Convergence Results of Forward-Backward Algorithms for Sum of Monotone Operators in Banach Spaces
It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two m...
Uloženo v:
| Vydáno v: | Resultate der Mathematik Ročník 74; číslo 4 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2019
|
| Témata: | |
| ISSN: | 1422-6383, 1420-9012 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two monotone operators in Hilbert spaces. Most of the proposed splitting methods in the literature have been proposed for the sum of maximal monotone and inverse-strongly monotone operators in Hilbert spaces. In this paper, we consider splitting methods for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators in Banach spaces. We obtain weak and strong convergence results for the zeros of the sum of maximal monotone and Lipschitz continuous monotone operators in Banach spaces. Many already studied problems in the literature can be considered as special cases of this paper. |
|---|---|
| AbstractList | It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone and Lipschitz continuous monotone operators. Many papers have studied forward-backward splitting methods for finding zeros of the sum of two monotone operators in Hilbert spaces. Most of the proposed splitting methods in the literature have been proposed for the sum of maximal monotone and inverse-strongly monotone operators in Hilbert spaces. In this paper, we consider splitting methods for finding zeros of the sum of maximal monotone operators and Lipschitz continuous monotone operators in Banach spaces. We obtain weak and strong convergence results for the zeros of the sum of maximal monotone and Lipschitz continuous monotone operators in Banach spaces. Many already studied problems in the literature can be considered as special cases of this paper. |
| ArticleNumber | 138 |
| Author | Shehu, Yekini |
| Author_xml | – sequence: 1 givenname: Yekini orcidid: 0000-0001-9224-7139 surname: Shehu fullname: Shehu, Yekini email: yekini.shehu@unn.edu.ng organization: Institute of Science and Technology (IST), Department of Mathematics, Zhejiang Normal University |
| BookMark | eNp9kE1PAjEQhhuDiYD-AG_9A9WZ7idHIKImGBLR82a27cLi0pJ20fjv3RVPHjjNe5hnPp4RG1hnDWO3CHcIkN0HAJCJAJwIhBRFfMGGGEsQE0A5-M1SpFEeXbFRCDuAREqUQ0ZzZz-N3xirDH814di0gbuKL5z_Iq_FjNRHH_i02Thft9t94JXzfH3c920vzrq2u4SvDsZT63zgteUzsqS2fH0gZcI1u6yoCebmr47Z--Lhbf4klqvH5_l0KVQUYStyLQl0rEvKFZa5zpKkSiLAEjQR5EhVRWlcZlmuNMoyS8qJRJ1EaZypRGMVjRme5irvQvCmKg6-3pP_LhCK3lFxclR0joreURF3TPaPUXVLbe1s66luzpLyRIZui90YX-zc0dvuwTPQDxYRfhc |
| CitedBy_id | crossref_primary_10_1007_s40314_020_01246_z crossref_primary_10_1007_s10473_020_0412_2 crossref_primary_10_1007_s10559_022_00490_x crossref_primary_10_1080_00036811_2023_2256357 crossref_primary_10_1007_s00025_022_01694_5 crossref_primary_10_1007_s11081_020_09544_5 crossref_primary_10_1186_s13663_023_00741_2 crossref_primary_10_1007_s11067_022_09575_8 crossref_primary_10_1007_s41980_022_00682_3 crossref_primary_10_1007_s40305_024_00537_0 crossref_primary_10_1186_s13660_024_03082_9 crossref_primary_10_1007_s12215_024_01161_w crossref_primary_10_1007_s12190_021_01644_4 crossref_primary_10_1007_s11587_021_00596_y crossref_primary_10_1515_cmam_2020_0174 crossref_primary_10_1080_02331934_2022_2057308 crossref_primary_10_1186_s13663_023_00753_y crossref_primary_10_1007_s43037_021_00152_8 crossref_primary_10_1186_s13663_022_00732_9 crossref_primary_10_4153_S0008414X24000889 crossref_primary_10_1007_s10559_022_00507_5 crossref_primary_10_1007_s40314_022_02064_1 crossref_primary_10_1155_2022_3455998 crossref_primary_10_1155_2020_6579720 crossref_primary_10_1007_s10898_025_01467_8 crossref_primary_10_1186_s13660_022_02805_0 crossref_primary_10_1007_s40314_025_03318_4 crossref_primary_10_1007_s10957_025_02679_4 crossref_primary_10_1371_journal_pone_0319047 crossref_primary_10_3390_sym12091456 |
| Cites_doi | 10.1137/0103003 10.1007/s10957-012-0232-1 10.1016/0362-546X(91)90200-K 10.1137/S105262340139611X 10.1137/S0363012998338806 10.1007/s13398-016-0366-3 10.1007/s10092-018-0292-1 10.1007/s10957-017-1200-6 10.1186/1687-1812-2014-94 10.1112/S0024610702003332 10.2140/pjm.1970.33.209 10.2140/pjm.1966.17.497 10.4064/sm-56-2-121-155 10.1137/050626090 10.1137/0716071 10.1023/A:1022643914538 10.1016/0022-247X(79)90234-8 10.11650/twjm/1500406684 10.1155/2012/109236 10.1137/080716542 10.1137/0329022 10.1007/s10957-010-9713-2 10.1007/978-94-010-1537-0 10.1007/BF01231769 10.1007/s11117-012-0161-0 10.1080/01630563.2015.1037591 10.1007/s101079900113 10.1007/s11228-008-0102-z 10.1155/2014/414031 10.1137/0314056 10.1016/j.jmaa.2007.07.019 10.1007/978-94-009-2121-4 10.1016/j.jmaa.2007.02.056 10.1007/s11228-004-8196-4 10.1007/BFb0082079 10.1007/s10957-015-0703-2 10.1088/0266-5611/25/1/015005 10.1137/S1052623495290179 10.1080/02331934.2017.1411485 10.1155/S1085337504309036 10.1007/BF02760552 10.1186/1687-1812-2014-95 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2019 |
| Copyright_xml | – notice: The Author(s) 2019 |
| DBID | C6C AAYXX CITATION |
| DOI | 10.1007/s00025-019-1061-4 |
| DatabaseName | Springer Nature OA Free Journals CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1420-9012 |
| ExternalDocumentID | 10_1007_s00025_019_1061_4 |
| GrantInformation_xml | – fundername: Institute of Science and Technology (IST Austria) |
| GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 203 29P 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9R PF0 PT4 QOS R89 R9I RHV RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR YNT Z45 ZMTXR ZWQNP ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU CITATION DWQXO GNUQQ HCIFZ K7- M2P PHGZM PHGZT PQGLB |
| ID | FETCH-LOGICAL-c331t-8d2a0d4dba8c1b8d755f5301b0daa081affa64b778cd12b75b921d53647c5d1f3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473237500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1422-6383 |
| IngestDate | Sat Nov 29 03:47:23 EST 2025 Tue Nov 18 22:11:21 EST 2025 Fri Feb 21 02:37:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | 65K15 47J20 forward-backward algorithm 90C25 2-uniformly convex Banach space Inclusion problem weak convergence 47H05 47J25 strong convergence |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-8d2a0d4dba8c1b8d755f5301b0daa081affa64b778cd12b75b921d53647c5d1f3 |
| ORCID | 0000-0001-9224-7139 |
| OpenAccessLink | https://link.springer.com/10.1007/s00025-019-1061-4 |
| ParticipantIDs | crossref_primary_10_1007_s00025_019_1061_4 crossref_citationtrail_10_1007_s00025_019_1061_4 springer_journals_10_1007_s00025_019_1061_4 |
| PublicationCentury | 2000 |
| PublicationDate | 20191200 2019-12-00 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 20191200 |
| PublicationDecade | 2010 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham |
| PublicationSubtitle | Resultate der Mathematik |
| PublicationTitle | Resultate der Mathematik |
| PublicationTitleAbbrev | Results Math |
| PublicationYear | 2019 |
| Publisher | Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing |
| References | ShehuYCaiGStrong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applicationsRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM20181121718737429910683623710.1007/s13398-016-0366-3 ReichSKartsatosAGA weak convergence theorem for the alternating method with Bregman distancesTheory and Applications of Nonlinear Operators of Accretive and Monotone Type1996New YorkDekker313318 TakahashiWStrong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applicationsJ. Optim. Theory Appl.2013157378180230470301292.9029710.1007/s10957-012-0232-1 AvetisyanKDjordjevićOPavlovićMLittlewood–Paley inequalities in uniformly convex and uniformly smooth Banach spacesJ. Math. Anal. Appl.20073361314323484881213.4206010.1016/j.jmaa.2007.02.056 NguyenTPPauwelsERichardESuterBWExtragradient method in optimization: convergence and complexityJ. Optim. Theory Appl.2018176113716237496881386.4905110.1007/s10957-017-1200-6 TakahashiWNonlinear Functional Analysis2000YokohamaYokohama Publishers0997.47002 BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.9400910.1137/080716542 TakahashiSTakahashiWToyodaMStrong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spacesJ. Optim. Theory Appl.20101471274127205901208.4707110.1007/s10957-010-9713-2 GülerOOn the convergence of the proximal point algorithm for convex minimizationSIAM J. Control Optim.19912940341910927350737.9004710.1137/0329022 ChenGH-GRockafellarRTConvergence rates in forward-backward splittingSIAM J. Optim.19977242144414436270876.4900910.1137/S1052623495290179 IidukaHTakahashiWWeak convergence of a projection algorithm for variational inequalities in a Banach spaceJ. Math. Anal. Appl.2008339166867923706841129.4901210.1016/j.jmaa.2007.07.019 LionsPLUne méthode itérative de résolution d’une inéquation variationnelleIsrael J. Math.1978312042085162570395.4901310.1007/BF02760552 PeypouquetJuanExamplesSpringerBriefs in Optimization2015ChamSpringer International Publishing6580 WangYXuH-KStrong convergence for the proximal-gradient methodJ. Nonlinear Convex Anal.201415358159331838241295.46058 XuHKIterative algorithms for nonlinear operatorsJ. Lond. Math. Soc. (2)200266124025619118721013.4703210.1112/S0024610702003332 SolodovMVSvaiterBFForcing strong convergence of proximal point iterations in a Hilbert spaceMath. Program.20008718920217346650971.9006210.1007/s101079900113 Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. (French) Rev. Française Informat. Recherche Oérationnelle 4 (1970), Sér. R-3, 154–158 RockafellarRTCharacterization of the subdifferentials of convex functionsPac. J. Math.1966174975101935490145.1590110.2140/pjm.1966.17.497 XuHKInequalities in Banach spaces with applicationsNonlinear Anal.199116121127113811116230757.4603310.1016/0362-546X(91)90200-K GuanW-BSongWThe generalized forward-backward splitting method for the minimization of the sum of two functions in Banach spacesNumer. Funct. Anal. Optim.201536786788633554921328.4902910.1080/01630563.2015.1037591 BallKCarlenEALiebEHSharp uniform convexity and smoothness inequalities for trace normsInvent. Math.1994115346348212629400803.4703710.1007/BF01231769 LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.1979169649795513190426.6505010.1137/0716071 KamimuraSTakahashiWStrong convergence of a proximal-type algorithm in a Banach spaceSIAM J. Optim.200313 (2002)393894519722231101.9008310.1137/S105262340139611X KohsakaFTakahashiWStrong convergence of an iterative sequence for maximal monotone operators in a Banach spaceAbstr. Appl. Anal.2004323924920585041064.4706810.1155/S1085337504309036 BarbuVNonlinear Semigroups and Differential Equations in Banach Spaces1976BucharestEditura Academiei R.S.R0328.4703510.1007/978-94-010-1537-0 PeacemanDHRachfordHHThe numerical solutions of parabolic and elliptic differential equationsJ. Soc. Ind. Appl. Math.195532841718740067.3580110.1137/0103003 CombettesPWajsVRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005441168120022038491179.9403110.1137/050626090 TakahashiWWongN-CYaoJ-CTwo generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applicationsTaiwanese J. Math.20121631151117229172610606277010.11650/twjm/1500406684 ChoSYQinXWangLStrong convergence of a splitting algorithm for treating monotone operatorsFixed Point Theory Appl.201420149432586641332.4704010.1186/1687-1812-2014-9415 pp PasstyGBErgodic convergence to a zero of the sum of monotone operators in Hilbert spacesJ. Math. Anal. Appl.1979723833905593750428.4703910.1016/0022-247X(79)90234-8 KamimuraSKohsakaFTakahashiWWeak and strong convergence theorems for maximal monotone operators in a Banach spaceSet-Valued Anal.20041241742921128481078.4705010.1007/s11228-004-8196-4 LinL-JTakahashiWA general iterative method for hierarchical variational inequality problems in Hilbert spaces and applicationsPositivity201216342945329743081334.4706810.1007/s11117-012-0161-0 RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.1970332092162628270199.4710110.2140/pjm.1970.33.209 Alber, Y.I.: Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York (1996) WangYWangFStrong convergence of the forward-backward splitting method with multiple parameters in Hilbert spacesOptimization201867449350537600030686594910.1080/02331934.2017.1411485 Beauzamy, B.: Introduction to Banach Spaces and Their Geometry, 2nd edn. North-Holland Mathematics Studies, 68. Notas de Matemática [Mathematical Notes], 86. North-Holland Publishing Co., Amsterdam (1985). xv+338 pp. ISBN: 0-444-87878-5 MoudafiATheraMFinding a zero of the sum of two maximal monotone operatorsJ. Optim. Theory Appl.19979442544814606740891.4900510.1023/A:1022643914538 MaingéP-EStrong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimizationSet-Valued Anal.2008167–889991224660271156.9042610.1007/s11228-008-0102-z López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. (2012), Art. ID 109236, 25 pp BrediesKA forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach spaceInverse Probl.200925101500524653371156.6505610.1088/0266-5611/25/1/01500520 pp Briceño-AriasLMForward-partial inverse-forward splitting for solving monotone inclusionsJ. Optim. Theory Appl.2015166239141333713811321.4713610.1007/s10957-015-0703-2 AoyamaKKohsakaFStrongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappingsFixed Point Theory Appl.201420149532586651332.4702710.1186/1687-1812-2014-9513 pp CioranescuIoanaGeometry of Banach Spaces, Duality Mappings and Nonlinear Problems1990DordrechtSpringer Netherlands0712.4704310.1007/978-94-009-2121-4 IusemANSvaiterBFSplitting methods for finding zeroes of sums of maximal monotone operators in Banach spacesJ. Nonlinear Convex Anal.201415237939731843291291.47055 Jiao, H., Wang, F.: On an iterative method for finding a zero to the sum of two maximal monotone operators. J. Appl. Math. (2014), Art. ID 414031, 5 pp AlberYRyazantsevaINonlinear ILL-Posed Problems of Monotone Type2006DordrechtSpringer1086.47003xiv+410 pp. ISBN: 978-1-4020-4395-6; 1-4020-4395-3 FigielTOn the moduli of convexity and smoothnessStudia Math.19765621211554255810344.4605210.4064/sm-56-2-121-155 GibaliAThongDVTseng type methods for solving inclusion problems and its applicationsCalcolo201855455:4938701440696976410.1007/s10092-018-0292-1 TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038243144617411470997.9006210.1137/S0363012998338806 RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control. Optim.1976148778984104830358.9005310.1137/0314056 CombettesPLNguyenQVSolving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn-Tucker setJ. Convex Anal.201623248151035096691348.49013 DiestelJGeometry of Banach Spaces-Selected Topics1975BerlinSpringer0307.4600910.1007/BFb0082079 O Güler (1061_CR20) 1991; 29 K Avetisyan (1061_CR4) 2007; 336 P Combettes (1061_CR15) 2005; 4 SY Cho (1061_CR12) 2014; 2014 PL Lions (1061_CR28) 1979; 16 V Barbu (1061_CR6) 1976 K Bredies (1061_CR9) 2009; 25 Juan Peypouquet (1061_CR37) 2015 A Moudafi (1061_CR33) 1997; 94 W Takahashi (1061_CR45) 2012; 16 Y Wang (1061_CR49) 2018; 67 A Gibali (1061_CR18) 2018; 55 H Iiduka (1061_CR21) 2008; 339 S Reich (1061_CR38) 1996 PL Lions (1061_CR27) 1978; 31 TP Nguyen (1061_CR34) 2018; 176 RT Rockafellar (1061_CR41) 1970; 33 K Aoyama (1061_CR3) 2014; 2014 GH-G Chen (1061_CR11) 1997; 7 1061_CR23 A Beck (1061_CR8) 2009; 2 P-E Maingé (1061_CR31) 2008; 16 1061_CR1 DH Peaceman (1061_CR36) 1955; 3 L-J Lin (1061_CR29) 2012; 16 Y Shehu (1061_CR42) 2018; 112 W Takahashi (1061_CR46) 2013; 157 Ioana Cioranescu (1061_CR13) 1990 P Tseng (1061_CR48) 2000; 38 1061_CR32 1061_CR7 1061_CR30 MV Solodov (1061_CR43) 2000; 87 HK Xu (1061_CR51) 1991; 16 LM Briceño-Arias (1061_CR10) 2015; 166 S Kamimura (1061_CR25) 2003; 13 (2002) S Takahashi (1061_CR44) 2010; 147 T Figiel (1061_CR17) 1976; 56 W Takahashi (1061_CR47) 2000 F Kohsaka (1061_CR26) 2004; 3 Y Wang (1061_CR50) 2014; 15 Y Alber (1061_CR2) 2006 AN Iusem (1061_CR22) 2014; 15 K Ball (1061_CR5) 1994; 115 GB Passty (1061_CR35) 1979; 72 RT Rockafellar (1061_CR40) 1966; 17 HK Xu (1061_CR52) 2002; 66 W-B Guan (1061_CR19) 2015; 36 J Diestel (1061_CR16) 1975 RT Rockafellar (1061_CR39) 1976; 14 PL Combettes (1061_CR14) 2016; 23 S Kamimura (1061_CR24) 2004; 12 |
| References_xml | – reference: IusemANSvaiterBFSplitting methods for finding zeroes of sums of maximal monotone operators in Banach spacesJ. Nonlinear Convex Anal.201415237939731843291291.47055 – reference: TakahashiSTakahashiWToyodaMStrong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spacesJ. Optim. Theory Appl.20101471274127205901208.4707110.1007/s10957-010-9713-2 – reference: WangYXuH-KStrong convergence for the proximal-gradient methodJ. Nonlinear Convex Anal.201415358159331838241295.46058 – reference: CombettesPWajsVRSignal recovery by proximal forward-backward splittingMultiscale Model. Simul.2005441168120022038491179.9403110.1137/050626090 – reference: GülerOOn the convergence of the proximal point algorithm for convex minimizationSIAM J. Control Optim.19912940341910927350737.9004710.1137/0329022 – reference: AlberYRyazantsevaINonlinear ILL-Posed Problems of Monotone Type2006DordrechtSpringer1086.47003xiv+410 pp. ISBN: 978-1-4020-4395-6; 1-4020-4395-3 – reference: Briceño-AriasLMForward-partial inverse-forward splitting for solving monotone inclusionsJ. Optim. Theory Appl.2015166239141333713811321.4713610.1007/s10957-015-0703-2 – reference: BallKCarlenEALiebEHSharp uniform convexity and smoothness inequalities for trace normsInvent. Math.1994115346348212629400803.4703710.1007/BF01231769 – reference: TakahashiWWongN-CYaoJ-CTwo generalized strong convergence theorems of Halpern’s type in Hilbert spaces and applicationsTaiwanese J. Math.20121631151117229172610606277010.11650/twjm/1500406684 – reference: RockafellarRTMonotone operators and the proximal point algorithmSIAM J. Control. Optim.1976148778984104830358.9005310.1137/0314056 – reference: LinL-JTakahashiWA general iterative method for hierarchical variational inequality problems in Hilbert spaces and applicationsPositivity201216342945329743081334.4706810.1007/s11117-012-0161-0 – reference: SolodovMVSvaiterBFForcing strong convergence of proximal point iterations in a Hilbert spaceMath. Program.20008718920217346650971.9006210.1007/s101079900113 – reference: MaingéP-EStrong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimizationSet-Valued Anal.2008167–889991224660271156.9042610.1007/s11228-008-0102-z – reference: Alber, Y.I.: Metric and Generalized Projection Operators in Banach Spaces: Properties and Applications. Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York (1996) – reference: BeckATeboulleMA fast iterative shrinkage-thresholding algorithm for linear inverse problemsSIAM J. Imaging Sci.20092118320224865271175.9400910.1137/080716542 – reference: NguyenTPPauwelsERichardESuterBWExtragradient method in optimization: convergence and complexityJ. Optim. Theory Appl.2018176113716237496881386.4905110.1007/s10957-017-1200-6 – reference: KamimuraSTakahashiWStrong convergence of a proximal-type algorithm in a Banach spaceSIAM J. Optim.200313 (2002)393894519722231101.9008310.1137/S105262340139611X – reference: XuHKInequalities in Banach spaces with applicationsNonlinear Anal.199116121127113811116230757.4603310.1016/0362-546X(91)90200-K – reference: LionsPLMercierBSplitting algorithms for the sum of two nonlinear operatorsSIAM J. Numer. Anal.1979169649795513190426.6505010.1137/0716071 – reference: Beauzamy, B.: Introduction to Banach Spaces and Their Geometry, 2nd edn. North-Holland Mathematics Studies, 68. Notas de Matemática [Mathematical Notes], 86. North-Holland Publishing Co., Amsterdam (1985). xv+338 pp. ISBN: 0-444-87878-5 – reference: MoudafiATheraMFinding a zero of the sum of two maximal monotone operatorsJ. Optim. Theory Appl.19979442544814606740891.4900510.1023/A:1022643914538 – reference: TsengPA modified forward-backward splitting method for maximal monotone mappingsSIAM J. Control Optim.200038243144617411470997.9006210.1137/S0363012998338806 – reference: RockafellarRTOn the maximal monotonicity of subdifferential mappingsPac. J. Math.1970332092162628270199.4710110.2140/pjm.1970.33.209 – reference: BrediesKA forward-backward splitting algorithm for the minimization of non-smooth convex functionals in Banach spaceInverse Probl.200925101500524653371156.6505610.1088/0266-5611/25/1/01500520 pp – reference: KamimuraSKohsakaFTakahashiWWeak and strong convergence theorems for maximal monotone operators in a Banach spaceSet-Valued Anal.20041241742921128481078.4705010.1007/s11228-004-8196-4 – reference: ShehuYCaiGStrong convergence result of forward-backward splitting methods for accretive operators in Banach spaces with applicationsRev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM20181121718737429910683623710.1007/s13398-016-0366-3 – reference: DiestelJGeometry of Banach Spaces-Selected Topics1975BerlinSpringer0307.4600910.1007/BFb0082079 – reference: FigielTOn the moduli of convexity and smoothnessStudia Math.19765621211554255810344.4605210.4064/sm-56-2-121-155 – reference: PasstyGBErgodic convergence to a zero of the sum of monotone operators in Hilbert spacesJ. Math. Anal. Appl.1979723833905593750428.4703910.1016/0022-247X(79)90234-8 – reference: LionsPLUne méthode itérative de résolution d’une inéquation variationnelleIsrael J. Math.1978312042085162570395.4901310.1007/BF02760552 – reference: BarbuVNonlinear Semigroups and Differential Equations in Banach Spaces1976BucharestEditura Academiei R.S.R0328.4703510.1007/978-94-010-1537-0 – reference: GuanW-BSongWThe generalized forward-backward splitting method for the minimization of the sum of two functions in Banach spacesNumer. Funct. Anal. Optim.201536786788633554921328.4902910.1080/01630563.2015.1037591 – reference: IidukaHTakahashiWWeak convergence of a projection algorithm for variational inequalities in a Banach spaceJ. Math. Anal. Appl.2008339166867923706841129.4901210.1016/j.jmaa.2007.07.019 – reference: TakahashiWNonlinear Functional Analysis2000YokohamaYokohama Publishers0997.47002 – reference: GibaliAThongDVTseng type methods for solving inclusion problems and its applicationsCalcolo201855455:4938701440696976410.1007/s10092-018-0292-1 – reference: XuHKIterative algorithms for nonlinear operatorsJ. Lond. Math. Soc. (2)200266124025619118721013.4703210.1112/S0024610702003332 – reference: ChoSYQinXWangLStrong convergence of a splitting algorithm for treating monotone operatorsFixed Point Theory Appl.201420149432586641332.4704010.1186/1687-1812-2014-9415 pp – reference: TakahashiWStrong convergence theorems for maximal and inverse-strongly monotone mappings in Hilbert spaces and applicationsJ. Optim. Theory Appl.2013157378180230470301292.9029710.1007/s10957-012-0232-1 – reference: KohsakaFTakahashiWStrong convergence of an iterative sequence for maximal monotone operators in a Banach spaceAbstr. Appl. Anal.2004323924920585041064.4706810.1155/S1085337504309036 – reference: CombettesPLNguyenQVSolving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn-Tucker setJ. Convex Anal.201623248151035096691348.49013 – reference: ChenGH-GRockafellarRTConvergence rates in forward-backward splittingSIAM J. Optim.19977242144414436270876.4900910.1137/S1052623495290179 – reference: AoyamaKKohsakaFStrongly relatively nonexpansive sequences generated by firmly nonexpansive-like mappingsFixed Point Theory Appl.201420149532586651332.4702710.1186/1687-1812-2014-9513 pp – reference: PeacemanDHRachfordHHThe numerical solutions of parabolic and elliptic differential equationsJ. Soc. Ind. Appl. Math.195532841718740067.3580110.1137/0103003 – reference: CioranescuIoanaGeometry of Banach Spaces, Duality Mappings and Nonlinear Problems1990DordrechtSpringer Netherlands0712.4704310.1007/978-94-009-2121-4 – reference: WangYWangFStrong convergence of the forward-backward splitting method with multiple parameters in Hilbert spacesOptimization201867449350537600030686594910.1080/02331934.2017.1411485 – reference: Jiao, H., Wang, F.: On an iterative method for finding a zero to the sum of two maximal monotone operators. J. Appl. Math. (2014), Art. ID 414031, 5 pp – reference: RockafellarRTCharacterization of the subdifferentials of convex functionsPac. J. Math.1966174975101935490145.1590110.2140/pjm.1966.17.497 – reference: Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. (French) Rev. Française Informat. Recherche Oérationnelle 4 (1970), Sér. R-3, 154–158 – reference: ReichSKartsatosAGA weak convergence theorem for the alternating method with Bregman distancesTheory and Applications of Nonlinear Operators of Accretive and Monotone Type1996New YorkDekker313318 – reference: López, G., Martín-Márquez, V., Wang, F., Xu, H.-K.: Forward-backward splitting methods for accretive operators in Banach spaces. Abstr. Appl. Anal. (2012), Art. ID 109236, 25 pp – reference: PeypouquetJuanExamplesSpringerBriefs in Optimization2015ChamSpringer International Publishing6580 – reference: AvetisyanKDjordjevićOPavlovićMLittlewood–Paley inequalities in uniformly convex and uniformly smooth Banach spacesJ. Math. Anal. Appl.20073361314323484881213.4206010.1016/j.jmaa.2007.02.056 – volume: 3 start-page: 28 year: 1955 ident: 1061_CR36 publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0103003 – volume: 157 start-page: 781 issue: 3 year: 2013 ident: 1061_CR46 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-012-0232-1 – ident: 1061_CR7 – volume: 16 start-page: 1127 issue: 12 year: 1991 ident: 1061_CR51 publication-title: Nonlinear Anal. doi: 10.1016/0362-546X(91)90200-K – volume: 13 (2002) start-page: 938 issue: 3 year: 2003 ident: 1061_CR25 publication-title: SIAM J. Optim. doi: 10.1137/S105262340139611X – volume: 38 start-page: 431 issue: 2 year: 2000 ident: 1061_CR48 publication-title: SIAM J. Control Optim. doi: 10.1137/S0363012998338806 – volume: 112 start-page: 71 issue: 1 year: 2018 ident: 1061_CR42 publication-title: Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM doi: 10.1007/s13398-016-0366-3 – volume: 55 start-page: 55:49 issue: 4 year: 2018 ident: 1061_CR18 publication-title: Calcolo doi: 10.1007/s10092-018-0292-1 – volume: 176 start-page: 137 issue: 1 year: 2018 ident: 1061_CR34 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-017-1200-6 – volume: 2014 start-page: 94 year: 2014 ident: 1061_CR12 publication-title: Fixed Point Theory Appl. doi: 10.1186/1687-1812-2014-94 – ident: 1061_CR32 – volume: 66 start-page: 240 issue: 1 year: 2002 ident: 1061_CR52 publication-title: J. Lond. Math. Soc. (2) doi: 10.1112/S0024610702003332 – volume: 33 start-page: 209 year: 1970 ident: 1061_CR41 publication-title: Pac. J. Math. doi: 10.2140/pjm.1970.33.209 – volume: 17 start-page: 497 year: 1966 ident: 1061_CR40 publication-title: Pac. J. Math. doi: 10.2140/pjm.1966.17.497 – volume: 56 start-page: 121 issue: 2 year: 1976 ident: 1061_CR17 publication-title: Studia Math. doi: 10.4064/sm-56-2-121-155 – ident: 1061_CR1 – start-page: 65 volume-title: SpringerBriefs in Optimization year: 2015 ident: 1061_CR37 – volume: 4 start-page: 1168 issue: 4 year: 2005 ident: 1061_CR15 publication-title: Multiscale Model. Simul. doi: 10.1137/050626090 – volume: 16 start-page: 964 year: 1979 ident: 1061_CR28 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716071 – volume: 94 start-page: 425 year: 1997 ident: 1061_CR33 publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1022643914538 – volume: 72 start-page: 383 year: 1979 ident: 1061_CR35 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(79)90234-8 – volume: 16 start-page: 1151 issue: 3 year: 2012 ident: 1061_CR45 publication-title: Taiwanese J. Math. doi: 10.11650/twjm/1500406684 – ident: 1061_CR30 doi: 10.1155/2012/109236 – volume: 2 start-page: 183 issue: 1 year: 2009 ident: 1061_CR8 publication-title: SIAM J. Imaging Sci. doi: 10.1137/080716542 – volume: 29 start-page: 403 year: 1991 ident: 1061_CR20 publication-title: SIAM J. Control Optim. doi: 10.1137/0329022 – volume: 147 start-page: 27 issue: 1 year: 2010 ident: 1061_CR44 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9713-2 – volume-title: Nonlinear Semigroups and Differential Equations in Banach Spaces year: 1976 ident: 1061_CR6 doi: 10.1007/978-94-010-1537-0 – start-page: 313 volume-title: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type year: 1996 ident: 1061_CR38 – volume: 115 start-page: 463 issue: 3 year: 1994 ident: 1061_CR5 publication-title: Invent. Math. doi: 10.1007/BF01231769 – volume: 16 start-page: 429 issue: 3 year: 2012 ident: 1061_CR29 publication-title: Positivity doi: 10.1007/s11117-012-0161-0 – volume: 15 start-page: 581 issue: 3 year: 2014 ident: 1061_CR50 publication-title: J. Nonlinear Convex Anal. – volume: 36 start-page: 867 issue: 7 year: 2015 ident: 1061_CR19 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2015.1037591 – volume: 87 start-page: 189 year: 2000 ident: 1061_CR43 publication-title: Math. Program. doi: 10.1007/s101079900113 – volume: 15 start-page: 379 issue: 2 year: 2014 ident: 1061_CR22 publication-title: J. Nonlinear Convex Anal. – volume: 16 start-page: 899 issue: 7–8 year: 2008 ident: 1061_CR31 publication-title: Set-Valued Anal. doi: 10.1007/s11228-008-0102-z – ident: 1061_CR23 doi: 10.1155/2014/414031 – volume-title: Nonlinear ILL-Posed Problems of Monotone Type year: 2006 ident: 1061_CR2 – volume-title: Nonlinear Functional Analysis year: 2000 ident: 1061_CR47 – volume: 14 start-page: 877 year: 1976 ident: 1061_CR39 publication-title: SIAM J. Control. Optim. doi: 10.1137/0314056 – volume: 339 start-page: 668 issue: 1 year: 2008 ident: 1061_CR21 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.07.019 – volume-title: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems year: 1990 ident: 1061_CR13 doi: 10.1007/978-94-009-2121-4 – volume: 336 start-page: 31 issue: 1 year: 2007 ident: 1061_CR4 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2007.02.056 – volume: 12 start-page: 417 year: 2004 ident: 1061_CR24 publication-title: Set-Valued Anal. doi: 10.1007/s11228-004-8196-4 – volume-title: Geometry of Banach Spaces-Selected Topics year: 1975 ident: 1061_CR16 doi: 10.1007/BFb0082079 – volume: 166 start-page: 391 issue: 2 year: 2015 ident: 1061_CR10 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-015-0703-2 – volume: 25 start-page: 015005 issue: 1 year: 2009 ident: 1061_CR9 publication-title: Inverse Probl. doi: 10.1088/0266-5611/25/1/015005 – volume: 7 start-page: 421 issue: 2 year: 1997 ident: 1061_CR11 publication-title: SIAM J. Optim. doi: 10.1137/S1052623495290179 – volume: 23 start-page: 481 issue: 2 year: 2016 ident: 1061_CR14 publication-title: J. Convex Anal. – volume: 67 start-page: 493 issue: 4 year: 2018 ident: 1061_CR49 publication-title: Optimization doi: 10.1080/02331934.2017.1411485 – volume: 3 start-page: 239 year: 2004 ident: 1061_CR26 publication-title: Abstr. Appl. Anal. doi: 10.1155/S1085337504309036 – volume: 31 start-page: 204 year: 1978 ident: 1061_CR27 publication-title: Israel J. Math. doi: 10.1007/BF02760552 – volume: 2014 start-page: 95 year: 2014 ident: 1061_CR3 publication-title: Fixed Point Theory Appl. doi: 10.1186/1687-1812-2014-95 |
| SSID | ssj0052212 |
| Score | 2.38831 |
| Snippet | It is well known that many problems in image recovery, signal processing, and machine learning can be modeled as finding zeros of the sum of maximal monotone... |
| SourceID | crossref springer |
| SourceType | Enrichment Source Index Database Publisher |
| SubjectTerms | Mathematics Mathematics and Statistics |
| Title | Convergence Results of Forward-Backward Algorithms for Sum of Monotone Operators in Banach Spaces |
| URI | https://link.springer.com/article/10.1007/s00025-019-1061-4 |
| Volume | 74 |
| WOSCitedRecordID | wos000473237500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1420-9012 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0052212 issn: 1422-6383 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1Fe8sAEspTETpOMbUXFQkEtoG6Rn1CpTao45fdju0mkSoAEW4bLQ-c73znf3XcA3CiaCGFCD1IBjhBJGEFJIjDyqTQ7csfmJNQNm4iGw3gySZ6rPm5dV7vXkKTbqZtmN8-NXjUpCbLHGEQ2wZaJdrH1xtH4rd5-TT6xgjiJOWUZ48I1lPndI9aD0ToS6gLMYP9fn3YA9qp8EnZXBnAINmR2BHYfGzJWfQxo31aWuyZLCUdSL2elhrmCg7xwJbM9-wvPXMDu7D0vpuXHXEOTysLxcm7FjNfnlrEbPi2kw-Q1nGawRzPKP-B4YUu6TsDr4P6l_4CqyQqIY-yXKBYB9QQRjMbcZ7GIwlCFxtWZJyg1SQJVinYIi6KYCz9gUciSwBeh5ZrnofAVPgWtzLz5DECiMOtwS8JvPFtJxQi2WHYsPOolWARt4NUqTnlFO26nX8zShjDZaS812kut9lLSBrfNLYsV58Zvwnf1mqSV--mfpc__JH0BdgK3qLZ65RK0ymIpr8A2_yynurh2ZvcFOWbRKw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8UTdQHv4342QefNE22tWPbIxAJRkADaHhb2nUVEtjIOvz7bctGQqIm-raH20eud73r7ne_A-BO0IBzFXqQcLCHSMAICgKOkU1jtSPXdE5CzbAJr9fzR6PgtejjliXavSxJmp161exmmdGrKiVB-hiDyCbYIipgaRxff_Bebr8qn1iWOIk6ZSnjwmUp87tHrAej9UqoCTCtg3992iHYL_JJWF8awBHYiJNjsNddkbHKE0CbGllumixj2I_lYppLmArYSjMDmW3oX3jqAtanH2k2ycczCVUqCweLmRZTXp9qxm74Mo9NTV7CSQIbNKHRGA7mGtJ1Ct5aj8NmGxWTFVCEsZ0jnzvU4oQz6kc287nnusJVrs4sTqlKEqgQtEaY5_kRtx3muSxwbO5qrvnI5bbAZ6CSqDefA0gEZrVIk_ArzxaxYATrWrbPLWoFmDtVYJUqDqOCdlxPv5iGK8Jko71QaS_U2gtJFdyvbpkvOTd-E34o1yQs3E_-LH3xJ-lbsNMedjth56n3fAl2HbPAGslyBSp5toivwXb0mU9kdmNM8AsQ69QP |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gIAQH3ojxzIETKKJt0rU9boMJBIyJAdqtSpqGTdraqu34_STpQ5oESIhbD-5DjmM7tf19AFwI6nEuQw8SFnYQ8RhBnscxMmkoPXJL5SRUk004_b47GnmDkuc0q7rdq5JkMdOgUJqi_Drh4roefDM0DatMT5A60iCyDFaI4gxSx_Xhe-WKZW5RlDuJPHFJQ8NVWfO7RywGpsWqqA42va1_f-Y22CzzTNguDGMHLIXRLth4qkFasz1Au6rjXA9fhvAlzObTPIOxgL041a20HfVrT17A9vQjTif5eJZBmeLC4XymxKQ3iBWSN3xOQl2rz-Akgh0a0WAMh4lq9doHb73b1-4dKhkXUICxmSOXW9TghDPqBiZzuWPbwpYugBmcUpk8UCFoizDHcQNuWsyxmWeZ3FYY9IHNTYEPQCOSbz4EkAjMWoEC55c7XoSCEaxq3C43qOFhbjWBUanbD0o4csWKMfVrIGWtPV9qz1fa80kTXNa3JAUWx2_CV9X6-OW2zH6WPvqT9DlYG9z0_Mf7_sMxWLf0-qoGlxPQyNN5eApWg898kqVn2hq_AEJN3PM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+Results+of+Forward-Backward+Algorithms+for+Sum+of+Monotone+Operators+in+Banach+Spaces&rft.jtitle=Resultate+der+Mathematik&rft.au=Shehu%2C+Yekini&rft.date=2019-12-01&rft.issn=1422-6383&rft.eissn=1420-9012&rft.volume=74&rft.issue=4&rft_id=info:doi/10.1007%2Fs00025-019-1061-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00025_019_1061_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6383&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6383&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6383&client=summon |