Echo state kernel recursive least squares algorithm for machine condition prediction

•A combination of reservoir computing and kernel adaptive filter.•The fixed reservoir facilitates the capability of performing long-term prediction.•The novel online learning method still maintains the simplicity of the training process.•A online prognostic method based on KAF and a Bayesian techniq...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mechanical systems and signal processing Ročník 111; s. 68 - 86
Hlavní autoři: Zhou, Haowen, Huang, Jinquan, Lu, Feng, Thiyagalingam, Jeyarajan, Kirubarajan, Thia
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin Elsevier Ltd 01.10.2018
Elsevier BV
Témata:
ISSN:0888-3270, 1096-1216
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A combination of reservoir computing and kernel adaptive filter.•The fixed reservoir facilitates the capability of performing long-term prediction.•The novel online learning method still maintains the simplicity of the training process.•A online prognostic method based on KAF and a Bayesian technique is developed. Kernel adaptive filter (KAF) has been widely utilized for time series prediction due to its online adaptation scheme, universal approximation capability and convexity. Nevertheless, KAF’s ability to handle temporal tasks is limited, because it is essentially a feed-forward neural network that lacks dynamic characteristics. Traditionally, a sliding widow that contains consecutive data points is constructed to deal with the temporal dependency between data points at neighboring time steps, but the restricted widow length may be incapable of capturing temporal patterns on a larger time scale. To manage this issue, a novel sequential learning approach called echo state KRLS (ES-KRLS) algorithm is proposed by incorporating a dynamic reservoir into kernel recursive least squares (KRLS) algorithm. The reservoir, consisting of a large number of sparsely interconnected hidden units, is treated as a temporal function that transforms the history of the time series into a high-dimensional reservoir state space. Subsequently, the spatial relationship between the reservoir state and the target output is effectively approximated by KRLS algorithm. With the utilization of the fixed reservoir, our novel method not only maintains the simplicity of the learning process but also leads to a significant improvement in the capability of modeling dynamic systems. Numerical results on benchmark tasks demonstrate the excellent performance of the novel method with respect to long-term prediction. Finally, an online prognostic method that combines ES-KRLS and a Bayesian technique is developed for tracking the health status of a degraded system and predicting remaining useful life (RUL). This prognostic method is applied to a turbofan engine degradation dataset to demonstrate its effectiveness.
AbstractList Kernel adaptive filter (KAF) has been widely utilized for time series prediction due to its online adaptation scheme, universal approximation capability and convexity. Nevertheless, KAF’s ability to handle temporal tasks is limited, because it is essentially a feed-forward neural network that lacks dynamic characteristics. Traditionally, a sliding widow that contains consecutive data points is constructed to deal with the temporal dependency between data points at neighboring time steps, but the restricted widow length may be incapable of capturing temporal patterns on a larger time scale. To manage this issue, a novel sequential learning approach called echo state KRLS (ES-KRLS) algorithm is proposed by incorporating a dynamic reservoir into kernel recursive least squares (KRLS) algorithm. The reservoir, consisting of a large number of sparsely interconnected hidden units, is treated as a temporal function that transforms the history of the time series into a high-dimensional reservoir state space. Subsequently, the spatial relationship between the reservoir state and the target output is effectively approximated by KRLS algorithm. With the utilization of the fixed reservoir, our novel method not only maintains the simplicity of the learning process but also leads to a significant improvement in the capability of modeling dynamic systems. Numerical results on benchmark tasks demonstrate the excellent performance of the novel method with respect to long-term prediction. Finally, an online prognostic method that combines ES-KRLS and a Bayesian technique is developed for tracking the health status of a degraded system and predicting remaining useful life (RUL). This prognostic method is applied to a turbofan engine degradation dataset to demonstrate its effectiveness.
•A combination of reservoir computing and kernel adaptive filter.•The fixed reservoir facilitates the capability of performing long-term prediction.•The novel online learning method still maintains the simplicity of the training process.•A online prognostic method based on KAF and a Bayesian technique is developed. Kernel adaptive filter (KAF) has been widely utilized for time series prediction due to its online adaptation scheme, universal approximation capability and convexity. Nevertheless, KAF’s ability to handle temporal tasks is limited, because it is essentially a feed-forward neural network that lacks dynamic characteristics. Traditionally, a sliding widow that contains consecutive data points is constructed to deal with the temporal dependency between data points at neighboring time steps, but the restricted widow length may be incapable of capturing temporal patterns on a larger time scale. To manage this issue, a novel sequential learning approach called echo state KRLS (ES-KRLS) algorithm is proposed by incorporating a dynamic reservoir into kernel recursive least squares (KRLS) algorithm. The reservoir, consisting of a large number of sparsely interconnected hidden units, is treated as a temporal function that transforms the history of the time series into a high-dimensional reservoir state space. Subsequently, the spatial relationship between the reservoir state and the target output is effectively approximated by KRLS algorithm. With the utilization of the fixed reservoir, our novel method not only maintains the simplicity of the learning process but also leads to a significant improvement in the capability of modeling dynamic systems. Numerical results on benchmark tasks demonstrate the excellent performance of the novel method with respect to long-term prediction. Finally, an online prognostic method that combines ES-KRLS and a Bayesian technique is developed for tracking the health status of a degraded system and predicting remaining useful life (RUL). This prognostic method is applied to a turbofan engine degradation dataset to demonstrate its effectiveness.
Author Kirubarajan, Thia
Zhou, Haowen
Huang, Jinquan
Lu, Feng
Thiyagalingam, Jeyarajan
Author_xml – sequence: 1
  givenname: Haowen
  surname: Zhou
  fullname: Zhou, Haowen
  email: zhouhaowen@nuaa.edu.cn
  organization: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 2
  givenname: Jinquan
  surname: Huang
  fullname: Huang, Jinquan
  organization: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Feng
  surname: Lu
  fullname: Lu, Feng
  organization: Jiangsu Province Key Laboratory of Aerospace Power Systems, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 4
  givenname: Jeyarajan
  surname: Thiyagalingam
  fullname: Thiyagalingam, Jeyarajan
  organization: Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
– sequence: 5
  givenname: Thia
  surname: Kirubarajan
  fullname: Kirubarajan, Thia
  organization: Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
BookMark eNqFkD1PwzAQhi0EEm3hF7BYYk44x63jDAwI8SUhsZTZcuwLdUnj1nYr9d_jUiYGmO6G97nT-4zJ6eAHJOSKQcmAiZtluV_FuC4rYLIEXsK0PiEjBo0oWMXEKRmBlLLgVQ3nZBzjEgCaKYgRmT-Yhacx6YT0E8OAPQ1otiG6HdIedUw0brY6YKS6__DBpcWKdj7QlTYLNyA1frAuOT_QdUDrzGG9IGed7iNe_swJeX98mN8_F69vTy_3d6-F4ZyloplWs5lkrWY469q2xVqzatpyyztuDWqwbS056M6iBaF5Kxuj0XLAxkqhLZ-Q6-PddfCbLcakln4bhvxSVVBXtRByJnKKH1Mm-BgDdmod3EqHvWKgDvrUUn3rUwd9CrjK-jLV_KKMy5ZyuxS06_9hb48s5vI7h0FF43Aw2U-Wm5T17k_-C7pvkfg
CitedBy_id crossref_primary_10_1007_s40313_021_00874_y
crossref_primary_10_1016_j_engappai_2021_104552
crossref_primary_10_1016_j_neucom_2021_08_099
crossref_primary_10_1177_09544100221144684
crossref_primary_10_1109_ACCESS_2021_3133012
crossref_primary_10_1016_j_engappai_2020_103547
crossref_primary_10_1186_s43074_021_00042_0
crossref_primary_10_1002_er_8067
crossref_primary_10_1061__ASCE_AS_1943_5525_0001167
crossref_primary_10_32604_cmc_2021_015099
crossref_primary_10_3390_app10030950
crossref_primary_10_1016_j_engappai_2019_103346
crossref_primary_10_1016_j_compag_2022_107417
crossref_primary_10_1007_s00034_021_01691_z
crossref_primary_10_1016_j_ymssp_2024_111551
Cites_doi 10.1109/IECON.2013.6699844
10.1016/j.neucom.2010.01.016
10.1109/TSP.2004.830991
10.1109/TSMCB.2012.2198882
10.1109/TNNLS.2012.2188414
10.1162/089976698300017467
10.1186/s13634-016-0406-3
10.1155/2008/784292
10.1109/TNN.2011.2162109
10.1109/TIE.2016.2623260
10.1016/j.neucom.2014.06.057
10.1109/TSP.2007.907881
10.1109/ICNN.1993.298828
10.1109/TSP.2004.830985
10.1162/neco.1995.7.2.219
10.1016/j.ress.2009.08.001
10.1109/IJCNN.1992.227335
10.1016/j.ymssp.2008.06.009
10.1016/j.eswa.2014.10.041
10.1016/j.ymssp.2005.09.012
10.1109/PHM.2008.4711422
10.36001/phme.2016.v3i1.1623
10.1109/TCYB.2015.2467167
10.1016/j.cosrev.2009.03.005
10.1016/j.neucom.2005.12.126
10.1162/neco.1989.1.2.270
10.1109/TSP.2008.917376
10.1016/j.sigpro.2015.04.024
10.1109/PHM.2008.4711421
10.1016/j.neucom.2008.12.020
10.1016/j.neunet.2014.05.013
10.1016/j.neunet.2012.02.028
10.1109/IJCNN.2010.5596492
10.1016/j.ymssp.2013.06.004
10.1109/TNNLS.2014.2316291
10.1162/089976602760407955
10.1109/TSP.2009.2022007
10.1016/S0893-6080(05)80125-X
10.1109/5.58337
10.1109/TNNLS.2014.2311855
10.1126/science.1091277
10.1109/TNN.2006.885113
10.1109/TSP.2008.2009895
10.1016/j.ymssp.2008.12.006
10.1109/TNET.2012.2187923
10.1109/TNN.2006.872357
10.1109/PHM.2008.4711414
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier BV Oct 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 2018
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2018.03.047
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
EndPage 86
ExternalDocumentID 10_1016_j_ymssp_2018_03_047
S0888327018301742
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c331t-9425581ba1e5fbbbe7a124b3d3f3dcea0db7830afded06a3b89caed30e9d86ad3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432641300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Fri Jul 25 02:12:19 EDT 2025
Tue Nov 18 22:28:44 EST 2025
Sat Nov 29 07:45:05 EST 2025
Fri Feb 23 02:29:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kernel adaptive filter
Remaining useful lifeprediction
Reservoir computing
Prognostics
Long-term prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-9425581ba1e5fbbbe7a124b3d3f3dcea0db7830afded06a3b89caed30e9d86ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2072766856
PQPubID 2045429
PageCount 19
ParticipantIDs proquest_journals_2072766856
crossref_primary_10_1016_j_ymssp_2018_03_047
crossref_citationtrail_10_1016_j_ymssp_2018_03_047
elsevier_sciencedirect_doi_10_1016_j_ymssp_2018_03_047
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Liu, Príncipe (b0035) 2008; 2008
Kolen, Kremer (b0065) 2001
Zhao, Chen, Cao, Zhu, Principe (b0060) 2016; 2016
Zio, Di Maio (b0250) 2010; 95
Ramasso, Rombaut, Zerhouni (b0235) 2013; 43
Takens (b0070) 1981; 898
A.S. Weigend, N.A. Gershenfeld, Results of the time series prediction competition at the Santa Fe Institute, in: IEEE International Conference on Neural Networks, 1993, IEEE, 1993, pp. 1786–1793.
Huang, Zhu, Siew (b0180) 2006; 70
Girosi, Jones, Poggio (b0015) 1995; 7
R.J. Williams, Training recurrent networks using the extended Kalman filter, International Joint Conference on Neural Networks, 1992. IJCNN., IEEE, 1992, pp. 241–6.
Maass, Natschläger, Markram (b0105) 2002; 14
Williams, Zipser (b0090) 1989; 1
Kivinen, Smola, Williamson (b0020) 2004; 52
Soh, Demiris (b0145) 2015; 26
Slavakis, Theodoridis, Yamada (b0025) 2008; 56
Wyffels, Schrauwen (b0115) 2010; 73
Dutoit, Schrauwen, Van Campenhout, Stroobandt, Van Brussel, Nuttin (b0135) 2009; 72
Buehner, Young (b0170) 2006; 17
Heng, Zhang, Tan, Mathew (b0205) 2009; 23
Schölkopf, Smola, Müller (b0010) 1998; 10
Boccato, Lopes, Attux, Von Zuben (b0165) 2012; 32
Soriano, Ortín, Keuninckx, Appeltant, Danckaert, Pesquera, Van der Sande (b0125) 2015; 26
T. Wang, J. Yu, D. Siegel, J. Lee, A similarity-based prognostics approach for remaining useful life estimation of engineered systems, in: International Conference on Prognostics and Health Management, 2008, PHM 2008, IEEE, 2008, pp. 1–6.
Han, Xu, Liu, Wang (b0160) 2015; 147
A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: International Conference on Prognostics and Health Management, 2008, PHM 2008, IEEE, 2008, pp. 1–9.
M. Rigamonti, P. Baraldi, E. Zio, echo state network for the remaining useful life prediction of a turbofan engine, annual conference of the prognostics and health management society 2015, 2016, pp. 255–270.
Richard, Bermudez, Honeine (b0055) 2009; 57
K. Javed, R. Gouriveau, N. Zerhouni, Novel failure prognostics approach with dynamic thresholds for machine degradation, in: IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2013, pp. 4404–4409.
LukošEvičIus, Jaeger (b0100) 2009; 3
Liu, Pokharel, Principe (b0030) 2008; 56
Jaeger, Haas (b0095) 2004; 304
Jaeger (b0155) 2003
Xu, Han (b0130) 2016; 46
Cui, Feng, Chai, Liu, Liu (b0120) 2014; 57
Li, Han, Wang (b0150) 2012; 23
Chatzis, Demiris (b0140) 2011; 22
Heng, Tan, Mathew, Montgomery, Banjevic, Jardine (b0230) 2009; 23
Vapnik (b0005) 1995
A.S. Weigend, Time series prediction: forecasting the future and understanding the past, Santa Fe Institute Studies in the Sciences of Complexity, 1994
Liu, Park, Principe (b0050) 2009; 20
Shi, Han (b0110) 2007; 18
Zhang, Tse, Wan, Xu (b0255) 2015; 42
Jardine, Lin, Banjevic (b0200) 2006; 20
F.O. Heimes, Recurrent neural networks for remaining useful life estimation, in: International Conference on Prognostics and Health Management, 2008, PHM 2008, IEEE, 2008, pp. 1–6.
Engel, Mannor, Meir (b0040) 2004; 52
Liu, Park, Wang, Príncipe (b0045) 2009; 57
Funahashi, Nakamura (b0075) 1993; 6
Wu, Shi, Zhang, Ma, Chen, Senior Member (b0185) 2015; 117
Lee, Wu, Zhao, Ghaffari, Liao, Siegel (b0210) 2014; 42
Khelif, Chebel-Morello, Malinowski, Laajili, Fnaiech, Zerhouni (b0225) 2017; 64
D. Verstraeten, J. Dambre, X. Dutoit, B. Schrauwen, Memory versus non-linearity in reservoirs, in: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE, 2010, pp. 1–8.
Werbos (b0080) 1990; 78
Williams (10.1016/j.ymssp.2018.03.047_b0090) 1989; 1
Zio (10.1016/j.ymssp.2018.03.047_b0250) 2010; 95
Wu (10.1016/j.ymssp.2018.03.047_b0185) 2015; 117
10.1016/j.ymssp.2018.03.047_b0190
Werbos (10.1016/j.ymssp.2018.03.047_b0080) 1990; 78
10.1016/j.ymssp.2018.03.047_b0195
LukošEvičIus (10.1016/j.ymssp.2018.03.047_b0100) 2009; 3
Jaeger (10.1016/j.ymssp.2018.03.047_b0155) 2003
10.1016/j.ymssp.2018.03.047_b0220
Liu (10.1016/j.ymssp.2018.03.047_b0050) 2009; 20
Liu (10.1016/j.ymssp.2018.03.047_b0035) 2008; 2008
Engel (10.1016/j.ymssp.2018.03.047_b0040) 2004; 52
Kolen (10.1016/j.ymssp.2018.03.047_b0065) 2001
Takens (10.1016/j.ymssp.2018.03.047_b0070) 1981; 898
Girosi (10.1016/j.ymssp.2018.03.047_b0015) 1995; 7
Funahashi (10.1016/j.ymssp.2018.03.047_b0075) 1993; 6
Zhang (10.1016/j.ymssp.2018.03.047_b0255) 2015; 42
10.1016/j.ymssp.2018.03.047_b0085
Li (10.1016/j.ymssp.2018.03.047_b0150) 2012; 23
Shi (10.1016/j.ymssp.2018.03.047_b0110) 2007; 18
Boccato (10.1016/j.ymssp.2018.03.047_b0165) 2012; 32
Slavakis (10.1016/j.ymssp.2018.03.047_b0025) 2008; 56
Maass (10.1016/j.ymssp.2018.03.047_b0105) 2002; 14
Han (10.1016/j.ymssp.2018.03.047_b0160) 2015; 147
Heng (10.1016/j.ymssp.2018.03.047_b0230) 2009; 23
Vapnik (10.1016/j.ymssp.2018.03.047_b0005) 1995
Kivinen (10.1016/j.ymssp.2018.03.047_b0020) 2004; 52
Jardine (10.1016/j.ymssp.2018.03.047_b0200) 2006; 20
Buehner (10.1016/j.ymssp.2018.03.047_b0170) 2006; 17
Jaeger (10.1016/j.ymssp.2018.03.047_b0095) 2004; 304
Chatzis (10.1016/j.ymssp.2018.03.047_b0140) 2011; 22
Heng (10.1016/j.ymssp.2018.03.047_b0205) 2009; 23
10.1016/j.ymssp.2018.03.047_b0240
Liu (10.1016/j.ymssp.2018.03.047_b0030) 2008; 56
Soriano (10.1016/j.ymssp.2018.03.047_b0125) 2015; 26
10.1016/j.ymssp.2018.03.047_b0245
Xu (10.1016/j.ymssp.2018.03.047_b0130) 2016; 46
Huang (10.1016/j.ymssp.2018.03.047_b0180) 2006; 70
Lee (10.1016/j.ymssp.2018.03.047_b0210) 2014; 42
Schölkopf (10.1016/j.ymssp.2018.03.047_b0010) 1998; 10
Cui (10.1016/j.ymssp.2018.03.047_b0120) 2014; 57
Ramasso (10.1016/j.ymssp.2018.03.047_b0235) 2013; 43
Richard (10.1016/j.ymssp.2018.03.047_b0055) 2009; 57
Zhao (10.1016/j.ymssp.2018.03.047_b0060) 2016; 2016
Liu (10.1016/j.ymssp.2018.03.047_b0045) 2009; 57
Wyffels (10.1016/j.ymssp.2018.03.047_b0115) 2010; 73
Dutoit (10.1016/j.ymssp.2018.03.047_b0135) 2009; 72
Khelif (10.1016/j.ymssp.2018.03.047_b0225) 2017; 64
Soh (10.1016/j.ymssp.2018.03.047_b0145) 2015; 26
10.1016/j.ymssp.2018.03.047_b0260
10.1016/j.ymssp.2018.03.047_b0175
10.1016/j.ymssp.2018.03.047_b0215
References_xml – volume: 14
  start-page: 2531
  year: 2002
  end-page: 2560
  ident: b0105
  article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Comput.
– reference: A.S. Weigend, N.A. Gershenfeld, Results of the time series prediction competition at the Santa Fe Institute, in: IEEE International Conference on Neural Networks, 1993, IEEE, 1993, pp. 1786–1793.
– volume: 43
  start-page: 37
  year: 2013
  end-page: 50
  ident: b0235
  article-title: Joint prediction of continuous and discrete states in time-series based on belief functions
  publication-title: IEEE Trans. Cyber.
– start-page: 609
  year: 2003
  end-page: 616
  ident: b0155
  article-title: Adaptive nonlinear system identification with echo state networks
  publication-title: Adv. Neural Inform. Proc. Syst.
– volume: 57
  start-page: 141
  year: 2014
  end-page: 151
  ident: b0120
  article-title: Effect of hybrid circle reservoir injected with wavelet-neurons on performance of echo state network
  publication-title: Neural Networks
– volume: 6
  start-page: 801
  year: 1993
  end-page: 806
  ident: b0075
  article-title: Approximation of dynamical systems by continuous time recurrent neural networks
  publication-title: Neural Networks
– reference: A.S. Weigend, Time series prediction: forecasting the future and understanding the past, Santa Fe Institute Studies in the Sciences of Complexity, 1994
– reference: F.O. Heimes, Recurrent neural networks for remaining useful life estimation, in: International Conference on Prognostics and Health Management, 2008, PHM 2008, IEEE, 2008, pp. 1–6.
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0180
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
– volume: 17
  start-page: 820
  year: 2006
  end-page: 824
  ident: b0170
  article-title: A tighter bound for the echo state property
  publication-title: IEEE Trans. Neural Networks
– volume: 52
  start-page: 2165
  year: 2004
  end-page: 2176
  ident: b0020
  article-title: Online learning with kernels
  publication-title: IEEE Trans. Signal Proc.
– volume: 56
  start-page: 2781
  year: 2008
  end-page: 2796
  ident: b0025
  article-title: Online kernel-based classification using adaptive projection algorithms
  publication-title: IEEE Trans. Sig. Proc.
– volume: 52
  start-page: 2275
  year: 2004
  end-page: 2285
  ident: b0040
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans. Sig. Proc.
– volume: 117
  start-page: 11
  year: 2015
  end-page: 16
  ident: b0185
  article-title: Kernel recursive maximum correntropy
  publication-title: Signal Proc.
– volume: 147
  start-page: 315
  year: 2015
  end-page: 323
  ident: b0160
  article-title: Online multivariate time series prediction using SCKF-γESN model
  publication-title: Neurocomputing
– volume: 42
  start-page: 314
  year: 2014
  end-page: 334
  ident: b0210
  article-title: Prognostics and health management design for rotary machinery systems—reviews, methodology and applications
  publication-title: Mech. Syst. Sig. Proc.
– reference: M. Rigamonti, P. Baraldi, E. Zio, echo state network for the remaining useful life prediction of a turbofan engine, annual conference of the prognostics and health management society 2015, 2016, pp. 255–270.
– reference: T. Wang, J. Yu, D. Siegel, J. Lee, A similarity-based prognostics approach for remaining useful life estimation of engineered systems, in: International Conference on Prognostics and Health Management, 2008, PHM 2008, IEEE, 2008, pp. 1–6.
– volume: 64
  start-page: 2276
  year: 2017
  end-page: 2285
  ident: b0225
  article-title: Direct remaining useful life estimation based on support vector regression
  publication-title: IEEE Trans. Indus. Electr.
– volume: 72
  start-page: 1534
  year: 2009
  end-page: 1546
  ident: b0135
  article-title: Pruning and regularization in reservoir computing
  publication-title: Neurocomputing
– volume: 46
  start-page: 2173
  year: 2016
  end-page: 2183
  ident: b0130
  article-title: Adaptive elastic echo state network for multivariate time series prediction
  publication-title: IEEE Trans. Cyber.
– volume: 23
  start-page: 1600
  year: 2009
  end-page: 1614
  ident: b0230
  article-title: Intelligent condition-based prediction of machinery reliability
  publication-title: Mech. Syst. Sig. Proc.
– volume: 10
  start-page: 1299
  year: 1998
  end-page: 1319
  ident: b0010
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
– year: 2001
  ident: b0065
  article-title: A Field Guide to Dynamical Recurrent Networks
– volume: 898
  start-page: 366
  year: 1981
  end-page: 381
  ident: b0070
  article-title: Detecting strange attractors in turbulence
  publication-title: Dynam. Syst. Turbul.
– reference: A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, in: International Conference on Prognostics and Health Management, 2008, PHM 2008, IEEE, 2008, pp. 1–9.
– volume: 20
  start-page: 1483
  year: 2006
  end-page: 1510
  ident: b0200
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Proc.
– volume: 57
  start-page: 1058
  year: 2009
  end-page: 1067
  ident: b0055
  article-title: Online prediction of time series data with kernels
  publication-title: IEEE Trans. Sig. Proc.
– volume: 23
  start-page: 787
  year: 2012
  end-page: 799
  ident: b0150
  article-title: Chaotic time series prediction based on a novel robust echo state network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 57
  start-page: 3801
  year: 2009
  end-page: 3814
  ident: b0045
  article-title: Extended kernel recursive least squares algorithm
  publication-title: IEEE Trans. Sig. Proc.
– volume: 2008
  start-page: 784292
  year: 2008
  ident: b0035
  article-title: Kernel affine projection algorithms
  publication-title: EURASIP J. Adv. Sig. Proc.
– volume: 78
  start-page: 1550
  year: 1990
  end-page: 1560
  ident: b0080
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
– volume: 95
  start-page: 49
  year: 2010
  end-page: 57
  ident: b0250
  article-title: A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 26
  start-page: 388
  year: 2015
  end-page: 393
  ident: b0125
  article-title: Delay-based reservoir computing: noise effects in a combined analog and digital implementation
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 3
  start-page: 127
  year: 2009
  end-page: 149
  ident: b0100
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
– volume: 22
  start-page: 1435
  year: 2011
  end-page: 1445
  ident: b0140
  article-title: Echo state Gaussian process
  publication-title: IEEE Trans. Neural Netw.
– volume: 26
  start-page: 522
  year: 2015
  end-page: 536
  ident: b0145
  article-title: Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 1
  start-page: 270
  year: 1989
  end-page: 280
  ident: b0090
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
– volume: 23
  start-page: 724
  year: 2009
  end-page: 739
  ident: b0205
  article-title: Rotating machinery prognostics: State of the art, challenges and opportunities
  publication-title: Mech. Syst. Sig. Proc.
– volume: 20
  start-page: 1950
  year: 2009
  end-page: 1961
  ident: b0050
  article-title: An information theoretic approach of designing sparse kernel adaptive filters
  publication-title: IEEE Trans. Neural Networks
– year: 1995
  ident: b0005
  article-title: The Nature of Statistical Learning Theory
– volume: 2016
  start-page: 106
  year: 2016
  ident: b0060
  article-title: Self-organizing kernel adaptive filtering
  publication-title: EURASIP J. Adv. Sig. Proc.
– reference: R.J. Williams, Training recurrent networks using the extended Kalman filter, International Joint Conference on Neural Networks, 1992. IJCNN., IEEE, 1992, pp. 241–6.
– reference: K. Javed, R. Gouriveau, N. Zerhouni, Novel failure prognostics approach with dynamic thresholds for machine degradation, in: IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 2013, pp. 4404–4409.
– volume: 7
  start-page: 219
  year: 1995
  end-page: 269
  ident: b0015
  article-title: Regularization theory and neural networks architectures
  publication-title: Neural Comput.
– volume: 304
  start-page: 78
  year: 2004
  end-page: 80
  ident: b0095
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
– reference: D. Verstraeten, J. Dambre, X. Dutoit, B. Schrauwen, Memory versus non-linearity in reservoirs, in: The 2010 International Joint Conference on Neural Networks (IJCNN), IEEE, 2010, pp. 1–8.
– volume: 42
  start-page: 2353
  year: 2015
  end-page: 2360
  ident: b0255
  article-title: Remaining useful life estimation for mechanical systems based on similarity of phase space trajectory
  publication-title: Exp. Syst. Appl.
– volume: 18
  start-page: 359
  year: 2007
  end-page: 372
  ident: b0110
  article-title: Support vector echo-state machine for chaotic time-series prediction
  publication-title: IEEE Trans. Neural Netw.
– volume: 32
  start-page: 292
  year: 2012
  end-page: 302
  ident: b0165
  article-title: An extended echo state network using Volterra filtering and principal component analysis
  publication-title: Neural Networks
– volume: 73
  start-page: 1958
  year: 2010
  end-page: 1964
  ident: b0115
  article-title: A comparative study of reservoir computing strategies for monthly time series prediction
  publication-title: Neurocomputing
– volume: 56
  start-page: 543
  year: 2008
  end-page: 554
  ident: b0030
  article-title: The kernel least-mean-square algorithm
  publication-title: IEEE Trans. Sig. Proc.
– ident: 10.1016/j.ymssp.2018.03.047_b0240
  doi: 10.1109/IECON.2013.6699844
– volume: 73
  start-page: 1958
  year: 2010
  ident: 10.1016/j.ymssp.2018.03.047_b0115
  article-title: A comparative study of reservoir computing strategies for monthly time series prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.01.016
– ident: 10.1016/j.ymssp.2018.03.047_b0190
– volume: 52
  start-page: 2165
  year: 2004
  ident: 10.1016/j.ymssp.2018.03.047_b0020
  article-title: Online learning with kernels
  publication-title: IEEE Trans. Signal Proc.
  doi: 10.1109/TSP.2004.830991
– volume: 43
  start-page: 37
  year: 2013
  ident: 10.1016/j.ymssp.2018.03.047_b0235
  article-title: Joint prediction of continuous and discrete states in time-series based on belief functions
  publication-title: IEEE Trans. Cyber.
  doi: 10.1109/TSMCB.2012.2198882
– year: 1995
  ident: 10.1016/j.ymssp.2018.03.047_b0005
– volume: 23
  start-page: 787
  year: 2012
  ident: 10.1016/j.ymssp.2018.03.047_b0150
  article-title: Chaotic time series prediction based on a novel robust echo state network
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2188414
– volume: 10
  start-page: 1299
  year: 1998
  ident: 10.1016/j.ymssp.2018.03.047_b0010
  article-title: Nonlinear component analysis as a kernel eigenvalue problem
  publication-title: Neural Comput.
  doi: 10.1162/089976698300017467
– volume: 2016
  start-page: 106
  year: 2016
  ident: 10.1016/j.ymssp.2018.03.047_b0060
  article-title: Self-organizing kernel adaptive filtering
  publication-title: EURASIP J. Adv. Sig. Proc.
  doi: 10.1186/s13634-016-0406-3
– volume: 2008
  start-page: 784292
  year: 2008
  ident: 10.1016/j.ymssp.2018.03.047_b0035
  article-title: Kernel affine projection algorithms
  publication-title: EURASIP J. Adv. Sig. Proc.
  doi: 10.1155/2008/784292
– volume: 22
  start-page: 1435
  year: 2011
  ident: 10.1016/j.ymssp.2018.03.047_b0140
  article-title: Echo state Gaussian process
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2011.2162109
– volume: 64
  start-page: 2276
  year: 2017
  ident: 10.1016/j.ymssp.2018.03.047_b0225
  article-title: Direct remaining useful life estimation based on support vector regression
  publication-title: IEEE Trans. Indus. Electr.
  doi: 10.1109/TIE.2016.2623260
– start-page: 609
  year: 2003
  ident: 10.1016/j.ymssp.2018.03.047_b0155
  article-title: Adaptive nonlinear system identification with echo state networks
  publication-title: Adv. Neural Inform. Proc. Syst.
– volume: 147
  start-page: 315
  year: 2015
  ident: 10.1016/j.ymssp.2018.03.047_b0160
  article-title: Online multivariate time series prediction using SCKF-γESN model
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.057
– volume: 56
  start-page: 543
  year: 2008
  ident: 10.1016/j.ymssp.2018.03.047_b0030
  article-title: The kernel least-mean-square algorithm
  publication-title: IEEE Trans. Sig. Proc.
  doi: 10.1109/TSP.2007.907881
– ident: 10.1016/j.ymssp.2018.03.047_b0195
  doi: 10.1109/ICNN.1993.298828
– volume: 52
  start-page: 2275
  year: 2004
  ident: 10.1016/j.ymssp.2018.03.047_b0040
  article-title: The kernel recursive least-squares algorithm
  publication-title: IEEE Trans. Sig. Proc.
  doi: 10.1109/TSP.2004.830985
– volume: 7
  start-page: 219
  year: 1995
  ident: 10.1016/j.ymssp.2018.03.047_b0015
  article-title: Regularization theory and neural networks architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco.1995.7.2.219
– volume: 95
  start-page: 49
  year: 2010
  ident: 10.1016/j.ymssp.2018.03.047_b0250
  article-title: A data-driven fuzzy approach for predicting the remaining useful life in dynamic failure scenarios of a nuclear system
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2009.08.001
– ident: 10.1016/j.ymssp.2018.03.047_b0085
  doi: 10.1109/IJCNN.1992.227335
– volume: 23
  start-page: 724
  year: 2009
  ident: 10.1016/j.ymssp.2018.03.047_b0205
  article-title: Rotating machinery prognostics: State of the art, challenges and opportunities
  publication-title: Mech. Syst. Sig. Proc.
  doi: 10.1016/j.ymssp.2008.06.009
– volume: 42
  start-page: 2353
  year: 2015
  ident: 10.1016/j.ymssp.2018.03.047_b0255
  article-title: Remaining useful life estimation for mechanical systems based on similarity of phase space trajectory
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.041
– volume: 20
  start-page: 1483
  year: 2006
  ident: 10.1016/j.ymssp.2018.03.047_b0200
  article-title: A review on machinery diagnostics and prognostics implementing condition-based maintenance
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2005.09.012
– ident: 10.1016/j.ymssp.2018.03.047_b0215
  doi: 10.1109/PHM.2008.4711422
– ident: 10.1016/j.ymssp.2018.03.047_b0220
  doi: 10.36001/phme.2016.v3i1.1623
– volume: 46
  start-page: 2173
  year: 2016
  ident: 10.1016/j.ymssp.2018.03.047_b0130
  article-title: Adaptive elastic echo state network for multivariate time series prediction
  publication-title: IEEE Trans. Cyber.
  doi: 10.1109/TCYB.2015.2467167
– volume: 3
  start-page: 127
  year: 2009
  ident: 10.1016/j.ymssp.2018.03.047_b0100
  article-title: Reservoir computing approaches to recurrent neural network training
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2009.03.005
– volume: 70
  start-page: 489
  year: 2006
  ident: 10.1016/j.ymssp.2018.03.047_b0180
  article-title: Extreme learning machine: theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 1
  start-page: 270
  year: 1989
  ident: 10.1016/j.ymssp.2018.03.047_b0090
  article-title: A learning algorithm for continually running fully recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1989.1.2.270
– volume: 56
  start-page: 2781
  year: 2008
  ident: 10.1016/j.ymssp.2018.03.047_b0025
  article-title: Online kernel-based classification using adaptive projection algorithms
  publication-title: IEEE Trans. Sig. Proc.
  doi: 10.1109/TSP.2008.917376
– volume: 117
  start-page: 11
  year: 2015
  ident: 10.1016/j.ymssp.2018.03.047_b0185
  article-title: Kernel recursive maximum correntropy
  publication-title: Signal Proc.
  doi: 10.1016/j.sigpro.2015.04.024
– ident: 10.1016/j.ymssp.2018.03.047_b0245
  doi: 10.1109/PHM.2008.4711421
– volume: 72
  start-page: 1534
  year: 2009
  ident: 10.1016/j.ymssp.2018.03.047_b0135
  article-title: Pruning and regularization in reservoir computing
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2008.12.020
– volume: 57
  start-page: 141
  year: 2014
  ident: 10.1016/j.ymssp.2018.03.047_b0120
  article-title: Effect of hybrid circle reservoir injected with wavelet-neurons on performance of echo state network
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2014.05.013
– volume: 32
  start-page: 292
  year: 2012
  ident: 10.1016/j.ymssp.2018.03.047_b0165
  article-title: An extended echo state network using Volterra filtering and principal component analysis
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.02.028
– ident: 10.1016/j.ymssp.2018.03.047_b0175
  doi: 10.1109/IJCNN.2010.5596492
– volume: 42
  start-page: 314
  year: 2014
  ident: 10.1016/j.ymssp.2018.03.047_b0210
  article-title: Prognostics and health management design for rotary machinery systems—reviews, methodology and applications
  publication-title: Mech. Syst. Sig. Proc.
  doi: 10.1016/j.ymssp.2013.06.004
– volume: 26
  start-page: 522
  year: 2015
  ident: 10.1016/j.ymssp.2018.03.047_b0145
  article-title: Spatio-temporal learning with the online finite and infinite echo-state Gaussian processes
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2316291
– volume: 14
  start-page: 2531
  year: 2002
  ident: 10.1016/j.ymssp.2018.03.047_b0105
  article-title: Real-time computing without stable states: a new framework for neural computation based on perturbations
  publication-title: Neural Comput.
  doi: 10.1162/089976602760407955
– volume: 57
  start-page: 3801
  year: 2009
  ident: 10.1016/j.ymssp.2018.03.047_b0045
  article-title: Extended kernel recursive least squares algorithm
  publication-title: IEEE Trans. Sig. Proc.
  doi: 10.1109/TSP.2009.2022007
– volume: 6
  start-page: 801
  year: 1993
  ident: 10.1016/j.ymssp.2018.03.047_b0075
  article-title: Approximation of dynamical systems by continuous time recurrent neural networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80125-X
– volume: 898
  start-page: 366
  year: 1981
  ident: 10.1016/j.ymssp.2018.03.047_b0070
  article-title: Detecting strange attractors in turbulence
  publication-title: Dynam. Syst. Turbul.
– volume: 78
  start-page: 1550
  year: 1990
  ident: 10.1016/j.ymssp.2018.03.047_b0080
  article-title: Backpropagation through time: what it does and how to do it
  publication-title: Proc. IEEE
  doi: 10.1109/5.58337
– volume: 26
  start-page: 388
  year: 2015
  ident: 10.1016/j.ymssp.2018.03.047_b0125
  article-title: Delay-based reservoir computing: noise effects in a combined analog and digital implementation
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2014.2311855
– volume: 304
  start-page: 78
  year: 2004
  ident: 10.1016/j.ymssp.2018.03.047_b0095
  article-title: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication
  publication-title: Science
  doi: 10.1126/science.1091277
– volume: 18
  start-page: 359
  year: 2007
  ident: 10.1016/j.ymssp.2018.03.047_b0110
  article-title: Support vector echo-state machine for chaotic time-series prediction
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.885113
– volume: 57
  start-page: 1058
  year: 2009
  ident: 10.1016/j.ymssp.2018.03.047_b0055
  article-title: Online prediction of time series data with kernels
  publication-title: IEEE Trans. Sig. Proc.
  doi: 10.1109/TSP.2008.2009895
– volume: 23
  start-page: 1600
  year: 2009
  ident: 10.1016/j.ymssp.2018.03.047_b0230
  article-title: Intelligent condition-based prediction of machinery reliability
  publication-title: Mech. Syst. Sig. Proc.
  doi: 10.1016/j.ymssp.2008.12.006
– volume: 20
  start-page: 1950
  year: 2009
  ident: 10.1016/j.ymssp.2018.03.047_b0050
  article-title: An information theoretic approach of designing sparse kernel adaptive filters
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNET.2012.2187923
– volume: 17
  start-page: 820
  year: 2006
  ident: 10.1016/j.ymssp.2018.03.047_b0170
  article-title: A tighter bound for the echo state property
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2006.872357
– year: 2001
  ident: 10.1016/j.ymssp.2018.03.047_b0065
– ident: 10.1016/j.ymssp.2018.03.047_b0260
  doi: 10.1109/PHM.2008.4711414
SSID ssj0009406
Score 2.3629994
Snippet •A combination of reservoir computing and kernel adaptive filter.•The fixed reservoir facilitates the capability of performing long-term prediction.•The novel...
Kernel adaptive filter (KAF) has been widely utilized for time series prediction due to its online adaptation scheme, universal approximation capability and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 68
SubjectTerms Adaptive algorithms
Adaptive filters
Algorithms
Bayesian analysis
Convexity
Data points
Dependence
Dynamic characteristics
Kernel adaptive filter
Least squares
Life prediction
Long-term prediction
Machine learning
Mathematical models
Neural networks
Numerical analysis
Principal components analysis
Prognostics
Remaining useful lifeprediction
Reservoir computing
Signal processing
Time series
Turbofan engines
Title Echo state kernel recursive least squares algorithm for machine condition prediction
URI https://dx.doi.org/10.1016/j.ymssp.2018.03.047
https://www.proquest.com/docview/2072766856
Volume 111
WOSCitedRecordID wos000432641300005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQc4IJ6itKA9cAuubK8f62OFgkqFKiSClJu1T5qQOMV2QvNT-m-ZfdhGBSpA4mJZttdZzXyemd3MfIPQK4hqZSw0CRgnLEg41wFNJA10XFDNUxHH3LLrv8_Pz-lsVnwYja67WpjtMq8qenVVXP5XVcM1ULYpnf0LdfcvhQtwDkqHI6gdjn-k-AkYtLGtExp_UXWlDHG_MHsCW2V6RDTtuPm6MVVHY7b8vK7n7cXK5hqubFqlTV6XNo_L8AfIueg11_V9UqZY2FVTOrpz-weESQQxVV2u8KBziHZLer2xDo6tvw11Z6cbv1F9Nq9gOkNikH0WBNqPn17Mdwz8mOnd7Uq61Y7VbOHH-B2LiPa5b34brSulGfKWnLWjAYldF5Fj5awxrK-CKHbFmL259sbZGVzXk6dz3dkvnYLbn1gc71ZNYyhKI2p5bR3T5w227Y9mHmYaYOrAWCXg3ffjPC3AYO6fvJvMzgZG58Q2bu3n3VFa2eTBn37qd2HPjQDARjXTB-i-X47gEwejh2ikqkfo3g8klY_R1AAKW0BhByjcAwpbQGEPKNwDCgOgsAcU7gGFB0A9QZ_eTqZvTgPfiyMQhERtUIBtT2GJwyKVas65yhlEhpxIookUioWS5yAxpqWSYcYIp4VgSpJQFZJmTJKnaK9aV-oZwhCia1hGUK0hNAx5zjOiZShEGiYs44IdoLgTVSk8Ub3pl7Isu4zERWnlWxr5liEpQb4H6HU_6NLxtNz-eNbpoPShpgshSwDN7QOPOo2V_qNv4D6sArKMptnzf33vIbo7fCpHaK-tN-oFuiO27bypX3rsfQeE87XJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Echo+state+kernel+recursive+least+squares+algorithm+for+machine+condition+prediction&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Zhou%2C+Haowen&rft.au=Huang%2C+Jinquan&rft.au=Lu%2C+Feng&rft.au=Thiyagalingam%2C+Jeyarajan&rft.date=2018-10-01&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=111&rft.spage=68&rft.epage=86&rft_id=info:doi/10.1016%2Fj.ymssp.2018.03.047&rft.externalDocID=S0888327018301742
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon