Fractional generalized cumulative entropy and its dynamic version

•A fractional version of the generalized cumulative entropy is introduced.•The proposed notion is a variability measure connected with fractional integrals.•This is suitable for distributions satisfying the proportional reversed hazard model.•The related dynamic measure is an extension of the mean i...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in nonlinear science & numerical simulation Ročník 102; s. 105899
Hlavní autoři: Di Crescenzo, Antonio, Kayal, Suchandan, Meoli, Alessandra
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.11.2021
Elsevier Science Ltd
Témata:
ISSN:1007-5704, 1878-7274
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A fractional version of the generalized cumulative entropy is introduced.•The proposed notion is a variability measure connected with fractional integrals.•This is suitable for distributions satisfying the proportional reversed hazard model.•The related dynamic measure is an extension of the mean inactivity time.•We discuss properties of the empirical measure and apply it to real data. Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its dynamic version. These entropies are particularly suitable to deal with distributions satisfying the proportional reversed hazard model. We study the connection with fractional integrals, and some bounds and comparisons based on stochastic orderings, that allow to show that the proposed measure is actually a variability measure. The investigation also involves various notions of reliability theory, since the considered dynamic measure is a suitable extension of the mean inactivity time. We also introduce the empirical generalized fractional cumulative entropy as a non-parametric estimator of the new measure. It is shown that the empirical measure converges to the proposed notion almost surely. Then, we address the stability of the empirical measure and provide an example of application to real data. Finally, a central limit theorem is established under the exponential distribution.
AbstractList Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its dynamic version. These entropies are particularly suitable to deal with distributions satisfying the proportional reversed hazard model. We study the connection with fractional integrals, and some bounds and comparisons based on stochastic orderings, that allow to show that the proposed measure is actually a variability measure. The investigation also involves various notions of reliability theory, since the considered dynamic measure is a suitable extension of the mean inactivity time. We also introduce the empirical generalized fractional cumulative entropy as a non-parametric estimator of the new measure. It is shown that the empirical measure converges to the proposed notion almost surely. Then, we address the stability of the empirical measure and provide an example of application to real data. Finally, a central limit theorem is established under the exponential distribution.
•A fractional version of the generalized cumulative entropy is introduced.•The proposed notion is a variability measure connected with fractional integrals.•This is suitable for distributions satisfying the proportional reversed hazard model.•The related dynamic measure is an extension of the mean inactivity time.•We discuss properties of the empirical measure and apply it to real data. Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its dynamic version. These entropies are particularly suitable to deal with distributions satisfying the proportional reversed hazard model. We study the connection with fractional integrals, and some bounds and comparisons based on stochastic orderings, that allow to show that the proposed measure is actually a variability measure. The investigation also involves various notions of reliability theory, since the considered dynamic measure is a suitable extension of the mean inactivity time. We also introduce the empirical generalized fractional cumulative entropy as a non-parametric estimator of the new measure. It is shown that the empirical measure converges to the proposed notion almost surely. Then, we address the stability of the empirical measure and provide an example of application to real data. Finally, a central limit theorem is established under the exponential distribution.
