Convergence Results of Forward-Backward Algorithms for Sum of Monotone Operators in Banach Spaces

It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Resultate der Mathematik Ročník 74; číslo 4
Hlavní autor: Shehu, Yekini
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.12.2019
Témata:
ISSN:1422-6383, 1420-9012
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two monotone operators in Hilbert spaces. Most of the proposed splitting methods in the literature have been proposed for the sum of maximal monotone and inverse-strongly monotone operators in Hilbert spaces. In this paper, we consider splitting methods for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators in Banach spaces. We obtain weak and strong convergence results for the zeros of the sum of maximal monotone and Lipschitz continuous monotone operators in Banach spaces. Many already studied problems in the literature can be considered as special cases of this paper.
AbstractList It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two monotone operators in Hilbert spaces. Most of the proposed splitting methods in the literature have been proposed for the sum of maximal monotone and inverse-strongly monotone operators in Hilbert spaces. In this paper, we consider splitting methods for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators in Banach spaces. We obtain weak and strong convergence results for the zeros of the sum of maximal monotone and Lipschitz continuous monotone operators in Banach spaces. Many already studied problems in the literature can be considered as special cases of this paper.
ArticleNumber 138
Author Shehu, Yekini
Author_xml – sequence: 1
  givenname: Yekini
  orcidid: 0000-0001-9224-7139
  surname: Shehu
  fullname: Shehu, Yekini
  email: yekini.shehu@unn.edu.ng
  organization: Institute of Science and Technology (IST), Department of Mathematics, Zhejiang Normal University
BookMark eNp9kE1PAjEQhhuDiYD-AG_9A9WZ7idHIKImGBLR82a27cLi0pJ20fjv3RVPHjjNe5hnPp4RG1hnDWO3CHcIkN0HAJCJAJwIhBRFfMGGGEsQE0A5-M1SpFEeXbFRCDuAREqUQ0ZzZz-N3xirDH814di0gbuKL5z_Iq_FjNRHH_i02Thft9t94JXzfH3c920vzrq2u4SvDsZT63zgteUzsqS2fH0gZcI1u6yoCebmr47Z--Lhbf4klqvH5_l0KVQUYStyLQl0rEvKFZa5zpKkSiLAEjQR5EhVRWlcZlmuNMoyS8qJRJ1EaZypRGMVjRme5irvQvCmKg6-3pP_LhCK3lFxclR0joreURF3TPaPUXVLbe1s66luzpLyRIZui90YX-zc0dvuwTPQDxYRfhc
CitedBy_id crossref_primary_10_1007_s40314_020_01246_z
crossref_primary_10_1007_s10473_020_0412_2
crossref_primary_10_1007_s10559_022_00490_x
crossref_primary_10_1080_00036811_2023_2256357
crossref_primary_10_1007_s00025_022_01694_5
crossref_primary_10_1007_s11081_020_09544_5
crossref_primary_10_1186_s13663_023_00741_2
crossref_primary_10_1007_s11067_022_09575_8
crossref_primary_10_1007_s41980_022_00682_3
crossref_primary_10_1007_s40305_024_00537_0
crossref_primary_10_1186_s13660_024_03082_9
crossref_primary_10_1007_s12215_024_01161_w
crossref_primary_10_1007_s12190_021_01644_4
crossref_primary_10_1007_s11587_021_00596_y
crossref_primary_10_1515_cmam_2020_0174
crossref_primary_10_1080_02331934_2022_2057308
crossref_primary_10_1186_s13663_023_00753_y
crossref_primary_10_1007_s43037_021_00152_8
crossref_primary_10_1186_s13663_022_00732_9
crossref_primary_10_4153_S0008414X24000889
crossref_primary_10_1007_s10559_022_00507_5
crossref_primary_10_1007_s40314_022_02064_1
crossref_primary_10_1155_2022_3455998
crossref_primary_10_1155_2020_6579720
crossref_primary_10_1007_s10898_025_01467_8
crossref_primary_10_1186_s13660_022_02805_0
crossref_primary_10_1007_s40314_025_03318_4
crossref_primary_10_1007_s10957_025_02679_4
crossref_primary_10_1371_journal_pone_0319047
crossref_primary_10_3390_sym12091456
Cites_doi 10.1137/0103003
10.1007/s10957-012-0232-1
10.1016/0362-546X(91)90200-K
10.1137/S105262340139611X
10.1137/S0363012998338806
10.1007/s13398-016-0366-3
10.1007/s10092-018-0292-1
10.1007/s10957-017-1200-6
10.1186/1687-1812-2014-94
10.1112/S0024610702003332
10.2140/pjm.1970.33.209
10.2140/pjm.1966.17.497
10.4064/sm-56-2-121-155
10.1137/050626090
10.1137/0716071
10.1023/A:1022643914538
10.1016/0022-247X(79)90234-8
10.11650/twjm/1500406684
10.1155/2012/109236
10.1137/080716542
10.1137/0329022
10.1007/s10957-010-9713-2
10.1007/978-94-010-1537-0
10.1007/BF01231769
10.1007/s11117-012-0161-0
10.1080/01630563.2015.1037591
10.1007/s101079900113
10.1007/s11228-008-0102-z
10.1155/2014/414031
10.1137/0314056
10.1016/j.jmaa.2007.07.019
10.1007/978-94-009-2121-4
10.1016/j.jmaa.2007.02.056
10.1007/s11228-004-8196-4
10.1007/BFb0082079
10.1007/s10957-015-0703-2
10.1088/0266-5611/25/1/015005
10.1137/S1052623495290179
10.1080/02331934.2017.1411485
10.1155/S1085337504309036
10.1007/BF02760552
10.1186/1687-1812-2014-95
ContentType Journal Article
Copyright The Author(s) 2019
Copyright_xml – notice: The Author(s) 2019
DBID C6C
AAYXX
CITATION
DOI 10.1007/s00025-019-1061-4
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1420-9012
ExternalDocumentID 10_1007_s00025_019_1061_4
GrantInformation_xml – fundername: Institute of Science and Technology (IST Austria)
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
203
29P
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9R
PF0
PT4
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
YNT
Z45
ZMTXR
ZWQNP
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
K7-
M2P
PHGZM
PHGZT
PQGLB
ID FETCH-LOGICAL-c331t-8d2a0d4dba8c1b8d755f5301b0daa081affa64b778cd12b75b921d53647c5d1f3
IEDL.DBID RSV
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473237500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1422-6383
IngestDate Sat Nov 29 03:47:23 EST 2025
Tue Nov 18 22:11:21 EST 2025
Fri Feb 21 02:37:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords 65K15
47J20
forward-backward algorithm
90C25
2-uniformly convex Banach space
Inclusion problem
weak convergence
47H05
47J25
strong convergence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-8d2a0d4dba8c1b8d755f5301b0daa081affa64b778cd12b75b921d53647c5d1f3
ORCID 0000-0001-9224-7139
OpenAccessLink https://link.springer.com/10.1007/s00025-019-1061-4
ParticipantIDs crossref_primary_10_1007_s00025_019_1061_4
crossref_citationtrail_10_1007_s00025_019_1061_4
springer_journals_10_1007_s00025_019_1061_4
PublicationCentury 2000
PublicationDate 20191200
2019-12-00
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 20191200
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSubtitle Resultate der Mathematik
PublicationTitle Resultate der Mathematik
PublicationTitleAbbrev Results Math
PublicationYear 2019
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References ShehuYCaiGStrong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applicationsRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM20181121718737429910683623710.1007/s13398-016-0366-3
ReichSKartsatosAGA weak convergence theorem for the alternating method with Bregman distancesTheory and Applications of Nonlinear Operators of Accretive and Monotone Type1996New YorkDekker313318
TakahashiWStrong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applicationsJ. Optim. Theory Appl.2013157378180230470301292.9029710.1007/s10957-012-0232-1
AvetisyanKDjordjevićOPavlovićMLittlewood–Paley inequalities in uniformly convex and uniformly smooth Banach spacesJ. Math. Anal. Appl.20073361314323484881213.4206010.1016/j.jmaa.2007.02.056
NguyenTPPauwelsERichardESuterBWExtragradient method in optimization: convergence and complexityJ. Optim. Theory Appl.2018176113716237496881386.4905110.1007/s10957-017-1200-6
TakahashiWNonlinear Functional Analysis2000YokohamaYokohama Publishers0997.47002
BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.9400910.1137/080716542
TakahashiSTakahashiWToyodaMStrong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spacesJ. Optim. Theory Appl.20101471274127205901208.4707110.1007/s10957-010-9713-2
GülerOOn the convergence of the proximal point algorithm for convex minimizationSIAM J. Control Optim.19912940341910927350737.9004710.1137/0329022
ChenGH-GRockafellarRTConvergence rates in forward-backward splittingSIAM J. Optim.19977242144414436270876.4900910.1137/S1052623495290179
IidukaHTakahashiWWeak convergence of a projection algorithm for variational inequalities in a Banach spaceJ. Math. Anal. Appl.2008339166867923706841129.4901210.1016/j.jmaa.2007.07.019
LionsPLUne méthode itérative de résolution d’une inéquation variationnelleIsrael J. Math.1978312042085162570395.4901310.1007/BF02760552
PeypouquetJuanExamplesSpringerBriefs in Optimization2015ChamSpringer International Publishing6580
WangYXuH-KStrong convergence for the proximal-gradient methodJ. Nonlinear Convex Anal.201415358159331838241295.46058
XuHKIterative algorithms for nonlinear operatorsJ. Lond. Math. Soc. (2)200266124025619118721013.4703210.1112/S0024610702003332
SolodovMVSvaiterBFForcing strong convergence of proximal point iterations in a Hilbert spaceMath. Program.20008718920217346650971.9006210.1007/s101079900113
Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. (French) Rev. Française Informat. Recherche Oérationnelle 4 (1970), Sér. R-3, 154–158
RockafellarRTCharacterization of the subdifferentials of convex functionsPac. J. Math.1966174975101935490145.1590110.2140/pjm.1966.17.497
XuHKInequalities in Banach spaces with applicationsNonlinear Anal.199116121127113811116230757.4603310.1016/0362-546X(91)90200-K
GuanW-BSongWThe generalized forward-backward splitting method for the minimization of the sum of two functions in Banach spacesNumer. Funct. Anal. Optim.201536786788633554921328.4902910.1080/01630563.2015.1037591
BallKCarlenEALiebEHSharp uniform convexity and smoothness inequalities for trace normsInvent. Math.1994115346348212629400803.4703710.1007/BF01231769
LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.1979169649795513190426.6505010.1137/0716071
KamimuraSTakahashiWStrong convergence of a proximal-type algorithm in a Banach spaceSIAM J. Optim.200313 (2002)393894519722231101.9008310.1137/S105262340139611X
KohsakaFTakahashiWStrong convergence of an iterative sequence for maximal monotone operators in a Banach spaceAbstr. Appl. Anal.2004323924920585041064.4706810.1155/S1085337504309036
BarbuVNonlinear Semigroups and Differential Equations in Banach Spaces1976BucharestEditura Academiei R.S.R0328.4703510.1007/978-94-010-1537-0
PeacemanDHRachfordHHThe numerical solutions of parabolic and elliptic differential equationsJ. Soc. Ind. Appl. Math.195532841718740067.3580110.1137/0103003
CombettesPWajsVRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005441168120022038491179.9403110.1137/050626090
TakahashiWWongN-CYaoJ-CTwo generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applicationsTaiwanese J. Math.20121631151117229172610606277010.11650/twjm/1500406684
ChoSYQinXWangLStrong convergence of a splitting algorithm for treating monotone operatorsFixed Point Theory Appl.201420149432586641332.4704010.1186/1687-1812-2014-9415 pp
PasstyGBErgodic convergence to a zero of the sum of monotone operators in Hilbert spacesJ. Math. Anal. Appl.1979723833905593750428.4703910.1016/0022-247X(79)90234-8
KamimuraSKohsakaFTakahashiWWeak and strong convergence theorems for maximal monotone operators in a Banach spaceSet-Valued Anal.20041241742921128481078.4705010.1007/s11228-004-8196-4
LinL-JTakahashiWA general iterative method for hierarchical variational inequality problems in Hilbert spaces and applicationsPositivity201216342945329743081334.4706810.1007/s11117-012-0161-0
RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.1970332092162628270199.4710110.2140/pjm.1970.33.209
Alber, Y.I.: Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York (1996)
WangYWangFStrong convergence of the forward-backward splitting method with multiple parameters in Hilbert spacesOptimization201867449350537600030686594910.1080/02331934.2017.1411485
Beauzamy, B.: Introduction to Banach Spaces and Their Geometry, 2nd edn. North-Holland Mathematics Studies, 68. Notas de Matemática [Mathematical Notes], 86. North-Holland Publishing Co., Amsterdam (1985). xv+338 pp. ISBN: 0-444-87878-5
MoudafiATheraMFinding a zero of the sum of two maximal monotone operatorsJ. Optim. Theory Appl.19979442544814606740891.4900510.1023/A:1022643914538
MaingéP-EStrong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimizationSet-Valued Anal.2008167–889991224660271156.9042610.1007/s11228-008-0102-z
López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. (2012), Art. ID 109236, 25 pp
BrediesKA forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach spaceInverse Probl.200925101500524653371156.6505610.1088/0266-5611/25/1/01500520 pp
Briceño-AriasLMForward-partial inverse-forward splitting for solving monotone inclusionsJ. Optim. Theory Appl.2015166239141333713811321.4713610.1007/s10957-015-0703-2
AoyamaKKohsakaFStrongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappingsFixed Point Theory Appl.201420149532586651332.4702710.1186/1687-1812-2014-9513 pp
CioranescuIoanaGeometry of Banach Spaces, Duality Mappings and Nonlinear Problems1990DordrechtSpringer Netherlands0712.4704310.1007/978-94-009-2121-4
IusemANSvaiterBFSplitting methods for finding zeroes of sums of maximal monotone operators in Banach spacesJ. Nonlinear Convex Anal.201415237939731843291291.47055
Jiao, H., Wang, F.: On an iterative method for finding a zero to the sum of two maximal monotone operators. J. Appl. Math. (2014), Art. ID 414031, 5 pp
AlberYRyazantsevaINonlinear ILL-Posed Problems of Monotone Type2006DordrechtSpringer1086.47003xiv+410 pp. ISBN: 978-1-4020-4395-6; 1-4020-4395-3
FigielTOn the moduli of convexity and smoothnessStudia Math.19765621211554255810344.4605210.4064/sm-56-2-121-155
GibaliAThongDVTseng type methods for solving inclusion problems and its applicationsCalcolo201855455:4938701440696976410.1007/s10092-018-0292-1
TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038243144617411470997.9006210.1137/S0363012998338806
RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control. Optim.1976148778984104830358.9005310.1137/0314056
CombettesPLNguyenQVSolving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn-Tucker setJ. Convex Anal.201623248151035096691348.49013
DiestelJGeometry of Banach Spaces-Selected Topics1975BerlinSpringer0307.4600910.1007/BFb0082079
O Güler (1061_CR20) 1991; 29
K Avetisyan (1061_CR4) 2007; 336
P Combettes (1061_CR15) 2005; 4
SY Cho (1061_CR12) 2014; 2014
PL Lions (1061_CR28) 1979; 16
V Barbu (1061_CR6) 1976
K Bredies (1061_CR9) 2009; 25
Juan Peypouquet (1061_CR37) 2015
A Moudafi (1061_CR33) 1997; 94
W Takahashi (1061_CR45) 2012; 16
Y Wang (1061_CR49) 2018; 67
A Gibali (1061_CR18) 2018; 55
H Iiduka (1061_CR21) 2008; 339
S Reich (1061_CR38) 1996
PL Lions (1061_CR27) 1978; 31
TP Nguyen (1061_CR34) 2018; 176
RT Rockafellar (1061_CR41) 1970; 33
K Aoyama (1061_CR3) 2014; 2014
GH-G Chen (1061_CR11) 1997; 7
1061_CR23
A Beck (1061_CR8) 2009; 2
P-E Maingé (1061_CR31) 2008; 16
1061_CR1
DH Peaceman (1061_CR36) 1955; 3
L-J Lin (1061_CR29) 2012; 16
Y Shehu (1061_CR42) 2018; 112
W Takahashi (1061_CR46) 2013; 157
Ioana Cioranescu (1061_CR13) 1990
P Tseng (1061_CR48) 2000; 38
1061_CR32
1061_CR7
1061_CR30
MV Solodov (1061_CR43) 2000; 87
HK Xu (1061_CR51) 1991; 16
LM Briceño-Arias (1061_CR10) 2015; 166
S Kamimura (1061_CR25) 2003; 13 (2002)
S Takahashi (1061_CR44) 2010; 147
T Figiel (1061_CR17) 1976; 56
W Takahashi (1061_CR47) 2000
F Kohsaka (1061_CR26) 2004; 3
Y Wang (1061_CR50) 2014; 15
Y Alber (1061_CR2) 2006
AN Iusem (1061_CR22) 2014; 15
K Ball (1061_CR5) 1994; 115
GB Passty (1061_CR35) 1979; 72
RT Rockafellar (1061_CR40) 1966; 17
HK Xu (1061_CR52) 2002; 66
W-B Guan (1061_CR19) 2015; 36
J Diestel (1061_CR16) 1975
RT Rockafellar (1061_CR39) 1976; 14
PL Combettes (1061_CR14) 2016; 23
S Kamimura (1061_CR24) 2004; 12
References_xml – reference: IusemANSvaiterBFSplitting methods for finding zeroes of sums of maximal monotone operators in Banach spacesJ. Nonlinear Convex Anal.201415237939731843291291.47055
– reference: TakahashiSTakahashiWToyodaMStrong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spacesJ. Optim. Theory Appl.20101471274127205901208.4707110.1007/s10957-010-9713-2
– reference: WangYXuH-KStrong convergence for the proximal-gradient methodJ. Nonlinear Convex Anal.201415358159331838241295.46058
– reference: CombettesPWajsVRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005441168120022038491179.9403110.1137/050626090
– reference: GülerOOn the convergence of the proximal point algorithm for convex minimizationSIAM J. Control Optim.19912940341910927350737.9004710.1137/0329022
– reference: AlberYRyazantsevaINonlinear ILL-Posed Problems of Monotone Type2006DordrechtSpringer1086.47003xiv+410 pp. ISBN: 978-1-4020-4395-6; 1-4020-4395-3
– reference: Briceño-AriasLMForward-partial inverse-forward splitting for solving monotone inclusionsJ. Optim. Theory Appl.2015166239141333713811321.4713610.1007/s10957-015-0703-2
– reference: BallKCarlenEALiebEHSharp uniform convexity and smoothness inequalities for trace normsInvent. Math.1994115346348212629400803.4703710.1007/BF01231769
– reference: TakahashiWWongN-CYaoJ-CTwo generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applicationsTaiwanese J. Math.20121631151117229172610606277010.11650/twjm/1500406684
– reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control. Optim.1976148778984104830358.9005310.1137/0314056
