Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based Finite Element Method
In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty analysis in solid mechanics with symmetric non-Gaussian input parameters are presented. Theoretical foundations of the method are based on the gene...
Uloženo v:
| Vydáno v: | Finite elements in analysis and design Ročník 200; s. 103648 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.03.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0168-874X, 1872-6925 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty analysis in solid mechanics with symmetric non-Gaussian input parameters are presented. Theoretical foundations of the method are based on the general order Taylor expansions of all uncertain input parameters and state functions including even orders only. The first four probabilistic characteristics of the structural responses have been derived for symmetrical triangular and uniform probability distributions of random input including probability distribution truncation effect. The Stochastic Finite Element Method implementation has been completed for the displacement version of the FEM using statistically optimized nodal polynomial response bases, and their coefficients are determined using the Least Squares Method using the weighted and non-weighted schemes. Structural responses of several mechanical systems are analyzed using their basic probabilistic characteristics, which have been validated using the probabilistic semi-analytical approach, and also the crude Monte-Carlo simulation. A relatively good coincidence of three probabilistic numerical techniques confirms the applicability of the Stochastic perturbation-based Finite Element Method to study boundary and initial problems in mechanics with uncertainties having uniform and/or triangular probability distributions.
•New formulation of the iterative generalized stochastic perturbation technique.•Implementation of the Stochastic Finite Element Method for the triangular PDF.•Implementation of the Stochastic Finite Element Method for the input uniform PDF.•Comparative numerical analysis with Monte-Carlo simulation.•Comparative numerical analysis with the semi-analytical probabilistic method. |
|---|---|
| AbstractList | In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty analysis in solid mechanics with symmetric non-Gaussian input parameters are presented. Theoretical foundations of the method are based on the general order Taylor expansions of all uncertain input parameters and state functions including even orders only. The first four probabilistic characteristics of the structural responses have been derived for symmetrical triangular and uniform probability distributions of random input including probability distribution truncation effect. The Stochastic Finite Element Method implementation has been completed for the displacement version of the FEM using statistically optimized nodal polynomial response bases, and their coefficients are determined using the Least Squares Method using the weighted and non-weighted schemes. Structural responses of several mechanical systems are analyzed using their basic probabilistic characteristics, which have been validated using the probabilistic semi-analytical approach, and also the crude Monte-Carlo simulation. A relatively good coincidence of three probabilistic numerical techniques confirms the applicability of the Stochastic perturbation-based Finite Element Method to study boundary and initial problems in mechanics with uncertainties having uniform and/or triangular probability distributions. In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty analysis in solid mechanics with symmetric non-Gaussian input parameters are presented. Theoretical foundations of the method are based on the general order Taylor expansions of all uncertain input parameters and state functions including even orders only. The first four probabilistic characteristics of the structural responses have been derived for symmetrical triangular and uniform probability distributions of random input including probability distribution truncation effect. The Stochastic Finite Element Method implementation has been completed for the displacement version of the FEM using statistically optimized nodal polynomial response bases, and their coefficients are determined using the Least Squares Method using the weighted and non-weighted schemes. Structural responses of several mechanical systems are analyzed using their basic probabilistic characteristics, which have been validated using the probabilistic semi-analytical approach, and also the crude Monte-Carlo simulation. A relatively good coincidence of three probabilistic numerical techniques confirms the applicability of the Stochastic perturbation-based Finite Element Method to study boundary and initial problems in mechanics with uncertainties having uniform and/or triangular probability distributions. •New formulation of the iterative generalized stochastic perturbation technique.•Implementation of the Stochastic Finite Element Method for the triangular PDF.•Implementation of the Stochastic Finite Element Method for the input uniform PDF.•Comparative numerical analysis with Monte-Carlo simulation.•Comparative numerical analysis with the semi-analytical probabilistic method. |
| ArticleNumber | 103648 |
| Author | Kamiński, Marcin |
| Author_xml | – sequence: 1 givenname: Marcin surname: Kamiński fullname: Kamiński, Marcin email: Marcin.Kaminski@p.lodz.pl organization: Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Łódź University of Technology, Al. Politechniki 6, 90-924, Łódź, Poland |
| BookMark | eNqFkc9u1DAQxi1UJLYtT8DFEuds_Sdx4gMHVLVQqYhLK3GzHGfcnVXWXmwHtM_Ql8bb5cSBnqzxfL8Zfd-ck7MQAxDygbM1Z1xdbdceA8xrwQSvP1K1wxuy4kMvGqVFd0ZWVTU0Q9_-eEfOc94yxjqh2hV5fgwOUrEYyoHaYOdDxkwx0BxnnOgO3MYGdJn-xrKhS0Af064KJ1oS2vC0zDbRCXOtxqVgDJkuGcMTzSVWNBd0dF8XLGm0x3Yz2gwTvcWABejNDDsIhX6DsonTJXnr7Zzh_d_3gjze3jxcf23uv3-5u_583zgpeWk0DF4o5rRX3snJdWJkXPReSd5raFttrRba60722rdMO22FtN3YOce4g1ZekI-nufsUfy6Qi9nGJVXv2QglNBuUakVVyZPKpZhzAm_2CXc2HQxn5pi62ZqX1M0xdXNKvVL6H8pheXFeksX5FfbTiYVq_hdCMtkh1PtMmMAVM0X8L_8HZjmknQ |
| CitedBy_id | crossref_primary_10_1016_j_camwa_2023_01_020 crossref_primary_10_1016_j_oceaneng_2024_116935 crossref_primary_10_1016_j_compstruc_2024_107560 crossref_primary_10_1016_j_strusafe_2023_102346 crossref_primary_10_1016_j_ijnonlinmec_2025_105125 crossref_primary_10_1080_15376494_2024_2387735 crossref_primary_10_1016_j_enganabound_2024_105784 crossref_primary_10_1177_03093247221150043 crossref_primary_10_1016_j_euromechsol_2023_105188 crossref_primary_10_1007_s10999_024_09719_3 crossref_primary_10_3934_math_2025179 crossref_primary_10_1016_j_apm_2023_07_025 crossref_primary_10_1016_j_tws_2023_111478 crossref_primary_10_1177_00219983241230382 crossref_primary_10_1002_nme_7564 crossref_primary_10_1016_j_compstruc_2024_107365 crossref_primary_10_1002_nag_3615 crossref_primary_10_1016_j_cma_2022_115855 crossref_primary_10_1155_2023_9974539 crossref_primary_10_1080_01495739_2024_2319682 crossref_primary_10_3390_app13042647 crossref_primary_10_1007_s00707_024_04019_5 crossref_primary_10_1016_j_oceaneng_2023_115656 crossref_primary_10_1016_j_amc_2023_127981 crossref_primary_10_1016_j_engstruct_2024_119187 crossref_primary_10_3390_ma15031233 crossref_primary_10_3390_math12152350 crossref_primary_10_3390_vibration8020023 crossref_primary_10_1016_j_compstruc_2024_107372 crossref_primary_10_1016_j_cma_2023_115993 crossref_primary_10_1016_j_compositesb_2022_109742 crossref_primary_10_3390_app12062901 crossref_primary_10_1016_j_compstruct_2025_119327 crossref_primary_10_1016_j_compstruc_2023_107153 crossref_primary_10_1016_j_cma_2025_118065 crossref_primary_10_1016_j_compositesa_2024_108196 crossref_primary_10_1177_00219983231191585 crossref_primary_10_1016_j_compstruc_2024_107318 crossref_primary_10_1007_s00419_025_02765_z crossref_primary_10_1016_j_resourpol_2024_105418 crossref_primary_10_1016_j_compstruct_2023_117223 crossref_primary_10_1016_j_engstruct_2023_116313 crossref_primary_10_3390_buildings13061390 crossref_primary_10_1016_j_apm_2025_116185 crossref_primary_10_1016_j_cma_2023_116613 crossref_primary_10_1016_j_compstruc_2024_107511 crossref_primary_10_1016_j_enganabound_2022_08_036 |
| Cites_doi | 10.1109/9.119632 10.1016/j.jeconom.2008.12.014 10.1016/0167-4730(89)90003-9 10.1007/s11012-015-0133-0 10.1007/s004660050300 10.1002/nme.5638 10.1016/j.cma.2014.06.014 10.1016/j.cma.2007.12.011 10.1002/nme.1620231004 10.1098/rspa.1999.0446 10.1007/BF02736747 10.1061/(ASCE)0733-9364(2000)126:1(29) 10.1002/nme.106 10.1016/j.enganabound.2016.06.002 10.1002/nme.4976 10.1016/j.finel.2013.10.003 10.1007/s10955-012-0422-0 10.3846/13926292.2012.664571 10.1016/j.finel.2015.05.001 10.1016/j.cma.2008.11.007 10.1016/j.compstruc.2007.05.041 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Mar 1, 2022 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Mar 1, 2022 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.finel.2021.103648 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1872-6925 |
| ExternalDocumentID | 10_1016_j_finel_2021_103648 S0168874X2100130X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LX9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SST SSV SSW SSZ T5K TN5 XPP ZMT ~02 ~G- 29H 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW T9H VH1 WUQ ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c331t-9e8f260c9f6fc3dc52b0127f63179e449aa929f95379f409c9a23a5b5cc01ce43 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744028600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0168-874X |
| IngestDate | Mon Jul 14 09:58:21 EDT 2025 Sat Nov 29 07:27:57 EST 2025 Tue Nov 18 21:52:36 EST 2025 Fri Feb 23 02:41:56 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Stochastic finite element method Triangular probability distribution Uniform probability distribution Iterative stochastic perturbation technique Monte-Carlo simulation Semi-analytical method |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-9e8f260c9f6fc3dc52b0127f63179e449aa929f95379f409c9a23a5b5cc01ce43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2629086642 |
| PQPubID | 2045476 |
| ParticipantIDs | proquest_journals_2629086642 crossref_primary_10_1016_j_finel_2021_103648 crossref_citationtrail_10_1016_j_finel_2021_103648 elsevier_sciencedirect_doi_10_1016_j_finel_2021_103648 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Finite elements in analysis and design |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Hu, Cui, Feng, Li (bib20) 2016; 70 Sakata, Ashida, Zako (bib15) 2008; 197 Spall (bib6) 1998; 19 Liu, Belytschko, Mani (bib2) 1986; 23 Hinch (bib4) 1995 Kececioglu (bib22) 2002 Jodrá (bib24) 2012; 17 Papadopoulos, Giovanis (bib19) 2017 Xia, Yu, Liu (bib21) 2014; 79 Ostoja-Starzewski (bib26) 2007 Hurtado, Barbat (bib12) 1998; 5 Lucarini (bib33) 2012; 146 Peng, Geng, Liyan, Liu, Lam (bib10) 1998; 21 Yamazki, Shinozuka (bib13) 1998; 114 Roberts, Spanos (bib14) 1990 (bib29) 1998 Gumbel (bib25) 1935; 5 Kamiński (bib8) 2013 Bellman (bib3) 1972 Kamiński (bib32) 2018; 113 Oden, Becker, Carey (bib30) 1981 Kamiński (bib9) 2015; 104 Kamiński, Corigliano (bib28) 2015; 50 Park, Bera (bib36) 2009; 150 Kleiber, Hien (bib1) 1992 Stefanou (bib18) 2009; 198 Spall (bib7) 1992; 37 Settineri, Falsone (bib17) 2014; 278 Ostoja-Starzewski (bib27) 1999; 455 Sakata, Torigoe (bib11) 2015; 102–103 Christensen (bib31) 1979 Moeller, Beer (bib16) 2008; 86 Melchers (bib34) 1989; 6 Back, Boles, Fry (bib23) 2000; 126 Nayfeh (bib5) 1973 Rahman, Rao (bib35) 2001; 50 Gumbel (10.1016/j.finel.2021.103648_bib25) 1935; 5 Nayfeh (10.1016/j.finel.2021.103648_bib5) 1973 Yamazki (10.1016/j.finel.2021.103648_bib13) 1998; 114 Oden (10.1016/j.finel.2021.103648_bib30) 1981 Bellman (10.1016/j.finel.2021.103648_bib3) 1972 Hurtado (10.1016/j.finel.2021.103648_bib12) 1998; 5 Jodrá (10.1016/j.finel.2021.103648_bib24) 2012; 17 Lucarini (10.1016/j.finel.2021.103648_bib33) 2012; 146 Christensen (10.1016/j.finel.2021.103648_bib31) 1979 Peng (10.1016/j.finel.2021.103648_bib10) 1998; 21 Kamiński (10.1016/j.finel.2021.103648_bib9) 2015; 104 Spall (10.1016/j.finel.2021.103648_bib6) 1998; 19 Kececioglu (10.1016/j.finel.2021.103648_bib22) 2002 Kamiński (10.1016/j.finel.2021.103648_bib8) 2013 Spall (10.1016/j.finel.2021.103648_bib7) 1992; 37 Papadopoulos (10.1016/j.finel.2021.103648_bib19) 2017 Settineri (10.1016/j.finel.2021.103648_bib17) 2014; 278 Park (10.1016/j.finel.2021.103648_bib36) 2009; 150 Roberts (10.1016/j.finel.2021.103648_bib14) 1990 Kamiński (10.1016/j.finel.2021.103648_bib28) 2015; 50 Rahman (10.1016/j.finel.2021.103648_bib35) 2001; 50 Liu (10.1016/j.finel.2021.103648_bib2) 1986; 23 Stefanou (10.1016/j.finel.2021.103648_bib18) 2009; 198 Hu (10.1016/j.finel.2021.103648_bib20) 2016; 70 Sakata (10.1016/j.finel.2021.103648_bib11) 2015; 102–103 Hinch (10.1016/j.finel.2021.103648_bib4) 1995 Xia (10.1016/j.finel.2021.103648_bib21) 2014; 79 Moeller (10.1016/j.finel.2021.103648_bib16) 2008; 86 Ostoja-Starzewski (10.1016/j.finel.2021.103648_bib27) 1999; 455 Ostoja-Starzewski (10.1016/j.finel.2021.103648_bib26) 2007 Melchers (10.1016/j.finel.2021.103648_bib34) 1989; 6 Kleiber (10.1016/j.finel.2021.103648_bib1) 1992 Back (10.1016/j.finel.2021.103648_bib23) 2000; 126 (10.1016/j.finel.2021.103648_bib29) 1998 Sakata (10.1016/j.finel.2021.103648_bib15) 2008; 197 Kamiński (10.1016/j.finel.2021.103648_bib32) 2018; 113 |
| References_xml | – volume: 70 start-page: 40 year: 2016 end-page: 55 ident: bib20 article-title: Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method publication-title: Eng. Anal. Bound. Elem. – volume: 102–103 start-page: 74 year: 2015 end-page: 84 ident: bib11 article-title: A successive perturbation-based multiscale stochastic analysis method for composite materials publication-title: Finite Elem. Anal. Des. – year: 1995 ident: bib4 article-title: Perturbation Methods – volume: 6 start-page: 3 year: 1989 end-page: 10 ident: bib34 article-title: Importance sampling in structural systems publication-title: Struct. Saf. – volume: 23 start-page: 1831 year: 1986 end-page: 1845 ident: bib2 article-title: Random field finite elements publication-title: Int. J. Numer. Methods Eng. – volume: 198 start-page: 1031 year: 2009 end-page: 1051 ident: bib18 article-title: The stochastic finite element method: past, present and future publication-title: Comput. Methods Appl. Mech. Eng. – year: 1998 ident: bib29 publication-title: Handbook of Computational Solid Mechanics – volume: 37 start-page: 332 year: 1992 end-page: 341 ident: bib7 article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation publication-title: IEEE Trans. Automat. Contr. – year: 2017 ident: bib19 article-title: Stochastic Finite Element Methods. Introduction – volume: 79 start-page: 9 year: 2014 end-page: 21 ident: bib21 article-title: Transformed perturbation stochastic finite element method for static response analysis of stochastic structures publication-title: Finite Elem. Anal. Des. – year: 1979 ident: bib31 article-title: Mechanics of Composite Materials – volume: 146 start-page: 774 year: 2012 end-page: 786 ident: bib33 article-title: Stochastic perturbations to dynamical systems: a response theory approach publication-title: J. Stat. Phys. – year: 1990 ident: bib14 article-title: Random Vibration and Statistical Linearization – volume: 5 start-page: 3 year: 1998 end-page: 30 ident: bib12 article-title: Monte-Carlo techniques in computational stochastic mechanics publication-title: Arch. Comput. Methods Eng. – volume: 197 start-page: 1953 year: 2008 end-page: 1964 ident: bib15 article-title: Kriging-based approximate stochastic homogenization analysis for composite materials publication-title: Comput. Methods Appl. Mech. Eng. – volume: 17 start-page: 281 year: 2012 end-page: 292 ident: bib24 article-title: Computing the asymptotic expansion of the median of the Erlang distribution publication-title: Math. Model Anal. – volume: 114 year: 1998 ident: bib13 article-title: Neumann expansion for stochastic finite element analysis publication-title: J. Eng. Mech. ASCE – year: 1972 ident: bib3 article-title: Perturbation Techniques in Mathematics, Physics and Engineering – year: 1973 ident: bib5 article-title: Perturbation Methods – volume: 455 start-page: 3189 year: 1999 end-page: 3199 ident: bib27 article-title: Microstructural disorder, mesoscale finite elements and macroscopic response publication-title: Proc. Roy. Soc. Lond. A – volume: 5 start-page: 115 year: 1935 end-page: 158 ident: bib25 article-title: Les valeurs extrêmes des distributions statistiques publication-title: Ann. Inst. Henri Poincaré – volume: 50 start-page: 1841 year: 2015 end-page: 1853 ident: bib28 article-title: Numerical solution of the Duffing equation with random coefficients publication-title: Meccanica – volume: 50 start-page: 1969 year: 2001 end-page: 1991 ident: bib35 article-title: A perturbation method for stochastic meshless analysis in elastostatics publication-title: Int. J. Numer. Methods Eng. – volume: 21 start-page: 253 year: 1998 end-page: 261 ident: bib10 article-title: A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending publication-title: Comput. Mech – volume: 104 start-page: 1038 year: 2015 end-page: 1060 ident: bib9 article-title: On iterative scheme in determination of the probabilistic moments of the structural response in the Stochastic perturbation-based Finite Element Method publication-title: Int. J. Numer. Methods Eng. – volume: 150 start-page: 219 year: 2009 end-page: 230 ident: bib36 article-title: Maximum entropy autoregressive conditional heteroskedasticity model publication-title: J. Econom. – year: 2013 ident: bib8 article-title: The Stochastic Perturbation Method for Computational Mechanics – volume: 19 start-page: 482 year: 1998 end-page: 492 ident: bib6 article-title: An overview of the simultaneous perturbation method for efficient optimization publication-title: Johns Hopkins APL Tech. Dig. – year: 2007 ident: bib26 article-title: Microstructural Randomness and Scaling in Mechanics of Materials – volume: 113 start-page: 834 year: 2018 end-page: 857 ident: bib32 article-title: Tsallis entropy in dual homogenization of random composites using the Stochastic Finite Element Method publication-title: Int. J. Num. Meth. – year: 1992 ident: bib1 article-title: The Stochastic Finite Element Method – volume: 278 start-page: 828 year: 2014 end-page: 852 ident: bib17 article-title: An APDM-based method for the analysis of systems with uncertainties publication-title: Comput. Methods Appl. Mech. Eng. – volume: 86 start-page: 1024 year: 2008 end-page: 1041 ident: bib16 article-title: Engineering computation under uncertainty – capabilities of non-traditional models publication-title: Comput. Struct – year: 1981 ident: bib30 article-title: Finite Elements: an Introduction – volume: 126 start-page: 29 year: 2000 end-page: 37 ident: bib23 article-title: Defining triangular probability distributions from historical cost data publication-title: ASCE J. Constr. Eng. Manag. – year: 2002 ident: bib22 article-title: Reliability Engineering Handbook – year: 1992 ident: 10.1016/j.finel.2021.103648_bib1 – year: 2013 ident: 10.1016/j.finel.2021.103648_bib8 – volume: 37 start-page: 332 year: 1992 ident: 10.1016/j.finel.2021.103648_bib7 article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation publication-title: IEEE Trans. Automat. Contr. doi: 10.1109/9.119632 – volume: 150 start-page: 219 issue: 2 year: 2009 ident: 10.1016/j.finel.2021.103648_bib36 article-title: Maximum entropy autoregressive conditional heteroskedasticity model publication-title: J. Econom. doi: 10.1016/j.jeconom.2008.12.014 – volume: 6 start-page: 3 issue: 1 year: 1989 ident: 10.1016/j.finel.2021.103648_bib34 article-title: Importance sampling in structural systems publication-title: Struct. Saf. doi: 10.1016/0167-4730(89)90003-9 – volume: 50 start-page: 1841 issue: 7 year: 2015 ident: 10.1016/j.finel.2021.103648_bib28 article-title: Numerical solution of the Duffing equation with random coefficients publication-title: Meccanica doi: 10.1007/s11012-015-0133-0 – volume: 21 start-page: 253 issue: 6 year: 1998 ident: 10.1016/j.finel.2021.103648_bib10 article-title: A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending publication-title: Comput. Mech. doi: 10.1007/s004660050300 – year: 1990 ident: 10.1016/j.finel.2021.103648_bib14 – volume: 19 start-page: 482 issue: 4 year: 1998 ident: 10.1016/j.finel.2021.103648_bib6 article-title: An overview of the simultaneous perturbation method for efficient optimization publication-title: Johns Hopkins APL Tech. Dig. – year: 2017 ident: 10.1016/j.finel.2021.103648_bib19 – volume: 113 start-page: 834 issue: 5 year: 2018 ident: 10.1016/j.finel.2021.103648_bib32 article-title: Tsallis entropy in dual homogenization of random composites using the Stochastic Finite Element Method publication-title: Int. J. Num. Meth. doi: 10.1002/nme.5638 – year: 1972 ident: 10.1016/j.finel.2021.103648_bib3 – volume: 278 start-page: 828 year: 2014 ident: 10.1016/j.finel.2021.103648_bib17 article-title: An APDM-based method for the analysis of systems with uncertainties publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2014.06.014 – year: 1973 ident: 10.1016/j.finel.2021.103648_bib5 – volume: 197 start-page: 1953 issue: 21–24 year: 2008 ident: 10.1016/j.finel.2021.103648_bib15 article-title: Kriging-based approximate stochastic homogenization analysis for composite materials publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.12.011 – volume: 5 start-page: 115 issue: 2 year: 1935 ident: 10.1016/j.finel.2021.103648_bib25 article-title: Les valeurs extrêmes des distributions statistiques publication-title: Ann. Inst. Henri Poincaré – volume: 23 start-page: 1831 issue: 10 year: 1986 ident: 10.1016/j.finel.2021.103648_bib2 article-title: Random field finite elements publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620231004 – volume: 455 start-page: 3189 year: 1999 ident: 10.1016/j.finel.2021.103648_bib27 article-title: Microstructural disorder, mesoscale finite elements and macroscopic response publication-title: Proc. Roy. Soc. Lond. A doi: 10.1098/rspa.1999.0446 – volume: 5 start-page: 3 issue: 1 year: 1998 ident: 10.1016/j.finel.2021.103648_bib12 article-title: Monte-Carlo techniques in computational stochastic mechanics publication-title: Arch. Comput. Methods Eng. doi: 10.1007/BF02736747 – volume: 126 start-page: 29 issue: 1 year: 2000 ident: 10.1016/j.finel.2021.103648_bib23 article-title: Defining triangular probability distributions from historical cost data publication-title: ASCE J. Constr. Eng. Manag. doi: 10.1061/(ASCE)0733-9364(2000)126:1(29) – volume: 50 start-page: 1969 year: 2001 ident: 10.1016/j.finel.2021.103648_bib35 article-title: A perturbation method for stochastic meshless analysis in elastostatics publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.106 – volume: 70 start-page: 40 year: 2016 ident: 10.1016/j.finel.2021.103648_bib20 article-title: Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2016.06.002 – year: 1998 ident: 10.1016/j.finel.2021.103648_bib29 – year: 1979 ident: 10.1016/j.finel.2021.103648_bib31 – volume: 104 start-page: 1038 issue: 11 year: 2015 ident: 10.1016/j.finel.2021.103648_bib9 article-title: On iterative scheme in determination of the probabilistic moments of the structural response in the Stochastic perturbation-based Finite Element Method publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4976 – volume: 79 start-page: 9 year: 2014 ident: 10.1016/j.finel.2021.103648_bib21 article-title: Transformed perturbation stochastic finite element method for static response analysis of stochastic structures publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2013.10.003 – volume: 146 start-page: 774 issue: 4 year: 2012 ident: 10.1016/j.finel.2021.103648_bib33 article-title: Stochastic perturbations to dynamical systems: a response theory approach publication-title: J. Stat. Phys. doi: 10.1007/s10955-012-0422-0 – year: 2007 ident: 10.1016/j.finel.2021.103648_bib26 – year: 1981 ident: 10.1016/j.finel.2021.103648_bib30 – volume: 17 start-page: 281 issue: 2 year: 2012 ident: 10.1016/j.finel.2021.103648_bib24 article-title: Computing the asymptotic expansion of the median of the Erlang distribution publication-title: Math. Model Anal. doi: 10.3846/13926292.2012.664571 – volume: 102–103 start-page: 74 year: 2015 ident: 10.1016/j.finel.2021.103648_bib11 article-title: A successive perturbation-based multiscale stochastic analysis method for composite materials publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2015.05.001 – year: 1995 ident: 10.1016/j.finel.2021.103648_bib4 – year: 2002 ident: 10.1016/j.finel.2021.103648_bib22 – volume: 198 start-page: 1031 issue: 9–12 year: 2009 ident: 10.1016/j.finel.2021.103648_bib18 article-title: The stochastic finite element method: past, present and future publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.11.007 – volume: 114 year: 1998 ident: 10.1016/j.finel.2021.103648_bib13 article-title: Neumann expansion for stochastic finite element analysis publication-title: J. Eng. Mech. ASCE – volume: 86 start-page: 1024 year: 2008 ident: 10.1016/j.finel.2021.103648_bib16 article-title: Engineering computation under uncertainty – capabilities of non-traditional models publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.05.041 |
| SSID | ssj0005264 |
| Score | 2.5115678 |
| Snippet | In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 103648 |
| SubjectTerms | Finite element analysis Finite element method Iterative stochastic perturbation technique Least squares method Mechanical systems Mechanics Monte-Carlo simulation Parameter uncertainty Perturbation Polynomials Probability theory Semi-analytical method Solid mechanics Statistical analysis Stochastic finite element method Structural response Triangular probability distribution Uncertainty analysis Uniform probability distribution |
| Title | Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based Finite Element Method |
| URI | https://dx.doi.org/10.1016/j.finel.2021.103648 https://www.proquest.com/docview/2629086642 |
| Volume | 200 |
| WOSCitedRecordID | wos000744028600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6925 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005264 issn: 0168-874X databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELVgywEOfBQQhYJ8oKeQKuvETnysqq34aoVEi_YWZR27SkXdqtmt-h_6p5mxnWzaFRUgcYlWkR1b-14m4_H4DSHveaqUkSaLZ0zpOJNZDe9ckseiYNqkRtbcFYP58TU_OCimU_ktBHNaV04gt7a4upLn_xVquAdg49HZv4C7fyjcgN8AOlwBdrj-EfBHAKPb5p-jtFKQHGlsBKM2dXSq8agvSjO7COzC4sksXyYDC3jYY5eWWqOcbqiE1UaL1gcdzqAryjqj1jF8qWYO1Bi_g3W016DzGk18Nnq07wpTDz3f0ED7Bm5G_exw9PpGKsmX6rTZ2uVbRRbqau9jzSM7jFHA8rZP0vKBs5XDMz6WKQoghk_Q3Nbe_hY5i4X0Z6E7A-21TFeNvY87nGwb8MdxF4mNUUJAeOXOWyra33E0HIyN3Wbt9D5ZYzmXxYis7XyaTD8P8oJEEIT3s-ukqlxS4MpQv3Nnbn3Ynbdy-JQ8DssMuuPp8Yzc03adPAlLDhoMertOHg30KJ-T6wF3aIcObSx13KE9dyhyhwbuQMOaLrlDb3CHOu7QJXfoKneopwYN3KGeOy_I0d7kcPdjHKp1xCpNx_NY6sLA4lhJI4xKa8XZDNMajAAPVeosk1UFrriRPM3BNiRSyYqlFZ9xpZKx0ln6kozsmdWvCFUmqTRTWSWSKpNJJfOaacUFdDB1xc0GYd2fXqogZY8VVX6WXc7iSemQKhGp0iO1QT70nc69ksvdzUWHZhmcUe9klkC_uztudtiXwSy0JRNMJoWAxf7rf33uG_Jw-WptktH8YqHfkgfqct60F-8Ci38BZOHBqA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+analysis+in+solid+mechanics+with+uniform+and+triangular+distributions+using+stochastic+perturbation-based+Finite+Element+Method&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Kami%C5%84ski%2C+Marcin&rft.date=2022-03-01&rft.pub=Elsevier+B.V&rft.issn=0168-874X&rft.eissn=1872-6925&rft.volume=200&rft_id=info:doi/10.1016%2Fj.finel.2021.103648&rft.externalDocID=S0168874X2100130X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon |