Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based Finite Element Method

In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty analysis in solid mechanics with symmetric non-Gaussian input parameters are presented. Theoretical foundations of the method are based on the gene...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Finite elements in analysis and design Ročník 200; s. 103648
Hlavní autor: Kamiński, Marcin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.03.2022
Elsevier BV
Témata:
ISSN:0168-874X, 1872-6925
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty analysis in solid mechanics with symmetric non-Gaussian input parameters are presented. Theoretical foundations of the method are based on the general order Taylor expansions of all uncertain input parameters and state functions including even orders only. The first four probabilistic characteristics of the structural responses have been derived for symmetrical triangular and uniform probability distributions of random input including probability distribution truncation effect. The Stochastic Finite Element Method implementation has been completed for the displacement version of the FEM using statistically optimized nodal polynomial response bases, and their coefficients are determined using the Least Squares Method using the weighted and non-weighted schemes. Structural responses of several mechanical systems are analyzed using their basic probabilistic characteristics, which have been validated using the probabilistic semi-analytical approach, and also the crude Monte-Carlo simulation. A relatively good coincidence of three probabilistic numerical techniques confirms the applicability of the Stochastic perturbation-based Finite Element Method to study boundary and initial problems in mechanics with uncertainties having uniform and/or triangular probability distributions. •New formulation of the iterative generalized stochastic perturbation technique.•Implementation of the Stochastic Finite Element Method for the triangular PDF.•Implementation of the Stochastic Finite Element Method for the input uniform PDF.•Comparative numerical analysis with Monte-Carlo simulation.•Comparative numerical analysis with the semi-analytical probabilistic method.
AbstractList In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty analysis in solid mechanics with symmetric non-Gaussian input parameters are presented. Theoretical foundations of the method are based on the general order Taylor expansions of all uncertain input parameters and state functions including even orders only. The first four probabilistic characteristics of the structural responses have been derived for symmetrical triangular and uniform probability distributions of random input including probability distribution truncation effect. The Stochastic Finite Element Method implementation has been completed for the displacement version of the FEM using statistically optimized nodal polynomial response bases, and their coefficients are determined using the Least Squares Method using the weighted and non-weighted schemes. Structural responses of several mechanical systems are analyzed using their basic probabilistic characteristics, which have been validated using the probabilistic semi-analytical approach, and also the crude Monte-Carlo simulation. A relatively good coincidence of three probabilistic numerical techniques confirms the applicability of the Stochastic perturbation-based Finite Element Method to study boundary and initial problems in mechanics with uncertainties having uniform and/or triangular probability distributions.
In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty analysis in solid mechanics with symmetric non-Gaussian input parameters are presented. Theoretical foundations of the method are based on the general order Taylor expansions of all uncertain input parameters and state functions including even orders only. The first four probabilistic characteristics of the structural responses have been derived for symmetrical triangular and uniform probability distributions of random input including probability distribution truncation effect. The Stochastic Finite Element Method implementation has been completed for the displacement version of the FEM using statistically optimized nodal polynomial response bases, and their coefficients are determined using the Least Squares Method using the weighted and non-weighted schemes. Structural responses of several mechanical systems are analyzed using their basic probabilistic characteristics, which have been validated using the probabilistic semi-analytical approach, and also the crude Monte-Carlo simulation. A relatively good coincidence of three probabilistic numerical techniques confirms the applicability of the Stochastic perturbation-based Finite Element Method to study boundary and initial problems in mechanics with uncertainties having uniform and/or triangular probability distributions. •New formulation of the iterative generalized stochastic perturbation technique.•Implementation of the Stochastic Finite Element Method for the triangular PDF.•Implementation of the Stochastic Finite Element Method for the input uniform PDF.•Comparative numerical analysis with Monte-Carlo simulation.•Comparative numerical analysis with the semi-analytical probabilistic method.
ArticleNumber 103648
Author Kamiński, Marcin
Author_xml – sequence: 1
  givenname: Marcin
  surname: Kamiński
  fullname: Kamiński, Marcin
  email: Marcin.Kaminski@p.lodz.pl
  organization: Department of Structural Mechanics, Faculty of Civil Engineering, Architecture and Environmental Engineering, Łódź University of Technology, Al. Politechniki 6, 90-924, Łódź, Poland
BookMark eNqFkc9u1DAQxi1UJLYtT8DFEuds_Sdx4gMHVLVQqYhLK3GzHGfcnVXWXmwHtM_Ql8bb5cSBnqzxfL8Zfd-ck7MQAxDygbM1Z1xdbdceA8xrwQSvP1K1wxuy4kMvGqVFd0ZWVTU0Q9_-eEfOc94yxjqh2hV5fgwOUrEYyoHaYOdDxkwx0BxnnOgO3MYGdJn-xrKhS0Af064KJ1oS2vC0zDbRCXOtxqVgDJkuGcMTzSVWNBd0dF8XLGm0x3Yz2gwTvcWABejNDDsIhX6DsonTJXnr7Zzh_d_3gjze3jxcf23uv3-5u_583zgpeWk0DF4o5rRX3snJdWJkXPReSd5raFttrRba60722rdMO22FtN3YOce4g1ZekI-nufsUfy6Qi9nGJVXv2QglNBuUakVVyZPKpZhzAm_2CXc2HQxn5pi62ZqX1M0xdXNKvVL6H8pheXFeksX5FfbTiYVq_hdCMtkh1PtMmMAVM0X8L_8HZjmknQ
CitedBy_id crossref_primary_10_1016_j_camwa_2023_01_020
crossref_primary_10_1016_j_oceaneng_2024_116935
crossref_primary_10_1016_j_compstruc_2024_107560
crossref_primary_10_1016_j_strusafe_2023_102346
crossref_primary_10_1016_j_ijnonlinmec_2025_105125
crossref_primary_10_1080_15376494_2024_2387735
crossref_primary_10_1016_j_enganabound_2024_105784
crossref_primary_10_1177_03093247221150043
crossref_primary_10_1016_j_euromechsol_2023_105188
crossref_primary_10_1007_s10999_024_09719_3
crossref_primary_10_3934_math_2025179
crossref_primary_10_1016_j_apm_2023_07_025
crossref_primary_10_1016_j_tws_2023_111478
crossref_primary_10_1177_00219983241230382
crossref_primary_10_1002_nme_7564
crossref_primary_10_1016_j_compstruc_2024_107365
crossref_primary_10_1002_nag_3615
crossref_primary_10_1016_j_cma_2022_115855
crossref_primary_10_1155_2023_9974539
crossref_primary_10_1080_01495739_2024_2319682
crossref_primary_10_3390_app13042647
crossref_primary_10_1007_s00707_024_04019_5
crossref_primary_10_1016_j_oceaneng_2023_115656
crossref_primary_10_1016_j_amc_2023_127981
crossref_primary_10_1016_j_engstruct_2024_119187
crossref_primary_10_3390_ma15031233
crossref_primary_10_3390_math12152350
crossref_primary_10_3390_vibration8020023
crossref_primary_10_1016_j_compstruc_2024_107372
crossref_primary_10_1016_j_cma_2023_115993
crossref_primary_10_1016_j_compositesb_2022_109742
crossref_primary_10_3390_app12062901
crossref_primary_10_1016_j_compstruct_2025_119327
crossref_primary_10_1016_j_compstruc_2023_107153
crossref_primary_10_1016_j_cma_2025_118065
crossref_primary_10_1016_j_compositesa_2024_108196
crossref_primary_10_1177_00219983231191585
crossref_primary_10_1016_j_compstruc_2024_107318
crossref_primary_10_1007_s00419_025_02765_z
crossref_primary_10_1016_j_resourpol_2024_105418
crossref_primary_10_1016_j_compstruct_2023_117223
crossref_primary_10_1016_j_engstruct_2023_116313
crossref_primary_10_3390_buildings13061390
crossref_primary_10_1016_j_apm_2025_116185
crossref_primary_10_1016_j_cma_2023_116613
crossref_primary_10_1016_j_compstruc_2024_107511
crossref_primary_10_1016_j_enganabound_2022_08_036
Cites_doi 10.1109/9.119632
10.1016/j.jeconom.2008.12.014
10.1016/0167-4730(89)90003-9
10.1007/s11012-015-0133-0
10.1007/s004660050300
10.1002/nme.5638
10.1016/j.cma.2014.06.014
10.1016/j.cma.2007.12.011
10.1002/nme.1620231004
10.1098/rspa.1999.0446
10.1007/BF02736747
10.1061/(ASCE)0733-9364(2000)126:1(29)
10.1002/nme.106
10.1016/j.enganabound.2016.06.002
10.1002/nme.4976
10.1016/j.finel.2013.10.003
10.1007/s10955-012-0422-0
10.3846/13926292.2012.664571
10.1016/j.finel.2015.05.001
10.1016/j.cma.2008.11.007
10.1016/j.compstruc.2007.05.041
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Mar 1, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 1, 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.finel.2021.103648
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-6925
ExternalDocumentID 10_1016_j_finel_2021_103648
S0168874X2100130X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LX9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29H
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
T9H
VH1
WUQ
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-9e8f260c9f6fc3dc52b0127f63179e449aa929f95379f409c9a23a5b5cc01ce43
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000744028600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-874X
IngestDate Mon Jul 14 09:58:21 EDT 2025
Sat Nov 29 07:27:57 EST 2025
Tue Nov 18 21:52:36 EST 2025
Fri Feb 23 02:41:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stochastic finite element method
Triangular probability distribution
Uniform probability distribution
Iterative stochastic perturbation technique
Monte-Carlo simulation
Semi-analytical method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-9e8f260c9f6fc3dc52b0127f63179e449aa929f95379f409c9a23a5b5cc01ce43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2629086642
PQPubID 2045476
ParticipantIDs proquest_journals_2629086642
crossref_primary_10_1016_j_finel_2021_103648
crossref_citationtrail_10_1016_j_finel_2021_103648
elsevier_sciencedirect_doi_10_1016_j_finel_2021_103648
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Finite elements in analysis and design
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Hu, Cui, Feng, Li (bib20) 2016; 70
Sakata, Ashida, Zako (bib15) 2008; 197
Spall (bib6) 1998; 19
Liu, Belytschko, Mani (bib2) 1986; 23
Hinch (bib4) 1995
Kececioglu (bib22) 2002
Jodrá (bib24) 2012; 17
Papadopoulos, Giovanis (bib19) 2017
Xia, Yu, Liu (bib21) 2014; 79
Ostoja-Starzewski (bib26) 2007
Hurtado, Barbat (bib12) 1998; 5
Lucarini (bib33) 2012; 146
Peng, Geng, Liyan, Liu, Lam (bib10) 1998; 21
Yamazki, Shinozuka (bib13) 1998; 114
Roberts, Spanos (bib14) 1990
(bib29) 1998
Gumbel (bib25) 1935; 5
Kamiński (bib8) 2013
Bellman (bib3) 1972
Kamiński (bib32) 2018; 113
Oden, Becker, Carey (bib30) 1981
Kamiński (bib9) 2015; 104
Kamiński, Corigliano (bib28) 2015; 50
Park, Bera (bib36) 2009; 150
Kleiber, Hien (bib1) 1992
Stefanou (bib18) 2009; 198
Spall (bib7) 1992; 37
Settineri, Falsone (bib17) 2014; 278
Ostoja-Starzewski (bib27) 1999; 455
Sakata, Torigoe (bib11) 2015; 102–103
Christensen (bib31) 1979
Moeller, Beer (bib16) 2008; 86
Melchers (bib34) 1989; 6
Back, Boles, Fry (bib23) 2000; 126
Nayfeh (bib5) 1973
Rahman, Rao (bib35) 2001; 50
Gumbel (10.1016/j.finel.2021.103648_bib25) 1935; 5
Nayfeh (10.1016/j.finel.2021.103648_bib5) 1973
Yamazki (10.1016/j.finel.2021.103648_bib13) 1998; 114
Oden (10.1016/j.finel.2021.103648_bib30) 1981
Bellman (10.1016/j.finel.2021.103648_bib3) 1972
Hurtado (10.1016/j.finel.2021.103648_bib12) 1998; 5
Jodrá (10.1016/j.finel.2021.103648_bib24) 2012; 17
Lucarini (10.1016/j.finel.2021.103648_bib33) 2012; 146
Christensen (10.1016/j.finel.2021.103648_bib31) 1979
Peng (10.1016/j.finel.2021.103648_bib10) 1998; 21
Kamiński (10.1016/j.finel.2021.103648_bib9) 2015; 104
Spall (10.1016/j.finel.2021.103648_bib6) 1998; 19
Kececioglu (10.1016/j.finel.2021.103648_bib22) 2002
Kamiński (10.1016/j.finel.2021.103648_bib8) 2013
Spall (10.1016/j.finel.2021.103648_bib7) 1992; 37
Papadopoulos (10.1016/j.finel.2021.103648_bib19) 2017
Settineri (10.1016/j.finel.2021.103648_bib17) 2014; 278
Park (10.1016/j.finel.2021.103648_bib36) 2009; 150
Roberts (10.1016/j.finel.2021.103648_bib14) 1990
Kamiński (10.1016/j.finel.2021.103648_bib28) 2015; 50
Rahman (10.1016/j.finel.2021.103648_bib35) 2001; 50
Liu (10.1016/j.finel.2021.103648_bib2) 1986; 23
Stefanou (10.1016/j.finel.2021.103648_bib18) 2009; 198
Hu (10.1016/j.finel.2021.103648_bib20) 2016; 70
Sakata (10.1016/j.finel.2021.103648_bib11) 2015; 102–103
Hinch (10.1016/j.finel.2021.103648_bib4) 1995
Xia (10.1016/j.finel.2021.103648_bib21) 2014; 79
Moeller (10.1016/j.finel.2021.103648_bib16) 2008; 86
Ostoja-Starzewski (10.1016/j.finel.2021.103648_bib27) 1999; 455
Ostoja-Starzewski (10.1016/j.finel.2021.103648_bib26) 2007
Melchers (10.1016/j.finel.2021.103648_bib34) 1989; 6
Kleiber (10.1016/j.finel.2021.103648_bib1) 1992
Back (10.1016/j.finel.2021.103648_bib23) 2000; 126
(10.1016/j.finel.2021.103648_bib29) 1998
Sakata (10.1016/j.finel.2021.103648_bib15) 2008; 197
Kamiński (10.1016/j.finel.2021.103648_bib32) 2018; 113
References_xml – volume: 70
  start-page: 40
  year: 2016
  end-page: 55
  ident: bib20
  article-title: Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method
  publication-title: Eng. Anal. Bound. Elem.
– volume: 102–103
  start-page: 74
  year: 2015
  end-page: 84
  ident: bib11
  article-title: A successive perturbation-based multiscale stochastic analysis method for composite materials
  publication-title: Finite Elem. Anal. Des.
– year: 1995
  ident: bib4
  article-title: Perturbation Methods
– volume: 6
  start-page: 3
  year: 1989
  end-page: 10
  ident: bib34
  article-title: Importance sampling in structural systems
  publication-title: Struct. Saf.
– volume: 23
  start-page: 1831
  year: 1986
  end-page: 1845
  ident: bib2
  article-title: Random field finite elements
  publication-title: Int. J. Numer. Methods Eng.
– volume: 198
  start-page: 1031
  year: 2009
  end-page: 1051
  ident: bib18
  article-title: The stochastic finite element method: past, present and future
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 1998
  ident: bib29
  publication-title: Handbook of Computational Solid Mechanics
– volume: 37
  start-page: 332
  year: 1992
  end-page: 341
  ident: bib7
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Trans. Automat. Contr.
– year: 2017
  ident: bib19
  article-title: Stochastic Finite Element Methods. Introduction
– volume: 79
  start-page: 9
  year: 2014
  end-page: 21
  ident: bib21
  article-title: Transformed perturbation stochastic finite element method for static response analysis of stochastic structures
  publication-title: Finite Elem. Anal. Des.
– year: 1979
  ident: bib31
  article-title: Mechanics of Composite Materials
– volume: 146
  start-page: 774
  year: 2012
  end-page: 786
  ident: bib33
  article-title: Stochastic perturbations to dynamical systems: a response theory approach
  publication-title: J. Stat. Phys.
– year: 1990
  ident: bib14
  article-title: Random Vibration and Statistical Linearization
– volume: 5
  start-page: 3
  year: 1998
  end-page: 30
  ident: bib12
  article-title: Monte-Carlo techniques in computational stochastic mechanics
  publication-title: Arch. Comput. Methods Eng.
– volume: 197
  start-page: 1953
  year: 2008
  end-page: 1964
  ident: bib15
  article-title: Kriging-based approximate stochastic homogenization analysis for composite materials
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 17
  start-page: 281
  year: 2012
  end-page: 292
  ident: bib24
  article-title: Computing the asymptotic expansion of the median of the Erlang distribution
  publication-title: Math. Model Anal.
– volume: 114
  year: 1998
  ident: bib13
  article-title: Neumann expansion for stochastic finite element analysis
  publication-title: J. Eng. Mech. ASCE
– year: 1972
  ident: bib3
  article-title: Perturbation Techniques in Mathematics, Physics and Engineering
– year: 1973
  ident: bib5
  article-title: Perturbation Methods
– volume: 455
  start-page: 3189
  year: 1999
  end-page: 3199
  ident: bib27
  article-title: Microstructural disorder, mesoscale finite elements and macroscopic response
  publication-title: Proc. Roy. Soc. Lond. A
– volume: 5
  start-page: 115
  year: 1935
  end-page: 158
  ident: bib25
  article-title: Les valeurs extrêmes des distributions statistiques
  publication-title: Ann. Inst. Henri Poincaré
– volume: 50
  start-page: 1841
  year: 2015
  end-page: 1853
  ident: bib28
  article-title: Numerical solution of the Duffing equation with random coefficients
  publication-title: Meccanica
– volume: 50
  start-page: 1969
  year: 2001
  end-page: 1991
  ident: bib35
  article-title: A perturbation method for stochastic meshless analysis in elastostatics
  publication-title: Int. J. Numer. Methods Eng.
– volume: 21
  start-page: 253
  year: 1998
  end-page: 261
  ident: bib10
  article-title: A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending
  publication-title: Comput. Mech
– volume: 104
  start-page: 1038
  year: 2015
  end-page: 1060
  ident: bib9
  article-title: On iterative scheme in determination of the probabilistic moments of the structural response in the Stochastic perturbation-based Finite Element Method
  publication-title: Int. J. Numer. Methods Eng.
– volume: 150
  start-page: 219
  year: 2009
  end-page: 230
  ident: bib36
  article-title: Maximum entropy autoregressive conditional heteroskedasticity model
  publication-title: J. Econom.
– year: 2013
  ident: bib8
  article-title: The Stochastic Perturbation Method for Computational Mechanics
– volume: 19
  start-page: 482
  year: 1998
  end-page: 492
  ident: bib6
  article-title: An overview of the simultaneous perturbation method for efficient optimization
  publication-title: Johns Hopkins APL Tech. Dig.
– year: 2007
  ident: bib26
  article-title: Microstructural Randomness and Scaling in Mechanics of Materials
– volume: 113
  start-page: 834
  year: 2018
  end-page: 857
  ident: bib32
  article-title: Tsallis entropy in dual homogenization of random composites using the Stochastic Finite Element Method
  publication-title: Int. J. Num. Meth.
– year: 1992
  ident: bib1
  article-title: The Stochastic Finite Element Method
– volume: 278
  start-page: 828
  year: 2014
  end-page: 852
  ident: bib17
  article-title: An APDM-based method for the analysis of systems with uncertainties
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 86
  start-page: 1024
  year: 2008
  end-page: 1041
  ident: bib16
  article-title: Engineering computation under uncertainty – capabilities of non-traditional models
  publication-title: Comput. Struct
– year: 1981
  ident: bib30
  article-title: Finite Elements: an Introduction
– volume: 126
  start-page: 29
  year: 2000
  end-page: 37
  ident: bib23
  article-title: Defining triangular probability distributions from historical cost data
  publication-title: ASCE J. Constr. Eng. Manag.
– year: 2002
  ident: bib22
  article-title: Reliability Engineering Handbook
– year: 1992
  ident: 10.1016/j.finel.2021.103648_bib1
– year: 2013
  ident: 10.1016/j.finel.2021.103648_bib8
– volume: 37
  start-page: 332
  year: 1992
  ident: 10.1016/j.finel.2021.103648_bib7
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/9.119632
– volume: 150
  start-page: 219
  issue: 2
  year: 2009
  ident: 10.1016/j.finel.2021.103648_bib36
  article-title: Maximum entropy autoregressive conditional heteroskedasticity model
  publication-title: J. Econom.
  doi: 10.1016/j.jeconom.2008.12.014
– volume: 6
  start-page: 3
  issue: 1
  year: 1989
  ident: 10.1016/j.finel.2021.103648_bib34
  article-title: Importance sampling in structural systems
  publication-title: Struct. Saf.
  doi: 10.1016/0167-4730(89)90003-9
– volume: 50
  start-page: 1841
  issue: 7
  year: 2015
  ident: 10.1016/j.finel.2021.103648_bib28
  article-title: Numerical solution of the Duffing equation with random coefficients
  publication-title: Meccanica
  doi: 10.1007/s11012-015-0133-0
– volume: 21
  start-page: 253
  issue: 6
  year: 1998
  ident: 10.1016/j.finel.2021.103648_bib10
  article-title: A stochastic finite element method for fatigue reliability analysis of gear teeth subjected to bending
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050300
– year: 1990
  ident: 10.1016/j.finel.2021.103648_bib14
– volume: 19
  start-page: 482
  issue: 4
  year: 1998
  ident: 10.1016/j.finel.2021.103648_bib6
  article-title: An overview of the simultaneous perturbation method for efficient optimization
  publication-title: Johns Hopkins APL Tech. Dig.
– year: 2017
  ident: 10.1016/j.finel.2021.103648_bib19
– volume: 113
  start-page: 834
  issue: 5
  year: 2018
  ident: 10.1016/j.finel.2021.103648_bib32
  article-title: Tsallis entropy in dual homogenization of random composites using the Stochastic Finite Element Method
  publication-title: Int. J. Num. Meth.
  doi: 10.1002/nme.5638
– year: 1972
  ident: 10.1016/j.finel.2021.103648_bib3
– volume: 278
  start-page: 828
  year: 2014
  ident: 10.1016/j.finel.2021.103648_bib17
  article-title: An APDM-based method for the analysis of systems with uncertainties
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.06.014
– year: 1973
  ident: 10.1016/j.finel.2021.103648_bib5
– volume: 197
  start-page: 1953
  issue: 21–24
  year: 2008
  ident: 10.1016/j.finel.2021.103648_bib15
  article-title: Kriging-based approximate stochastic homogenization analysis for composite materials
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.12.011
– volume: 5
  start-page: 115
  issue: 2
  year: 1935
  ident: 10.1016/j.finel.2021.103648_bib25
  article-title: Les valeurs extrêmes des distributions statistiques
  publication-title: Ann. Inst. Henri Poincaré
– volume: 23
  start-page: 1831
  issue: 10
  year: 1986
  ident: 10.1016/j.finel.2021.103648_bib2
  article-title: Random field finite elements
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620231004
– volume: 455
  start-page: 3189
  year: 1999
  ident: 10.1016/j.finel.2021.103648_bib27
  article-title: Microstructural disorder, mesoscale finite elements and macroscopic response
  publication-title: Proc. Roy. Soc. Lond. A
  doi: 10.1098/rspa.1999.0446
– volume: 5
  start-page: 3
  issue: 1
  year: 1998
  ident: 10.1016/j.finel.2021.103648_bib12
  article-title: Monte-Carlo techniques in computational stochastic mechanics
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF02736747
– volume: 126
  start-page: 29
  issue: 1
  year: 2000
  ident: 10.1016/j.finel.2021.103648_bib23
  article-title: Defining triangular probability distributions from historical cost data
  publication-title: ASCE J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)0733-9364(2000)126:1(29)
– volume: 50
  start-page: 1969
  year: 2001
  ident: 10.1016/j.finel.2021.103648_bib35
  article-title: A perturbation method for stochastic meshless analysis in elastostatics
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.106
– volume: 70
  start-page: 40
  year: 2016
  ident: 10.1016/j.finel.2021.103648_bib20
  article-title: Stochastic analysis using the generalized perturbation stable node-based smoothed finite element method
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2016.06.002
– year: 1998
  ident: 10.1016/j.finel.2021.103648_bib29
– year: 1979
  ident: 10.1016/j.finel.2021.103648_bib31
– volume: 104
  start-page: 1038
  issue: 11
  year: 2015
  ident: 10.1016/j.finel.2021.103648_bib9
  article-title: On iterative scheme in determination of the probabilistic moments of the structural response in the Stochastic perturbation-based Finite Element Method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4976
– volume: 79
  start-page: 9
  year: 2014
  ident: 10.1016/j.finel.2021.103648_bib21
  article-title: Transformed perturbation stochastic finite element method for static response analysis of stochastic structures
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2013.10.003
– volume: 146
  start-page: 774
  issue: 4
  year: 2012
  ident: 10.1016/j.finel.2021.103648_bib33
  article-title: Stochastic perturbations to dynamical systems: a response theory approach
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-012-0422-0
– year: 2007
  ident: 10.1016/j.finel.2021.103648_bib26
– year: 1981
  ident: 10.1016/j.finel.2021.103648_bib30
– volume: 17
  start-page: 281
  issue: 2
  year: 2012
  ident: 10.1016/j.finel.2021.103648_bib24
  article-title: Computing the asymptotic expansion of the median of the Erlang distribution
  publication-title: Math. Model Anal.
  doi: 10.3846/13926292.2012.664571
– volume: 102–103
  start-page: 74
  year: 2015
  ident: 10.1016/j.finel.2021.103648_bib11
  article-title: A successive perturbation-based multiscale stochastic analysis method for composite materials
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2015.05.001
– year: 1995
  ident: 10.1016/j.finel.2021.103648_bib4
– year: 2002
  ident: 10.1016/j.finel.2021.103648_bib22
– volume: 198
  start-page: 1031
  issue: 9–12
  year: 2009
  ident: 10.1016/j.finel.2021.103648_bib18
  article-title: The stochastic finite element method: past, present and future
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.11.007
– volume: 114
  year: 1998
  ident: 10.1016/j.finel.2021.103648_bib13
  article-title: Neumann expansion for stochastic finite element analysis
  publication-title: J. Eng. Mech. ASCE
– volume: 86
  start-page: 1024
  year: 2008
  ident: 10.1016/j.finel.2021.103648_bib16
  article-title: Engineering computation under uncertainty – capabilities of non-traditional models
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.05.041
SSID ssj0005264
Score 2.5115678
Snippet In this paper theoretical formulation and computational implementation of the Stochastic perturbation-based Finite Element Method (SFEM) for uncertainty...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 103648
SubjectTerms Finite element analysis
Finite element method
Iterative stochastic perturbation technique
Least squares method
Mechanical systems
Mechanics
Monte-Carlo simulation
Parameter uncertainty
Perturbation
Polynomials
Probability theory
Semi-analytical method
Solid mechanics
Statistical analysis
Stochastic finite element method
Structural response
Triangular probability distribution
Uncertainty analysis
Uniform probability distribution
Title Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based Finite Element Method
URI https://dx.doi.org/10.1016/j.finel.2021.103648
https://www.proquest.com/docview/2629086642
Volume 200
WOSCitedRecordID wos000744028600002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6925
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005264
  issn: 0168-874X
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwELW2Sw_toR-0qLS08qGc0qBsEjv2EaFF_RCoB5D2FiWOUwWBQWQXof6F_unO2E42C-2qHHqJVpHtWPue7Rl7_IaQj7JItCgYD7OIiRD8LxZKndVhDaNPAZ8xT41NNpEdH4vZTH4fjX52d2FuzjNjxO2tvPqvUMM7ABuvzj4A7r5ReAG_AXR4Auzw_CfgTwFGe8w_R2klLznSmAC-2lTBhcarvijNbHdgFwZvZrk0GZjAw_ywYakVyun6TFhtsGjdpsMlVEVZZ9Q6hpWqtKCGuA5WwWGDxmswddHowZFNTD20fH0B7QrYHvW9w69XK6Ek34qLZveA7YrU59U-wpxHZrhHAe5tH6TVbVtyAfOui8Xs5l0nUdrNnBM8EBV_nNTd_sLZXg12N54WxZO9ZelVCe07S1sfcNjFsp3ltpEcG8ldI4_IRpwxKcZkY__LdPZ1ECDEvTK863unWWWjA-_15W92zZ0V3potJy_IM-9v0H3Hk5dkpM0mee59D-pn9naTPB0IU74ivwYkoh1MtDHUkoj2JKJIIupJBAUruiQRXSERtSSiSxLR-ySijiPUk4g6Er0mp4fTk4PPoU_bEaokmcxhrIsavGQla16rpFIsLjG-oeZgqkqdprIowCavJUsyWaeRVLKIk4KVTKloonSabJGxuTT6DaFFxZOUpxW40VXKClGWseZcayHRsI6ibRJ3f3quvKY9plY5z9cAvk0-9ZWunKTL-uK8QzP3VqmzNnPg5_qKOx32uZ8f2jzmsYwEB6__7cO68Y48WY6sHTKeXy_0e_JY3cyb9vqD5-5vtwe_Kg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncertainty+analysis+in+solid+mechanics+with+uniform+and+triangular+distributions+using+stochastic+perturbation-based+Finite+Element+Method&rft.jtitle=Finite+elements+in+analysis+and+design&rft.au=Kami%C5%84ski%2C+Marcin&rft.date=2022-03-01&rft.issn=0168-874X&rft.volume=200&rft.spage=103648&rft_id=info:doi/10.1016%2Fj.finel.2021.103648&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_finel_2021_103648
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-874X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-874X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-874X&client=summon