– reference: LinL-JTakahashiWA general iterative method for hierarchical variational inequality problems in Hilbert spaces and applicationsPositivity201216342945329743081334.4706810.1007/s11117-012-0161-0
– reference: SolodovMVSvaiterBFForcing strong convergence of proximal point iterations in a Hilbert spaceMath. Program.20008718920217346650971.9006210.1007/s101079900113
– reference: MaingéP-EStrong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimizationSet-Valued Anal.2008167–889991224660271156.9042610.1007/s11228-008-0102-z
– reference: Alber, Y.I.: Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York (1996)
– reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.9400910.1137/080716542
– reference: NguyenTPPauwelsERichardESuterBWExtragradient method in optimization: convergence and complexityJ. Optim. Theory Appl.2018176113716237496881386.4905110.1007/s10957-017-1200-6
– reference: KamimuraSTakahashiWStrong convergence of a proximal-type algorithm in a Banach spaceSIAM J. Optim.200313 (2002)393894519722231101.9008310.1137/S105262340139611X
– reference: XuHKInequalities in Banach spaces with applicationsNonlinear Anal.199116121127113811116230757.4603310.1016/0362-546X(91)90200-K
– reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.1979169649795513190426.6505010.1137/0716071
– reference: Beauzamy, B.: Introduction to Banach Spaces and Their Geometry, 2nd edn. North-Holland Mathematics Studies, 68. Notas de Matemática [Mathematical Notes], 86. North-Holland Publishing Co., Amsterdam (1985). xv+338 pp. ISBN: 0-444-87878-5
– reference: MoudafiATheraMFinding a zero of the sum of two maximal monotone operatorsJ. Optim. Theory Appl.19979442544814606740891.4900510.1023/A:1022643914538
– reference: TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038243144617411470997.9006210.1137/S0363012998338806
– reference: RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.1970332092162628270199.4710110.2140/pjm.1970.33.209
– reference: BrediesKA forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach spaceInverse Probl.200925101500524653371156.6505610.1088/0266-5611/25/1/01500520 pp
– reference: KamimuraSKohsakaFTakahashiWWeak and strong convergence theorems for maximal monotone operators in a Banach spaceSet-Valued Anal.20041241742921128481078.4705010.1007/s11228-004-8196-4
– reference: ShehuYCaiGStrong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applicationsRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM20181121718737429910683623710.1007/s13398-016-0366-3
– reference: DiestelJGeometry of Banach Spaces-Selected Topics1975BerlinSpringer0307.4600910.1007/BFb0082079
– reference: FigielTOn the moduli of convexity and smoothnessStudia Math.19765621211554255810344.4605210.4064/sm-56-2-121-155
– reference: PasstyGBErgodic convergence to a zero of the sum of monotone operators in Hilbert spacesJ. Math. Anal. Appl.1979723833905593750428.4703910.1016/0022-247X(79)90234-8
– reference: LionsPLUne méthode itérative de résolution d’une inéquation variationnelleIsrael J. Math.1978312042085162570395.4901310.1007/BF02760552
– reference: BarbuVNonlinear Semigroups and Differential Equations in Banach Spaces1976BucharestEditura Academiei R.S.R0328.4703510.1007/978-94-010-1537-0
– reference: GuanW-BSongWThe generalized forward-backward splitting method for the minimization of the sum of two functions in Banach spacesNumer. Funct. Anal. Optim.201536786788633554921328.4902910.1080/01630563.2015.1037591
– reference: IidukaHTakahashiWWeak convergence of a projection algorithm for variational inequalities in a Banach spaceJ. Math. Anal. Appl.2008339166867923706841129.4901210.1016/j.jmaa.2007.07.019
– reference: TakahashiWNonlinear Functional Analysis2000YokohamaYokohama Publishers0997.47002
– reference: GibaliAThongDVTseng type methods for solving inclusion problems and its applicationsCalcolo201855455:4938701440696976410.1007/s10092-018-0292-1
– reference: XuHKIterative algorithms for nonlinear operatorsJ. Lond. Math. Soc. (2)200266124025619118721013.4703210.1112/S0024610702003332
– reference: ChoSYQinXWangLStrong convergence of a splitting algorithm for treating monotone operatorsFixed Point Theory Appl.201420149432586641332.4704010.1186/1687-1812-2014-9415 pp
– reference: TakahashiWStrong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applicationsJ. Optim. Theory Appl.2013157378180230470301292.9029710.1007/s10957-012-0232-1
– reference: KohsakaFTakahashiWStrong convergence of an iterative sequence for maximal monotone operators in a Banach spaceAbstr. Appl. Anal.2004323924920585041064.4706810.1155/S1085337504309036
– reference: CombettesPLNguyenQVSolving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn-Tucker setJ. Convex Anal.201623248151035096691348.49013
– reference: ChenGH-GRockafellarRTConvergence rates in forward-backward splittingSIAM J. Optim.19977242144414436270876.4900910.1137/S1052623495290179
– reference: AoyamaKKohsakaFStrongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappingsFixed Point Theory Appl.201420149532586651332.4702710.1186/1687-1812-2014-9513 pp
– reference: PeacemanDHRachfordHHThe numerical solutions of parabolic and elliptic differential equationsJ. Soc. Ind. Appl. Math.195532841718740067.3580110.1137/0103003
– reference: CioranescuIoanaGeometry of Banach Spaces, Duality Mappings and Nonlinear Problems1990DordrechtSpringer Netherlands0712.4704310.1007/978-94-009-2121-4
– reference: WangYWangFStrong convergence of the forward-backward splitting method with multiple parameters in Hilbert spacesOptimization201867449350537600030686594910.1080/02331934.2017.1411485
– reference: Jiao, H., Wang, F.: On an iterative method for finding a zero to the sum of two maximal monotone operators. J. Appl. Math. (2014), Art. ID 414031, 5 pp
– reference: RockafellarRTCharacterization of the subdifferentials of convex functionsPac. J. Math.1966174975101935490145.1590110.2140/pjm.1966.17.497
– reference: Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. (French) Rev. Française Informat. Recherche Oérationnelle 4 (1970), Sér. R-3, 154–158
– reference: ReichSKartsatosAGA weak convergence theorem for the alternating method with Bregman distancesTheory and Applications of Nonlinear Operators of Accretive and Monotone Type1996New YorkDekker313318
– reference: López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. (2012), Art. ID 109236, 25 pp
– reference: PeypouquetJuanExamplesSpringerBriefs in Optimization2015ChamSpringer International Publishing6580
– reference: AvetisyanKDjordjevićOPavlovićMLittlewood–Paley inequalities in uniformly convex and uniformly smooth Banach spacesJ. Math. Anal. Appl.20073361314323484881213.4206010.1016/j.jmaa.2007.02.056
– volume: 3
  start-page: 28
  year: 1955
  ident: 1061_CR36
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0103003
– volume: 157
  start-page: 781
  issue: 3
  year: 2013
  ident: 1061_CR46
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-012-0232-1
– ident: 1061_CR7
– volume: 16
  start-page: 1127
  issue: 12
  year: 1991
  ident: 1061_CR51
  publication-title: Nonlinear Anal.
  doi: 10.1016/0362-546X(91)90200-K
– volume: 13 (2002)
  start-page: 938
  issue: 3
  year: 2003
  ident: 1061_CR25
  publication-title: SIAM J. Optim.
  doi: 10.1137/S105262340139611X
– volume: 38
  start-page: 431
  issue: 2
  year: 2000
  ident: 1061_CR48
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/S0363012998338806
– volume: 112
  start-page: 71
  issue: 1
  year: 2018
  ident: 1061_CR42
  publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM
  doi: 10.1007/s13398-016-0366-3
– volume: 55
  start-page: 55:49
  issue: 4
  year: 2018
  ident: 1061_CR18
  publication-title: Calcolo
  doi: 10.1007/s10092-018-0292-1
– volume: 176
  start-page: 137
  issue: 1
  year: 2018
  ident: 1061_CR34
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-017-1200-6
– volume: 2014
  start-page: 94
  year: 2014
  ident: 1061_CR12
  publication-title: Fixed Point Theory Appl.
  doi: 10.1186/1687-1812-2014-94
– ident: 1061_CR32
– volume: 66
  start-page: 240
  issue: 1
  year: 2002
  ident: 1061_CR52
  publication-title: J. Lond. Math. Soc. (2)
  doi: 10.1112/S0024610702003332
– volume: 33
  start-page: 209
  year: 1970
  ident: 1061_CR41
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1970.33.209
– volume: 17
  start-page: 497
  year: 1966
  ident: 1061_CR40
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1966.17.497
– volume: 56
  start-page: 121
  issue: 2
  year: 1976
  ident: 1061_CR17
  publication-title: Studia Math.
  doi: 10.4064/sm-56-2-121-155
– ident: 1061_CR1
– start-page: 65
  volume-title: SpringerBriefs in Optimization
  year: 2015
  ident: 1061_CR37
– volume: 4
  start-page: 1168
  issue: 4
  year: 2005
  ident: 1061_CR15
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/050626090
– volume: 16
  start-page: 964
  year: 1979
  ident: 1061_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716071
– volume: 94
  start-page: 425
  year: 1997
  ident: 1061_CR33
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1022643914538
– volume: 72
  start-page: 383
  year: 1979
  ident: 1061_CR35
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(79)90234-8
– volume: 16
  start-page: 1151
  issue: 3
  year: 2012
  ident: 1061_CR45
  publication-title: Taiwanese J. Math.
  doi: 10.11650/twjm/1500406684
– ident: 1061_CR30
  doi: 10.1155/2012/109236
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 1061_CR8
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/080716542
– volume: 29
  start-page: 403
  year: 1991
  ident: 1061_CR20
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/0329022
– volume: 147
  start-page: 27
  issue: 1
  year: 2010
  ident: 1061_CR44
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9713-2
– volume-title: Nonlinear Semigroups and Differential Equations in Banach Spaces
  year: 1976
  ident: 1061_CR6
  doi: 10.1007/978-94-010-1537-0
– start-page: 313
  volume-title: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type
  year: 1996
  ident: 1061_CR38
– volume: 115
  start-page: 463
  issue: 3
  year: 1994
  ident: 1061_CR5
  publication-title: Invent. Math.
  doi: 10.1007/BF01231769
– volume: 16
  start-page: 429
  issue: 3
  year: 2012
  ident: 1061_CR29
  publication-title: Positivity
  doi: 10.1007/s11117-012-0161-0
– volume: 15
  start-page: 581
  issue: 3
  year: 2014
  ident: 1061_CR50
  publication-title: J. Nonlinear Convex Anal.
– volume: 36
  start-page: 867
  issue: 7
  year: 2015
  ident: 1061_CR19
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2015.1037591
– volume: 87
  start-page: 189
  year: 2000
  ident: 1061_CR43
  publication-title: Math. Program.
  doi: 10.1007/s101079900113
– volume: 15
  start-page: 379
  issue: 2
  year: 2014
  ident: 1061_CR22
  publication-title: J. Nonlinear Convex Anal.
– volume: 16
  start-page: 899
  issue: 7–8
  year: 2008
  ident: 1061_CR31
  publication-title: Set-Valued Anal.
  doi: 10.1007/s11228-008-0102-z
– ident: 1061_CR23
  doi: 10.1155/2014/414031
– volume-title: Nonlinear ILL-Posed Problems of Monotone Type
  year: 2006
  ident: 1061_CR2
– volume-title: Nonlinear Functional Analysis
  year: 2000
  ident: 1061_CR47
– volume: 14
  start-page: 877
  year: 1976
  ident: 1061_CR39
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/0314056
– volume: 339
  start-page: 668
  issue: 1
  year: 2008
  ident: 1061_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.07.019
– volume-title: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems
  year: 1990
  ident: 1061_CR13
  doi: 10.1007/978-94-009-2121-4
– volume: 336
  start-page: 31
  issue: 1
  year: 2007
  ident: 1061_CR4
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2007.02.056
– volume: 12
  start-page: 417
  year: 2004
  ident: 1061_CR24
  publication-title: Set-Valued Anal.
  doi: 10.1007/s11228-004-8196-4
– volume-title: Geometry of Banach Spaces-Selected Topics
  year: 1975
  ident: 1061_CR16
  doi: 10.1007/BFb0082079
– volume: 166
  start-page: 391
  issue: 2
  year: 2015
  ident: 1061_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-015-0703-2
– volume: 25
  start-page: 015005
  issue: 1
  year: 2009
  ident: 1061_CR9
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/25/1/015005
– volume: 7
  start-page: 421
  issue: 2
  year: 1997
  ident: 1061_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623495290179
– volume: 23
  start-page: 481
  issue: 2
  year: 2016
  ident: 1061_CR14
  publication-title: J. Convex Anal.
– volume: 67
  start-page: 493
  issue: 4
  year: 2018
  ident: 1061_CR49
  publication-title: Optimization
  doi: 10.1080/02331934.2017.1411485
– volume: 3
  start-page: 239
  year: 2004
  ident: 1061_CR26
  publication-title: Abstr. Appl. Anal.
  doi: 10.1155/S1085337504309036
– volume: 31
  start-page: 204
  year: 1978
  ident: 1061_CR27
  publication-title: Israel J. Math.
  doi: 10.1007/BF02760552
– volume: 2014
  start-page: 95
  year: 2014
  ident: 1061_CR3
  publication-title: Fixed Point Theory Appl.
  doi: 10.1186/1687-1812-2014-95
SSID ssj0052212
Score 2.38831
Snippet It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone...
SourceID crossref
springer
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms Mathematics
Mathematics and Statistics
Title Convergence Results of Forward-Backward Algorithms for Sum of Monotone Operators in Banach Spaces
URI https://link.springer.com/article/10.1007/s00025-019-1061-4
Volume 74
WOSCitedRecordID wos000473237500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink Journals
  customDbUrl:
  eissn: 1420-9012
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0052212
  issn: 1422-6383
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG_GWByaQpcRJamdsKyoGKKiFqlvkV2ilvtSk_H7ObhKpEiDBluHsROc73-fc-TuEbqn0AkYVJ3WTKhLCCYIIzgSJPAlgRBvBHF1T_4l1OnwwiF-Le9xZWe1epiTdTl1ddvNc61WAJMQeY0i4ibYg2nHrjd1ev9x-AU-sUpwhnLLAuIIylfndFOvBaD0T6gJMe_9fn3aA9go8iRsrAzhEG2Z6hHafKzLW7BiJlq0sd5csDe6abDnOMzxLcXu2cCWzTfsLDx5wY_wxW4zy4STDAGVxbzmxYuD1M8vYjV_mxuXkMzya4qaYCjXEvbkt6TpB7-2Ht9YjKTorEBUEfk64psLToZaCK19yzaIojcDVpaeFAJAg0lTUQ8kYV9qnkkUypr6OLNe8irSfBqeoNoU3nyEcm7qSgkrfDwCMpVz6lBpmKEjqmMvwHHmlihNV0I7b7hfjpCJMdtpLQHuJ1V4CQ-6qIfMV58ZvwvflmiSF-2U_S1_8SfoS7VC3qLZ65QrV8sXSXKNt9ZmPssWNM7svHJjRBA
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF58gXrwLb7dgydlIdkk3c2xLRbFtopV8Rb2FVuobWlSf7-z2yQgqKC3HGY3Yfb1TeabbxG6oNILGFWc1EyqSAgRBBGcCRJ5EsCINoI5uaaXNut2-etr_FDUcWcl271MSbqduip289zVqwBJiA1jSLiIlkM4sCyP77H3Um6_gCfmKc4QoiyYXEGZyvyui6-H0ddMqDtgWpv_-rQttFHgSVyfT4BttGBGO2i9U4mxZrtINC2z3BVZGvxostkwz_A4xa3x1FFmG_YXHjzg-vBtPB3k_fcMA5TFvdm7NYNVP7aK3fh-YlxOPsODEW6IkVB93JtYStceem5dPzVvSHGzAlFB4OeEayo8HWopuPIl1yyK0giWuvS0EAASRJqKWigZ40r7VLJIxtTXkdWaV5H202AfLY3gzQcIx6ampKDS9wMAYymXPqWGGQqWOuYyPERe6eJEFbLj9vaLYVIJJjvvJeC9xHovgSaXVZPJXHPjN-OrckySYvllP1sf_cn6HK3ePHXaSfu2e3eM1qgbYMtkOUFL-XRmTtGK-sgH2fTMTcFP8jrT6A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oGqMH38a3e_Ck2dBuW3Y5Ako0IhJRwq3ZV4UEWkKLv9_dpSUhURPjrYfZtpmdzn7TmfkGgGvMHY9gQVFFRQL5OoJAjBKGAodrMCIVI5auqdci7Tbt96udfM5pWlS7FynJeU-DYWmKs_JERuVF45tjx7BqeIJMSIP8VbDmm5lBJlzv9gpXrLHFPN3p64hLG5pXpDW_u8XywbScFbWHTXPn36-5C7ZznAlrc8PYAysq3gdbzwuS1vQAsIapOLfNlwq-qnQ2ylKYRLCZTG0pbd382tMXsDb6SKbDbDBOoYa4sDsbGzHtDRLD5A1fJsrm6lM4jGGdxUwMYHdiSr0OwXvz_q3xgPKJC0h4npshKjFzpC85o8LlVJIgiALtArgjGdPggUURq_icECqkizkJeBW7MjAc9CKQbuQdgVKsn3wMYFVVBGeYu66nQVpEuYuxIgprSVml3D8BTqHuUOR05GYqxihcEClb7YVae6HRXqiX3CyWTOZcHL8J3xb7E-afZfqz9OmfpK_ARueuGbYe209nYBPb_TUFLueglE1n6gKsi89smE4vrTV-ARfS3Mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+Results+of+Forward-Backward+Algorithms+for+Sum+of+Monotone+Operators+in+Banach+Spaces&rft.jtitle=Resultate+der+Mathematik&rft.au=Shehu%2C+Yekini&rft.date=2019-12-01&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=74&rft.issue=4&rft_id=info:doi/10.1007%2Fs00025-019-1061-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00025_019_1061_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon