Complexity and algorithms for constant diameter augmentation problems
•For given integers d, k and graph G, can we obtain a graph with diameter d via at most k edge deletions?•We determine the computational complexity of this and related problems for different values of d.•For d=3, the problem is related to Moore graphs and solvable in polynomial time.•For all d>4,...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 904; s. 15 - 26 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.02.2022
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •For given integers d, k and graph G, can we obtain a graph with diameter d via at most k edge deletions?•We determine the computational complexity of this and related problems for different values of d.•For d=3, the problem is related to Moore graphs and solvable in polynomial time.•For all d>4, the problem is NP-complete.•The NP-completeness results are proved for various values of the diameter of the input graph.
We study the following problem: for given integers d,k and graph G, can we obtain a graph with diameter d via at most k edge deletions? We determine the computational complexity of this and related problems for different values of d. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2021.05.020 |