ArticleNumber 105899
Author Meoli, Alessandra
Di Crescenzo, Antonio
Kayal, Suchandan
Author_xml – sequence: 1
  givenname: Antonio
  orcidid: 0000-0003-4751-7341
  surname: Di Crescenzo
  fullname: Di Crescenzo, Antonio
  email: adicrescenzo@unisa.it
  organization: Dipartimento di Matematica, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano (SA) 84084, Italy
– sequence: 2
  givenname: Suchandan
  surname: Kayal
  fullname: Kayal, Suchandan
  email: kayals@nitrkl.ac.in, suchandan.kayal@gmail.com
  organization: Department of Mathematics, National Institute of Technology Rourkela, Rourkela 769008, India
– sequence: 3
  givenname: Alessandra
  surname: Meoli
  fullname: Meoli, Alessandra
  email: ameoli@unisa.it
  organization: Dipartimento di Matematica, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano (SA) 84084, Italy
BookMark eNqFkMtOwzAQRS1UJNrCF7CJxDrFzzhZsKgqXlIlNrC2HD-Qo9QptlOpfD0uYcUCNjOj0T2juXcBZn7wBoBrBFcIouq2WykffVxhiFHesLppzsAc1bwuOeZ0lmcIeck4pBdgEWMHM9UwOgfrhyBVcoOXffFuvAmyd59GF2rcjb1M7mAK41MY9sdCel24FAt99HLnVHEwIWbwEpxb2Udz9dOX4O3h_nXzVG5fHp83622pCEGprClDBDHLlWraFiJLFGpp27RVLtZahigjGmFd6YpbWWNUQW0rS7Fu25oQsgQ30919GD5GE5PohjHkv6PAjBOICa1gVjWTSoUhxmCsUC7Jk8EUpOsFguKUmOjEd2LilJiYEsss-cXug9vJcPyHupsok80fnAkiKme8MtoFo5LQg_uT_wIzYYi0
CitedBy_id crossref_primary_10_1080_03610918_2024_2411362
crossref_primary_10_1080_03610926_2024_2447825
crossref_primary_10_1017_S0269964824000068
crossref_primary_10_1080_00949655_2025_2458718
crossref_primary_10_3390_fractalfract7030241
crossref_primary_10_3390_e24091275
crossref_primary_10_1007_s13171_023_00316_8
crossref_primary_10_3390_e24040444
crossref_primary_10_1016_j_cnsns_2025_109106
crossref_primary_10_3390_fractalfract9060388
crossref_primary_10_3390_e25111525
crossref_primary_10_1016_j_ejor_2024_09_047
crossref_primary_10_1007_s00184_021_00849_8
crossref_primary_10_1016_j_physa_2023_128552
crossref_primary_10_1007_s11009_023_10035_0
crossref_primary_10_3390_sym13101964
crossref_primary_10_1007_s00184_023_00931_3
crossref_primary_10_3390_e24081037
crossref_primary_10_1080_03610926_2022_2044493
crossref_primary_10_3390_fractalfract8100568
crossref_primary_10_3390_e24081041
crossref_primary_10_3390_fractalfract6070400
crossref_primary_10_3390_math10162828
crossref_primary_10_1016_j_jmva_2024_105394
crossref_primary_10_1016_j_physd_2025_134545
crossref_primary_10_1007_s11009_025_10176_4
crossref_primary_10_1515_phys_2022_0234
crossref_primary_10_3390_sym13112001
Cites_doi 10.1017/S0269964816000218
10.1016/j.jspi.2007.03.029
10.1080/03610918.2015.1011331
10.1140/epjp/i2019-12554-9
10.1002/j.1538-7305.1948.tb01338.x
10.1109/TIT.2004.828057
10.1142/S0219477520500388
10.1016/j.physa.2019.122582
10.1016/j.jspi.2006.06.035
10.1017/jpr.2020.40
10.1016/S0167-7152(00)00127-9
10.1063/1.5091545
10.1080/03610928608829189
10.3390/e22060709
10.1007/s11009-018-9649-9
10.1016/j.insmatheco.2019.03.005
10.1016/j.ipl.2012.08.019
10.1007/s00184-012-0408-6
10.1016/j.cnsns.2019.104879
10.1016/j.jspi.2009.07.015
10.3390/e16042350
10.1002/asmb.434
10.1239/jap/1032374628
10.1016/j.physleta.2009.05.026
10.1016/j.jspi.2009.05.038
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier Science Ltd. Nov 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Nov 2021
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2021.105899
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1878-7274
ExternalDocumentID 10_1016_j_cnsns_2021_105899
S1007570421002112
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFUIB
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA0
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R-A
R-I
R2-
RIG
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSW
SSZ
T5K
T8Q
T8Y
U1F
U1G
U5A
U5I
U5K
UHS
~G-
~LA
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
SSH
ID FETCH-LOGICAL-c331t-8451315f7cc9bb01f3c1b4b9b64b9fff51453d12d6d67fa82160df6f42dbb8333
ISICitedReferencesCount 32
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000684932600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1007-5704
IngestDate Fri Jul 25 06:13:27 EDT 2025
Sat Nov 29 07:07:29 EST 2025
Tue Nov 18 22:24:22 EST 2025
Fri Feb 23 02:43:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Stochastic orderings
Cumulative entropy
Estimation
Fractional calculus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-8451315f7cc9bb01f3c1b4b9b64b9fff51453d12d6d67fa82160df6f42dbb8333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4751-7341
PQID 2573023460
PQPubID 2047477
ParticipantIDs proquest_journals_2573023460
crossref_citationtrail_10_1016_j_cnsns_2021_105899
crossref_primary_10_1016_j_cnsns_2021_105899
elsevier_sciencedirect_doi_10_1016_j_cnsns_2021_105899
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2021
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Li, Wu, Mao (bib0022) 2020; 57
Bickel, Lehmann, Rojo (bib0026) 2012
Yu, Huang, Liu, Chen (bib0015) 2012; 112
Shaked, Shanthikumar (bib0025) 2007
Machado, Lopes (bib0005) 2019; 134
Psarrakos, Navarro (bib0010) 2013; 27
Di Crescenzo, Longobardi (bib0007) 2009; 139
Asadi, Zohrevand (bib0018) 2007; 137
Bagai, Kochar (bib0027) 1986; 15
Dong, Zhang (bib0014) 2020
Abramowitz, Stegun (bib0019) 1994
Samko, Kilbas, Marichev (bib0023) 1993
Di Crescenzo, Toomaj (bib0017) 2017; 53
Di Crescenzo, Ricciardi (bib0029) 2001; 17
Rao, Chen, Vemuri, Wang (bib0006) 2004; 50
Navarro, del Aguila, Asadi (bib0008) 2010; 140
Chowdhury, Mukherjee, Nanda (bib0032) 2017; 46
Shannon (bib0001) 1948; 27
Di Crescenzo (bib0028) 1999; 36
Ubriaco (bib0003) 2009; 373
Kilbas, Srivastava, Trujillo (bib0024) 2006; vol. 204
Gupta, Gupta (bib0021) 2007; 137
Kayal (bib0016) 2016; 30
Cover, Thomas (bib0002) 1991
Machado (bib0004) 2014; 16
Zhang, Shang (bib0012) 2019; 29
.
Di Crescenzo, Pellerey (bib0030) 2019; 21
Di Crescenzo, Longobardi (bib0031) 2009; vol. 5601
Psarrakos, Sordo (bib0034) 2019; 86
Toomaj, Di Crescenzo (bib0011) 2020; 22
Wang, Shang (bib0013) 2020; 537
Xiong, Shang, Zhang (bib0009) 2019; 78
Di Crescenzo (bib0020) 2000; 50
Psarrakos (10.1016/j.cnsns.2021.105899_bib0034) 2019; 86
Shannon (10.1016/j.cnsns.2021.105899_bib0001) 1948; 27
Machado (10.1016/j.cnsns.2021.105899_bib0004) 2014; 16
Abramowitz (10.1016/j.cnsns.2021.105899_bib0019) 1994
Di Crescenzo (10.1016/j.cnsns.2021.105899_bib0028) 1999; 36
Psarrakos (10.1016/j.cnsns.2021.105899_bib0010) 2013; 27
Samko (10.1016/j.cnsns.2021.105899_bib0023) 1993
Cover (10.1016/j.cnsns.2021.105899_bib0002) 1991
Asadi (10.1016/j.cnsns.2021.105899_bib0018) 2007; 137
Wang (10.1016/j.cnsns.2021.105899_bib0013) 2020; 537
Chowdhury (10.1016/j.cnsns.2021.105899_bib0032) 2017; 46
Machado (10.1016/j.cnsns.2021.105899_bib0005) 2019; 134
Yu (10.1016/j.cnsns.2021.105899_bib0015) 2012; 112
Rao (10.1016/j.cnsns.2021.105899_bib0006) 2004; 50
Kayal (10.1016/j.cnsns.2021.105899_bib0016) 2016; 30
Zhang (10.1016/j.cnsns.2021.105899_bib0012) 2019; 29
Di Crescenzo (10.1016/j.cnsns.2021.105899_bib0030) 2019; 21
Bickel (10.1016/j.cnsns.2021.105899_bib0026) 2012
Kilbas (10.1016/j.cnsns.2021.105899_bib0024) 2006; vol. 204
Dong (10.1016/j.cnsns.2021.105899_sbref0014) 2020
Shaked (10.1016/j.cnsns.2021.105899_bib0025) 2007
10.1016/j.cnsns.2021.105899_bib0033
Di Crescenzo (10.1016/j.cnsns.2021.105899_bib0020) 2000; 50
Toomaj (10.1016/j.cnsns.2021.105899_bib0011) 2020; 22
Di Crescenzo (10.1016/j.cnsns.2021.105899_bib0029) 2001; 17
Ubriaco (10.1016/j.cnsns.2021.105899_bib0003) 2009; 373
Di Crescenzo (10.1016/j.cnsns.2021.105899_bib0031) 2009; vol. 5601
Di Crescenzo (10.1016/j.cnsns.2021.105899_bib0007) 2009; 139
Xiong (10.1016/j.cnsns.2021.105899_bib0009) 2019; 78
Bagai (10.1016/j.cnsns.2021.105899_bib0027) 1986; 15
Navarro (10.1016/j.cnsns.2021.105899_bib0008) 2010; 140
Gupta (10.1016/j.cnsns.2021.105899_bib0021) 2007; 137
Di Crescenzo (10.1016/j.cnsns.2021.105899_bib0017) 2017; 53
Li (10.1016/j.cnsns.2021.105899_bib0022) 2020; 57
References_xml – volume: 137
  start-page: 3525
  year: 2007
  end-page: 3536
  ident: bib0021
  article-title: Proportional reversed hazard rate model and its applications
  publication-title: J Statist Plann Inference
– volume: 16
  start-page: 2350
  year: 2014
  end-page: 2361
  ident: bib0004
  article-title: Fractional order generalized information
  publication-title: Entropy
– volume: 57
  start-page: 832
  year: 2020
  end-page: 852
  ident: bib0022
  article-title: Stochastic comparisons of largest-order statistics for proportional reversed hazard rate model and applications
  publication-title: J Appl Prob
– volume: 373
  start-page: 2516
  year: 2009
  end-page: 2519
  ident: bib0003
  article-title: Entropies based on fractional calculus
  publication-title: Phys Lett A
– volume: 50
  start-page: 1220
  year: 2004
  end-page: 1228
  ident: bib0006
  article-title: Cumulative residual entropy: a new measure of information
  publication-title: IEEE Trans Inf Theory
– year: 2012
  ident: bib0026
  article-title: Descriptive statistics for nonparametric models IV. spread
  publication-title: Selected Works of E. L. Lehmann. Selected Works in Probability and Statistics.
– volume: 29
  start-page: 103104
  year: 2019
  ident: bib0012
  article-title: Uncertainty of financial time series based on discrete fractional cumulative residual entropy
  publication-title: Chaos
– year: 1994
  ident: bib0019
  article-title: Handbook of mathematical functions with formulas, graph, and mathematical tables
– year: 1993
  ident: bib0023
  article-title: Fractional integrals and derivatives
  publication-title: Theory and Applications
– volume: 112
  start-page: 916
  year: 2012
  end-page: 921
  ident: bib0015
  article-title: Information measures based on fractional calculus
  publication-title: Inf Proc Lett
– volume: 36
  start-page: 706
  year: 1999
  end-page: 719
  ident: bib0028
  article-title: A probabilistic analogue of the mean value theorem and its applications to reliability theory
  publication-title: J Appl Prob
– year: 2007
  ident: bib0025
  article-title: Stochastic orders and their applications
– volume: 86
  start-page: 232
  year: 2019
  end-page: 240
  ident: bib0034
  article-title: On a family of risk measures based on proportional hazards models and tail probabilities
  publication-title: Insurance Math Econ
– volume: 140
  start-page: 310
  year: 2010
  end-page: 322
  ident: bib0008
  article-title: Some new results on the cumulative residual entropy
  publication-title: J Statist Plann Inference
– volume: 21
  start-page: 203
  year: 2019
  end-page: 233
  ident: bib0030
  article-title: Some results and applications of geometric counting processes
  publication-title: Methodol Comput Appl Probab
– volume: 53
  start-page: 959
  year: 2017
  end-page: 982
  ident: bib0017
  article-title: Further results on the generalized cumulative entropy
  publication-title: Kybernetika
– volume: 46
  start-page: 1715
  year: 2017
  end-page: 1734
  ident: bib0032
  article-title: On compounded geometric distributions and their applications
  publication-title: Comm Stat Simul Comput
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: bib0001
  article-title: A note on the concept of entropy
  publication-title: Bell System Tech J
– volume: 537
  start-page: 122582
  year: 2020
  ident: bib0013
  article-title: Complexity analysis of time series based on generalized fractional order cumulative residual distribution entropy
  publication-title: Phys A: Stat Mech Appl
– volume: 139
  start-page: 4072
  year: 2009
  end-page: 4087
  ident: bib0007
  article-title: On cumulative entropies
  publication-title: J Statist Plann Inference
– volume: 30
  start-page: 640
  year: 2016
  end-page: 662
  ident: bib0016
  article-title: On generalized cumulative entropies
  publication-title: Prob Engin Inform Sciences
– start-page: 2050038
  year: 2020
  ident: bib0014
  article-title: Multiscale fractional cumulative residual entropy of higher-order moments for estimating uncertainty
  publication-title: Fluct Noise Lett
– volume: 17
  start-page: 205
  year: 2001
  end-page: 219
  ident: bib0029
  article-title: On a discrimination problem for a class of stochastic processes with ordered first-passage times
  publication-title: Appl Stochastic Models Bus Ind
– volume: 78
  start-page: 104879
  year: 2019
  ident: bib0009
  article-title: Fractional cumulative residual entropy
  publication-title: Comm Nonlinear Sci Num Simul
– reference: .
– volume: 137
  start-page: 1931
  year: 2007
  end-page: 1941
  ident: bib0018
  article-title: On the dynamic cumulative residual entropy
  publication-title: J Statist Plann Inference
– volume: 50
  start-page: 313
  year: 2000
  end-page: 321
  ident: bib0020
  article-title: Some results on the proportional reversed hazards model
  publication-title: Stat Prob Lett
– year: 1991
  ident: bib0002
  article-title: Elements of information theory
– volume: 27
  start-page: 623
  year: 2013
  end-page: 640
  ident: bib0010
  article-title: Generalized cumulative residual entropy and record values
  publication-title: Metrika
– volume: vol. 204
  year: 2006
  ident: bib0024
  article-title: Theory and applications of fractional differential equations
  publication-title: North-Holland Mathematics Studies
– volume: 22
  start-page: 709
  year: 2020
  ident: bib0011
  article-title: Generalized entropies, variance and applications
  publication-title: Entropy
– volume: vol. 5601
  start-page: 132
  year: 2009
  end-page: 141
  ident: bib0031
  article-title: On cumulative entropies and lifetime estimations
  publication-title: Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science
– volume: 134
  start-page: 217
  year: 2019
  ident: bib0005
  article-title: Fractional rényi entropy
  publication-title: Eur Phys J Plus
– volume: 15
  start-page: 1377
  year: 1986
  end-page: 1388
  ident: bib0027
  article-title: On tail-ordering and comparison of failure rates
  publication-title: Comm Stat-Theory and Methods
– volume: 30
  start-page: 640
  issue: 4
  year: 2016
  ident: 10.1016/j.cnsns.2021.105899_bib0016
  article-title: On generalized cumulative entropies
  publication-title: Prob Engin Inform Sciences
  doi: 10.1017/S0269964816000218
– volume: vol. 204
  year: 2006
  ident: 10.1016/j.cnsns.2021.105899_bib0024
  article-title: Theory and applications of fractional differential equations
– volume: 137
  start-page: 3525
  issue: 11
  year: 2007
  ident: 10.1016/j.cnsns.2021.105899_bib0021
  article-title: Proportional reversed hazard rate model and its applications
  publication-title: J Statist Plann Inference
  doi: 10.1016/j.jspi.2007.03.029
– volume: 46
  start-page: 1715
  issue: 3
  year: 2017
  ident: 10.1016/j.cnsns.2021.105899_bib0032
  article-title: On compounded geometric distributions and their applications
  publication-title: Comm Stat Simul Comput
  doi: 10.1080/03610918.2015.1011331
– volume: 134
  start-page: 217
  issue: 5
  year: 2019
  ident: 10.1016/j.cnsns.2021.105899_bib0005
  article-title: Fractional rényi entropy
  publication-title: Eur Phys J Plus
  doi: 10.1140/epjp/i2019-12554-9
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 10.1016/j.cnsns.2021.105899_bib0001
  article-title: A note on the concept of entropy
  publication-title: Bell System Tech J
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– volume: 50
  start-page: 1220
  issue: 6
  year: 2004
  ident: 10.1016/j.cnsns.2021.105899_bib0006
  article-title: Cumulative residual entropy: a new measure of information
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2004.828057
– start-page: 2050038
  year: 2020
  ident: 10.1016/j.cnsns.2021.105899_sbref0014
  article-title: Multiscale fractional cumulative residual entropy of higher-order moments for estimating uncertainty
  publication-title: Fluct Noise Lett
  doi: 10.1142/S0219477520500388
– volume: vol. 5601
  start-page: 132
  year: 2009
  ident: 10.1016/j.cnsns.2021.105899_bib0031
  article-title: On cumulative entropies and lifetime estimations
– volume: 537
  start-page: 122582
  year: 2020
  ident: 10.1016/j.cnsns.2021.105899_bib0013
  article-title: Complexity analysis of time series based on generalized fractional order cumulative residual distribution entropy
  publication-title: Phys A: Stat Mech Appl
  doi: 10.1016/j.physa.2019.122582
– volume: 137
  start-page: 1931
  year: 2007
  ident: 10.1016/j.cnsns.2021.105899_bib0018
  article-title: On the dynamic cumulative residual entropy
  publication-title: J Statist Plann Inference
  doi: 10.1016/j.jspi.2006.06.035
– volume: 57
  start-page: 832
  year: 2020
  ident: 10.1016/j.cnsns.2021.105899_bib0022
  article-title: Stochastic comparisons of largest-order statistics for proportional reversed hazard rate model and applications
  publication-title: J Appl Prob
  doi: 10.1017/jpr.2020.40
– volume: 50
  start-page: 313
  issue: 4
  year: 2000
  ident: 10.1016/j.cnsns.2021.105899_bib0020
  article-title: Some results on the proportional reversed hazards model
  publication-title: Stat Prob Lett
  doi: 10.1016/S0167-7152(00)00127-9
– volume: 29
  start-page: 103104
  issue: 10
  year: 2019
  ident: 10.1016/j.cnsns.2021.105899_bib0012
  article-title: Uncertainty of financial time series based on discrete fractional cumulative residual entropy
  publication-title: Chaos
  doi: 10.1063/1.5091545
– year: 2007
  ident: 10.1016/j.cnsns.2021.105899_bib0025
– volume: 15
  start-page: 1377
  issue: 4
  year: 1986
  ident: 10.1016/j.cnsns.2021.105899_bib0027
  article-title: On tail-ordering and comparison of failure rates
  publication-title: Comm Stat-Theory and Methods
  doi: 10.1080/03610928608829189
– volume: 22
  start-page: 709
  year: 2020
  ident: 10.1016/j.cnsns.2021.105899_bib0011
  article-title: Generalized entropies, variance and applications
  publication-title: Entropy
  doi: 10.3390/e22060709
– volume: 21
  start-page: 203
  year: 2019
  ident: 10.1016/j.cnsns.2021.105899_bib0030
  article-title: Some results and applications of geometric counting processes
  publication-title: Methodol Comput Appl Probab
  doi: 10.1007/s11009-018-9649-9
– volume: 86
  start-page: 232
  year: 2019
  ident: 10.1016/j.cnsns.2021.105899_bib0034
  article-title: On a family of risk measures based on proportional hazards models and tail probabilities
  publication-title: Insurance Math Econ
  doi: 10.1016/j.insmatheco.2019.03.005
– volume: 112
  start-page: 916
  year: 2012
  ident: 10.1016/j.cnsns.2021.105899_bib0015
  article-title: Information measures based on fractional calculus
  publication-title: Inf Proc Lett
  doi: 10.1016/j.ipl.2012.08.019
– volume: 27
  start-page: 623
  year: 2013
  ident: 10.1016/j.cnsns.2021.105899_bib0010
  article-title: Generalized cumulative residual entropy and record values
  publication-title: Metrika
  doi: 10.1007/s00184-012-0408-6
– volume: 78
  start-page: 104879
  year: 2019
  ident: 10.1016/j.cnsns.2021.105899_bib0009
  article-title: Fractional cumulative residual entropy
  publication-title: Comm Nonlinear Sci Num Simul
  doi: 10.1016/j.cnsns.2019.104879
– year: 2012
  ident: 10.1016/j.cnsns.2021.105899_bib0026
  article-title: Descriptive statistics for nonparametric models IV. spread
– volume: 140
  start-page: 310
  year: 2010
  ident: 10.1016/j.cnsns.2021.105899_bib0008
  article-title: Some new results on the cumulative residual entropy
  publication-title: J Statist Plann Inference
  doi: 10.1016/j.jspi.2009.07.015
– volume: 53
  start-page: 959
  issue: 5
  year: 2017
  ident: 10.1016/j.cnsns.2021.105899_bib0017
  article-title: Further results on the generalized cumulative entropy
  publication-title: Kybernetika
– ident: 10.1016/j.cnsns.2021.105899_bib0033
– volume: 16
  start-page: 2350
  issue: 4
  year: 2014
  ident: 10.1016/j.cnsns.2021.105899_bib0004
  article-title: Fractional order generalized information
  publication-title: Entropy
  doi: 10.3390/e16042350
– volume: 17
  start-page: 205
  year: 2001
  ident: 10.1016/j.cnsns.2021.105899_bib0029
  article-title: On a discrimination problem for a class of stochastic processes with ordered first-passage times
  publication-title: Appl Stochastic Models Bus Ind
  doi: 10.1002/asmb.434
– year: 1994
  ident: 10.1016/j.cnsns.2021.105899_bib0019
– volume: 36
  start-page: 706
  issue: 3
  year: 1999
  ident: 10.1016/j.cnsns.2021.105899_bib0028
  article-title: A probabilistic analogue of the mean value theorem and its applications to reliability theory
  publication-title: J Appl Prob
  doi: 10.1239/jap/1032374628
– volume: 373
  start-page: 2516
  issue: 30
  year: 2009
  ident: 10.1016/j.cnsns.2021.105899_bib0003
  article-title: Entropies based on fractional calculus
  publication-title: Phys Lett A
  doi: 10.1016/j.physleta.2009.05.026
– volume: 139
  start-page: 4072
  issue: 12
  year: 2009
  ident: 10.1016/j.cnsns.2021.105899_bib0007
  article-title: On cumulative entropies
  publication-title: J Statist Plann Inference
  doi: 10.1016/j.jspi.2009.05.038
– year: 1991
  ident: 10.1016/j.cnsns.2021.105899_bib0002
– year: 1993
  ident: 10.1016/j.cnsns.2021.105899_bib0023
  article-title: Fractional integrals and derivatives
SSID ssj0016954
Score 2.5033665
Snippet •A fractional version of the generalized cumulative entropy is introduced.•The proposed notion is a variability measure connected with fractional...
Following the theory of information measures based on the cumulative distribution function, we propose the fractional generalized cumulative entropy, and its...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105899
SubjectTerms Cumulative entropy
Distribution functions
Entropy
Estimation
Fractional calculus
Parameter estimation
Probability distribution functions
Stochastic models
Stochastic orderings
Title Fractional generalized cumulative entropy and its dynamic version
URI https://dx.doi.org/10.1016/j.cnsns.2021.105899
https://www.proquest.com/docview/2573023460
Volume 102
WOSCitedRecordID wos000684932600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1878-7274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016954
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBYl6aGXvkvTpkWH3lwHy5Yl-biEhLbQUGgKezN6WGXDxrt4HyT59R097N1kaWgLvYhFu7bMzOfZmZFmPoQ-SK4byRlEqlLSlDaiSRUvTCrBNeGSW5NZ48km-NmZGI-rb3G7YOHpBHjbiqurav5fVQ1zoGxXOvsX6h5uChPwGZQOI6gdxj9S_GkXahVA9j9DT-nJDXiVenXpmbrWTeISurP59bBvYAIrfbIOubNtf_VW_Yg_OtuG3hqyS_qKIAeedhV2fqbJYnIZGcEGH3mSHHe-a9TNLPYrAEMyG0y9vPakA2DDXBWy2cD1azMLxdujqSNqaU0nt5MUOYnVekPmbKd6xhtblyYteaAfPmrCnICoFnwqestC-6LsXWsfEg8XR7pdtK71ek4cbbEIjEt32mh_d6u5xXLXdJY4Yur9nJcVGPP90eeT8Zdh74lVnjtveLq-V5U_Fbiz1O_8mTv_7N5dOX-KHsc4A48CPp6hB037HD2JMQeOFn3xAo02cMFbcMEbuOAIFwwKwAAXHOGCI1xeoh-nJ-fHn9JIq5HqoiDLVNCSFKS0XOtKqYzYQhNFVaUYDNZacKHLwpDcMMO4lSInLDOWWZobpURRFK_QHmCteY1wxbgpZaWEBs8fQl-paSmkEFQRJWmVHaC8F06tY895R30yrfvDhRe1l2jtJFoHiR6gj8NF89By5f6fs17qdQR-8AZrgMn9Fx72Oqrj-wvfl9zRaFGWvfnX-75FjzavwCHaW3ar5h16qNfLyaJ7H9H2C8ubn78
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractional+generalized+cumulative+entropy+and+its+dynamic+version&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Di+Crescenzo%2C+Antonio&rft.au=Kayal%2C+Suchandan&rft.au=Meoli%2C+Alessandra&rft.date=2021-11-01&rft.pub=Elsevier+B.V&rft.issn=1007-5704&rft.eissn=1878-7274&rft.volume=102&rft_id=info:doi/10.1016%2Fj.cnsns.2021.105899&rft.externalDocID=S1007570421002112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon