-SiC2 and -SiGeC4 monolayers for solar energy conversion publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2020.106524 – volume: 512 start-page: 1249 year: 2018 ident: 10.1016/j.cap.2020.10.007_bib25 article-title: Magnetoelectronic properties of GaN codoped with (V, Mn) impurities for spintronic devices: abinitio and Monte Carlo studies publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2018.08.153 – volume: 466 start-page: 420 year: 2018 ident: 10.1016/j.cap.2020.10.007_bib24 article-title: Magnetoelectronic properties of Vanadium impurities co-doped (Cd, Cr) Te compound for spintronic devices: frst principles calculations and Monte Carlo simulation publication-title: J. Magn. Magn Mater. doi: 10.1016/j.jmmm.2018.07.033 – volume: 59 start-page: 399 year: 1990 ident: 10.1016/j.cap.2020.10.007_bib20 article-title: Full-potential, linearized augmented plane wave programs for crystalline systems publication-title: Comput. Phys. Commun. doi: 10.1016/0010-4655(90)90187-6 |
| SSID | ssj0016404 |
| Score | 2.5458367 |
| Snippet | During the last decade, Inorganic Halide Double Perovskite materials have attracted widespread interest as a promising eco-friendly and non-toxic alternative... |
| SourceID | nrf crossref elsevier |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 50 |
| SubjectTerms | Cs2InGaX6 New halide double-perovskites Optoelectronic application Strong absorption Structural stability 물리학 |
| Title | Cs2InGaX6 (X=Cl, Br, or I): Emergent Inorganic Halide Double Perovskites with enhanced optoelectronic characteristics |
| URI | https://dx.doi.org/10.1016/j.cap.2020.10.007 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002679684 |
| Volume | 21 |
| WOSCitedRecordID | wos000598138400009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Current Applied Physics, 2021, 21(1), , pp.50-57 |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AIEXJ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9qT8EX8RPPLxZRUHuRfDUfgg93tXpROPpwQvBl2Wx2vdyVpKRpOfxT_GudySZprnKH9yCUNFmSZcn8svOb2Z0ZQl6J1LeUKRxDge4x3HHiGoFy0Gq1VeAGqbJlUheb8I-OgjgOZ4PB7zYWZj338zw4Pw8X_1XU0AbCxtDZa4i76xQa4ByEDkcQOxz_SfCTpR3lX3jsIXmMXzufJnphoRZNUY4iMP7RDzDVgZcVTBG6tJMYHQIpTyWSaoynmsmyWC_Ru9uEwMn8RO8XKBZV0aufIy4mfe7z3Tb9E2_IrnakbBaQsiQpVrVT9n3Pl66dsj-6poNi9SvTxadGUdf67QQUPPwyHTHW91_YVs9_0Uy5Hqap1CmN2jlZR003k6rOTNuoZ53O-q-JX_sgTnHXGBj9NrZgVvSNlmtX9reUX7clsd3tdsqgC4ZdwDWrExXs2P44DIZkZz-axl-7NSrPrYtTduNv18zr3YNb47iM9dzIS9XjM8d3yZ3GEKH7GkD3yEDm98mtmZbPA7LqYETfxB8n8z16UO7RoqTR2w-0hQ7toEM1dKiGDu1BhyJ0aAsdehE6dAs6D8n3z9PjyaHRlOgwhONYlcGRAJuJ8E3hiVSqECmuUr4SJg-Vhf4HrhLLSyW3lC_DxA9cDpSRm1wKsOucR2SYF7l8TCi-zyQMZMrxDGior8aO7XDJA0fYltglZvsKmWjy12MZlTm7VHS75F33yEInb7nqZreVC2vYp2aVDDB21WMvQYbsTGQMM7Xj_8-CnZUM7NGIhT5oPM98cp2BPCW3N9_JMzKsypV8Tm6KdZUtyxcNCv8ANr2tKw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cs2InGaX6+%28X%3DCl%2C+Br%2C+or+I%29%3A+Emergent+Inorganic+Halide+Double+Perovskites+with+enhanced+optoelectronic+characteristics&rft.jtitle=Current+applied+physics&rft.au=Kibbou%2C+M.&rft.au=Haman%2C+Z.&rft.au=Bouziani%2C+I.&rft.au=Khossossi%2C+N.&rft.date=2021-01-01&rft.issn=1567-1739&rft.volume=21&rft.spage=50&rft.epage=57&rft_id=info:doi/10.1016%2Fj.cap.2020.10.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cap_2020_10_007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |