Pattern Retrieval in Large Image Databases Using Multiscale Coarse-to-Fine Cascaded Active Learning

Pattern retrieval is a fundamental challenge in machine learning but is often subject to the problem of gathering enough labeled examples of the target pattern, and also to the computational complexity inherent to the training and the evaluation of complex classifier functions on large databases. In...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 7; číslo 4; s. 1127 - 1141
Hlavní autori: Blanchart, Pierre, Ferecatu, Marin, Cui, Shiyong, Datcu, Mihai
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.04.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1939-1404, 2151-1535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Pattern retrieval is a fundamental challenge in machine learning but is often subject to the problem of gathering enough labeled examples of the target pattern, and also to the computational complexity inherent to the training and the evaluation of complex classifier functions on large databases. In this paper, we propose a hierarchical top-down processing scheme for pattern retrieval in high-volume high-resolution optical satellite image repositories. We learn via a multistage active learning process a cascade of classifiers working each at a certain scale on a patch-based representation of images. At each stage of the hierarchy, we seek to eliminate large parts of images considered as nonrelevant, the purpose being to set the focus at the finest scales on more promising and as spatially limited as possible areas. Our scheme is based on the fact that by reducing the size of the analysis window (i.e., the size of the patch), we better capture the properties of the targeted object. The cascaded hierarchy is introduced to compensate for the extra computational burden incurred by diminishing the size of the patch, which causes an explosion of the number of patches to process. Unlike most other retrieval methods, which require large training sets and costly offline training, we propose a cascaded active learning strategy to build a classifier at each level of the hierarchy, and we provide a new Multiple Instance Learning algorithm to propagate automatically the training examples from one level of the hierarchy to the other. Two study cases are performed for validation. The first is a test on a database of 61-cm resolution QuickBird panchromatic images and the second is an example of temporal pattern retrieval from a database of Synthetic Aperture Radar (SAR) image time series. These tests show that our method achieves a reduction in the number of computations of two orders of magnitude, while keeping the same accuracy level as recent state-of-the-art methods.
AbstractList Pattern retrieval is a fundamental challenge in machine learning but is often subject to the problem of gathering enough labeled examples of the target pattern, and also to the computational complexity inherent to the training and the evaluation of complex classifier functions on large databases. In this paper, we propose a hierarchical top-down processing scheme for pattern retrieval in high-volume high-resolution optical satellite image repositories. We learn via a multistage active learning process a cascade of classifiers working each at a certain scale on a patch-based representation of images. At each stage of the hierarchy, we seek to eliminate large parts of images considered as nonrelevant, the purpose being to set the focus at the finest scales on more promising and as spatially limited as possible areas. Our scheme is based on the fact that by reducing the size of the analysis window (i.e., the size of the patch), we better capture the properties of the targeted object. The cascaded hierarchy is introduced to compensate for the extra computational burden incurred by diminishing the size of the patch, which causes an explosion of the number of patches to process. Unlike most other retrieval methods, which require large training sets and costly offline training, we propose a cascaded active learning strategy to build a classifier at each level of the hierarchy, and we provide a new Multiple Instance Learning algorithm to propagate automatically the training examples from one level of the hierarchy to the other. Two study cases are performed for validation. The first is a test on a database of 61-cm resolution QuickBird panchromatic images and the second is an example of temporal pattern retrieval from a database of Synthetic Aperture Radar (SAR) image time series. These tests show that our method achieves a reduction in the number of computations of two orders of magnitude, while keeping the same accuracy level as recent state-of-the-art methods.
Pattern retrieval is a fundamental challenge in machine learning but is often subject to the problem of gathering enough labeled examples of the target pattern, and also to the computational complexity inherent to the training and the evaluation of complex classifier functions on large databases. In this paper, we propose a hierarchical top-down processing scheme for pattern retrieval in high-volume high-resolution optical satellite image repositories. We learn via a multistage active learning process a cascade of classifiers working each at a certain scale on a patch-based representation of images. At each stage of the hierarchy we seek to eliminate large parts of images considered as non-relevant, the purpose being to set the focus at the finest scales on more promising and as spatially limited as possible areas. Our scheme is based on the fact that by reducing the size of the analysis window (i.e. the size of thepatch), we better capture the properties of the targeted object. The cascaded hierarchy is introduced to compensate for the extra computational burden incurred by diminishing the size of the patch, which causes an explosion of the number of patches to process. Unlike most other retrieval methods, which require large training sets and costlyoffline training, we propose a cascaded active learning strategy to build a classifier at each level of the hierarchy and we provide a new Multiple Instance Learning algorithm to propagate automatically the training examples from one level of the hierarchy to the other. Two study cases are performed for validation. The first is a test on a database of 61cm resolution QuickBird panchromatic images and the second is an example of temporal pattern retrieval from a database of SAR image time series. These tests show that our method achieves a reduction of the number of computations of two orders of magnitude, while keeping the same accuracy level as recent state of the art methods.
Pattern retrieval is a fundamental challenge in machine learning but is often subject to the problem of gathering enough labeled examples of the target pattern, and also to the computational complexity inherent to the training and the evaluation of complex classifier functions on large databases. In this paper, we propose a hierarchical top-down processing scheme for pattern retrieval in high-volume high-resolution optical satellite image repositories. We learn via a multistage active learning process a cascade of classifiers working each at a certain scale on a patch-based representation of images. At each stage of the hierarchy, we seek to eliminate large parts of images considered as nonrelevant, the purpose being to set the focus at the finest scales on more promising and as spatially limited as possible areas. Our scheme is based on the fact that by reducing the size of the analysis window (i.e., the size of the patch), we better capture the properties of the targeted object. The cascaded hierarchy is introduced to compensate for the extra computational burden incurred by diminishing the size of the patch, which causes an explosion of the number of patches to process. Unlike most other retrieval methods, which require large training sets and costly offline training, we propose a cascaded active learning strategy to build a classifier at each level of the hierarchy, and we provide a new Multiple Instance Learning algorithm to propagate automatically the training examples from one level of the hierarchy to the other. Two study cases are performed for validation. The first is a test on a database of 61-cm resolution QuickBird panchromatic images and the second is an example of temporal pattern retrieval from a database of Synthetic Aperture Radar (SAR) image time series. These tests show that our method achieves a reduction in the number of computations of two orders of magnitude, while keeping the same accuracy level as recent state-of-the-art methods. [PUBLICATION ABSTRACT]
Author Cui, Shiyong
Ferecatu, Marin
Blanchart, Pierre
Datcu, Mihai
Author_xml – sequence: 1
  givenname: Pierre
  surname: Blanchart
  fullname: Blanchart, Pierre
  email: pierre.blanchart@gmail.com
  organization: Télécom ParisTech, Paris, France
– sequence: 2
  givenname: Marin
  surname: Ferecatu
  fullname: Ferecatu, Marin
  email: Marin.Ferecatu@cnam.fr
  organization: Laboratoire CEDRIC, Conservatoire National des Arts et Métiers (CNAM), Paris, France
– sequence: 3
  givenname: Shiyong
  surname: Cui
  fullname: Cui, Shiyong
  email: shiyong.cui@dlr.de
  organization: Photogrammetry and Image Analysis, Remote Sensing Technology Institute (IMF), German Aerospace Center (DLR), Munich, Germany
– sequence: 4
  givenname: Mihai
  surname: Datcu
  fullname: Datcu, Mihai
  email: mihai.datcu@dlr.de
  organization: Télécom ParisTech, Paris, France
BackLink https://hal.science/hal-01126389$$DView record in HAL
BookMark eNqFkE1r3DAQhkVJoZu0vyAXQU89eKvRh20dl23TpLi05OMsJvI4VXDkVNIu5N_Xi0MOueQyw7y8z8zwHrOjOEVi7BTEGkDYrz-vrjeXV2spQK-lElIp9Y6tJBiowChzxFZgla1AC_2BHed8L0QtG6tWzP_BUihFfkklBdrjyEPkHaY74hcPONdvWPAWM2V-k0O84792YwnZ40h8O2HKVJWpOgtxHnGWe-r5xpewJ94RpjgjH9n7AcdMn577Cbs5-369Pa-63z8utpuu8kpBqSw1ttE1CGiMJzA4aG_bXim8bQbqG2j7Ggc7SNC6JZBD23thBQhBg2jqVp2wL8vevzi6xxQeMD25CYM733TuoAkAWavW7mH2fl68j2n6t6Nc3P20S3F-z4HR1mgpzMGlFpdPU86Jhpe1INwhebck7w7Ju-fkZ8q-onwoWMIUS8IwvsGeLmwgopdrdaNqYRr1H2jukgU
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1080_22797254_2017_1348914
crossref_primary_10_1109_MGRS_2016_2548504
crossref_primary_10_1109_JSTARS_2018_2795753
crossref_primary_10_1109_MGRS_2024_3403423
crossref_primary_10_1109_JSTARS_2014_2311915
crossref_primary_10_1109_JSTARS_2015_2461556
crossref_primary_10_1109_TGRS_2015_2438400
crossref_primary_10_1109_JSTARS_2015_2420582
crossref_primary_10_3390_ijgi5100174
crossref_primary_10_1007_s12524_019_01049_8
crossref_primary_10_1109_JSTARS_2016_2547843
crossref_primary_10_1109_JSTARS_2016_2549557
crossref_primary_10_1109_LGRS_2016_2590739
crossref_primary_10_1016_j_asoc_2022_109107
crossref_primary_10_1109_JSTARS_2016_2537548
Cites_doi 10.1109/TGRS.2006.890579
10.1109/LGRS.2013.2246539
10.1109/TPAMI.2006.248
10.1145/1126004.1126005
10.1109/ICPR.2010.799
10.1109/ICCV.2001.937694
10.1109/TPAMI.2009.155
10.1109/TPAMI.2005.188
10.1023/A:1011113216584
10.1109/TGRS.2008.2010404
10.1007/s00530-002-0070-3
10.1016/S0893-6080(01)00104-6
10.1109/TGRS.2007.892007
10.1109/CVPR.2010.5540115
10.1109/34.895972
10.1109/TMM.2005.858383
10.1109/TGRS.2010.2072929
10.1109/TGRS.2010.2083673
10.1109/ICIP.2002.1039124
10.1023/B:VISI.0000013087.49260.fb
10.1007/s00530-007-0094-9
10.1109/TIP.2008.924286
10.1145/500156.500159
10.1109/TIP.2003.815254
10.1145/1348246.1348248
10.7551/mitpress/4175.001.0001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2014
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
1XC
DOI 10.1109/JSTARS.2014.2302333
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Computer Science
EISSN 2151-1535
EndPage 1141
ExternalDocumentID oai:HAL:hal-01126389v1
3387985131
10_1109_JSTARS_2014_2302333
6736057
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
1XC
ID FETCH-LOGICAL-c331t-9e7974610175ce15af4c98d33ab7fed718d6af9f21448e12f8dc090100ef07683
IEDL.DBID RIE
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335390000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Sat Nov 29 15:05:45 EST 2025
Fri Jul 25 10:46:25 EDT 2025
Sat Nov 29 07:57:58 EST 2025
Tue Nov 18 21:47:44 EST 2025
Wed Aug 27 02:51:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords active learning
apprentissage d'instance multiple
support vector machines
coarse-to-fine testing
multiple instance learning
apprentissage actif
test de gros-de-fine
Récupération du modèle
Pattern retrieval
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-9e7974610175ce15af4c98d33ab7fed718d6af9f21448e12f8dc090100ef07683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1549542051
PQPubID 75722
PageCount 15
ParticipantIDs proquest_journals_1549542051
crossref_citationtrail_10_1109_JSTARS_2014_2302333
ieee_primary_6736057
hal_primary_oai_HAL_hal_01126389v1
crossref_primary_10_1109_JSTARS_2014_2302333
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2014
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
gevers (ref34) 2004
ref14
ref31
ref33
ref11
ref32
ref10
ref2
ref1
ref17
ref38
ref16
manjunath (ref28) 2002
abramson (ref9) 2006
ref19
steinwart (ref37) 2008
vapnik (ref36) 1998
andrews (ref21) 2003
liu (ref20) 2006
ref24
ref26
ref25
ref22
sirmacek (ref29) 2010
platt (ref23) 1999
karasulu (ref30) 2010; 4
ref27
schlkopf (ref35) 2001
ref8
ref7
ref4
ref3
ref6
yang (ref18) 2008
sahbi (ref5) 2006; 7
References_xml – year: 2002
  ident: ref28
  publication-title: Introduction to MPEG-7 Multimedia Content Description Interface
– ident: ref4
  doi: 10.1109/TGRS.2006.890579
– ident: ref16
  doi: 10.1109/LGRS.2013.2246539
– ident: ref38
  doi: 10.1109/TPAMI.2006.248
– ident: ref32
  doi: 10.1145/1126004.1126005
– year: 2008
  ident: ref37
  publication-title: Support Vector Machines
– year: 2006
  ident: ref20
  publication-title: Studies on support vector machines and applications to video object extraction
– ident: ref10
  doi: 10.1109/ICPR.2010.799
– ident: ref7
  doi: 10.1109/ICCV.2001.937694
– year: 2008
  ident: ref18
  article-title: Review of multi-instance learning and its applications
  publication-title: Online Publication
– volume: 4
  start-page: 11
  year: 2010
  ident: ref30
  article-title: Review and evaluation of well-known methods for moving object detection and tracking in videos
  publication-title: J Aeronaut Space Technol
– ident: ref19
  doi: 10.1109/TPAMI.2009.155
– ident: ref31
  doi: 10.1109/TPAMI.2005.188
– ident: ref12
  doi: 10.1023/A:1011113216584
– year: 2004
  ident: ref34
  publication-title: Emerging Topics in Computer Vision
– ident: ref14
  doi: 10.1109/TGRS.2008.2010404
– ident: ref25
  doi: 10.1007/s00530-002-0070-3
– ident: ref22
  doi: 10.1016/S0893-6080(01)00104-6
– year: 1999
  ident: ref23
  publication-title: Advances in Large Margin Classifiers
– ident: ref13
  doi: 10.1109/TGRS.2007.892007
– ident: ref8
  doi: 10.1109/CVPR.2010.5540115
– ident: ref33
  doi: 10.1109/34.895972
– ident: ref3
  doi: 10.1109/TMM.2005.858383
– year: 2006
  ident: ref9
  publication-title: Active learning for visual object detection
– year: 1998
  ident: ref36
  publication-title: The Nature of Statistical Learning Theory
– ident: ref15
  doi: 10.1109/TGRS.2010.2072929
– start-page: 561
  year: 2003
  ident: ref21
  publication-title: Advances in neural information processing systems
– ident: ref17
  doi: 10.1109/TGRS.2010.2083673
– ident: ref6
  doi: 10.1109/ICIP.2002.1039124
– volume: 7
  start-page: 2087
  year: 2006
  ident: ref5
  article-title: A hierarchy of support vector machines for face detection
  publication-title: J Mach Learn Res
– ident: ref11
  doi: 10.1023/B:VISI.0000013087.49260.fb
– year: 2010
  ident: ref29
  publication-title: Object Detection in Satellite and Aerial Images Remote Sensing Applications
– ident: ref24
  doi: 10.1007/s00530-007-0094-9
– ident: ref2
  doi: 10.1109/TIP.2008.924286
– ident: ref1
  doi: 10.1145/500156.500159
– ident: ref26
  doi: 10.1109/TIP.2003.815254
– ident: ref27
  doi: 10.1145/1348246.1348248
– year: 2001
  ident: ref35
  publication-title: Learning With Kernels Support Vector Machines Regularization Optimization and Beyond
  doi: 10.7551/mitpress/4175.001.0001
SSID ssj0062793
Score 2.1396387
Snippet Pattern retrieval is a fundamental challenge in machine learning but is often subject to the problem of gathering enough labeled examples of the target...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1127
SubjectTerms Active learning
Algorithms
coarse-to-fine testing
Computer Science
Context
Detectors
Image databases
multiple instance learning (MIL)
pattern retrieval
Remote sensing
Support vector machines
support vector machines (SVMs)
Training
Title Pattern Retrieval in Large Image Databases Using Multiscale Coarse-to-Fine Cascaded Active Learning
URI https://ieeexplore.ieee.org/document/6736057
https://www.proquest.com/docview/1549542051
https://hal.science/hal-01126389
Volume 7
WOSCitedRecordID wos000335390000012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS-QwEB_c5Q580Ts_cHVPwnGPG22bpm0el9VVQUT0DvatpPm4O9CuuB_gf-9M2l04lAPpSylJCf0lk5nmN78B-GGUlLLyEddSeZ76SvBKZzFXEqOhVOYUkYViE_nNTTGZqNsNGKxzYZxzgXzmTug2nOXbqVnQr7JT4iChf9GBTp5nTa7WyupmSR4EdtEfUZwkY1qFoThSpzjFh3f3RONKifecCCH-2YU6f4gDGYqrvLHIYZsZb39sgF9gq3Un2bDB_ytsuHoHPl-Ecr0vu2Bug3xmze5C4SycVexvza6J_c2uHtGUsDM917STzVggD7CQkDtD4BwbTTHodXw-5WN0RdlIz4hLb9kwmEjWKrP-3oNf4_Ofo0vellXgRoh4zpXLMYjIaC1K42KpfWpUYYXQVe6dxc3KZtorT2JqhYsTX1gTEYsjcp7O7cQ-dOtp7Q6AZS4uMi0t9ktTofGqLK5jfKO0kY7jHiSrz1yaVnOcSl88lCH2iFTZYFMSNmWLTQ8G605PjeTG_5t_R_zWLUku-3J4XdKziPKj0CNb4kB2Ca11qxaoHvRXcJft2p2VJFon0wSt1eH7vY5gkwbQ8Hf60J0_L9w3-GSWiM_zcZiWr58d3JU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6sbG9tNvasfRrYuyxWm3Lsq3HkC1NWRZK10HfhKyPbbA5o0kL_e97pyiB0TEofjFGMsI_6XRn_e53AO-tklK2IeNGqsDL0AremirnSmI0VMqaIrJYbKKeTJqrK3W-BserXBjvfSSf-Q90G8_y3dTe0K-yE-IgoX-xDptUOStlay3tblXUUWIXPRLFSTQmaQzlmTrBSd6_-EpErpKYz4UQ4q99aP0HsSBjeZUHNjluNMPtxw3xBWwlh5L1FzPgJaz57hU8PY0Fe-92wJ5HAc2OXcTSWTiv2M-OjYn_zc5-ozFhH83c0F42Y5E-wGJK7gyh82wwxbDX8_mUD9EZZQMzIza9Y_1oJFnSZv2-C9-Gny4HI54KK3ArRD7nytcYRlS0GqX1uTShtKpxQpi2Dt7hduUqE1QgObXG50VonM2Ix5H5QCd34jVsdNPOvwFW-bypjHTYryyFwat1uJLxjdJlJs97UCw_s7ZJdZyKX_zSMfrIlF5gowkbnbDpwfGq05-F6Mb_m79D_FYtSTB71B9repZRhhT6ZLc4kB1Ca9UqAdWDgyXcOq3emSbZOlkWaK_2_t3rLTwbXX4Z6_HZ5PM-PKfBLNg8B7Axv77xh_DE3iJW10dxit4DRlHf3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pattern+Retrieval+in+Large+Image+Databases+Using+Multiscale+Coarse-to-Fine+Cascaded+Active+Learning&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Blanchart%2C+Pierre&rft.au=Ferecatu%2C+Marin&rft.au=Cui%2C+Shiyong&rft.au=Datcu%2C+Mihai&rft.date=2014-04-01&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=7&rft.issue=4&rft.spage=1127&rft.epage=1141&rft_id=info:doi/10.1109%2FJSTARS.2014.2302333&rft.externalDocID=6736057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon