A formal framework for specifying sequent calculus proof systems

Intuitionistic logic and intuitionistic type systems are commonly used as frameworks for the specification of natural deduction proof systems. In this paper we show how to use classical linear logic as a logical framework to specify sequent calculus proof systems and to establish some simple consequ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 474; S. 98 - 116
Hauptverfasser: Miller, Dale, Pimentel, Elaine
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 25.02.2013
Elsevier
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intuitionistic logic and intuitionistic type systems are commonly used as frameworks for the specification of natural deduction proof systems. In this paper we show how to use classical linear logic as a logical framework to specify sequent calculus proof systems and to establish some simple consequences of the specified sequent calculus proof systems. In particular, derivability of an inference rule from a set of inference rules can be decided by bounded (linear) logic programming search on the specified rules. We also present two simple and decidable conditions that guarantee that the cut rule and non-atomic initial rules can be eliminated.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2012.12.008