Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes
Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the literature. Those algorithms often show surprisingly good performance on widely used DTLZ and WFG test problems. The performance of those algorithms ha...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on evolutionary computation Jg. 21; H. 2; S. 169 - 190 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
IEEE
01.04.2017
|
| Schlagworte: | |
| ISSN: | 1089-778X, 1941-0026 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the literature. Those algorithms often show surprisingly good performance on widely used DTLZ and WFG test problems. The performance of those algorithms has continued to be improved. The aim of this paper is to show our concern that such a performance improvement race may lead to the overspecialization of developed algorithms for the frequently used many-objective test problems. In this paper, we first explain the DTLZ and WFG test problems. Next, we explain many-objective evolutionary algorithms characterized by the use of systematically generated weight vectors. Then we discuss the relation between the features of the test problems and the search mechanisms of weight vector-based algorithms such as multiobjective evolutionary algorithm based on decomposition (MOEA/D), nondominated sorting genetic algorithm III (NSGA-III), MOEA/dominance and decomposition (MOEA/DD), and θ-dominance based evolutionary algorithm (θ-DEA). Through computational experiments, we demonstrate that a slight change in the problem formulations of DTLZ and WFG deteriorates the performance of those algorithms. After explaining the reason for the performance deterioration, we discuss the necessity of more general test problems and more flexible algorithms. |
|---|---|
| AbstractList | Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the literature. Those algorithms often show surprisingly good performance on widely used DTLZ and WFG test problems. The performance of those algorithms has continued to be improved. The aim of this paper is to show our concern that such a performance improvement race may lead to the overspecialization of developed algorithms for the frequently used many-objective test problems. In this paper, we first explain the DTLZ and WFG test problems. Next, we explain many-objective evolutionary algorithms characterized by the use of systematically generated weight vectors. Then we discuss the relation between the features of the test problems and the search mechanisms of weight vector-based algorithms such as multiobjective evolutionary algorithm based on decomposition (MOEA/D), nondominated sorting genetic algorithm III (NSGA-III), MOEA/dominance and decomposition (MOEA/DD), and θ-dominance based evolutionary algorithm (θ-DEA). Through computational experiments, we demonstrate that a slight change in the problem formulations of DTLZ and WFG deteriorates the performance of those algorithms. After explaining the reason for the performance deterioration, we discuss the necessity of more general test problems and more flexible algorithms. |
| Author | Setoguchi, Yu Ishibuchi, Hisao Nojima, Yusuke Masuda, Hiroyuki |
| Author_xml | – sequence: 1 givenname: Hisao surname: Ishibuchi fullname: Ishibuchi, Hisao email: hisaoi@cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan – sequence: 2 givenname: Yu surname: Setoguchi fullname: Setoguchi, Yu email: yu.setoguchi@ci.cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan – sequence: 3 givenname: Hiroyuki surname: Masuda fullname: Masuda, Hiroyuki email: hiroyuki.masuda@ci.cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan – sequence: 4 givenname: Yusuke surname: Nojima fullname: Nojima, Yusuke email: nojima@cs.osakafu-u.ac.jp organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan |
| BookMark | eNp9kFtLwzAUgINMcJv-APElf6AzlzaXxzk3FSYbbIpvJUvTraNNShKE_XtbNnzwQc7DOXD4zuUbgYF11gBwj9EEYyQft_PP2YQgzCYkE5yn8goMsUxxghBhg65GQiaci68bMArhiBBOMyyHoFgbXzrfKKsNdCV8Nto1rQtVrJxNnlQwBXxX9pSsdkejY_Vt4LTeO1_FQxPgJnpn9_Wpw1pjiwCdhWvlTXRw0XUi3BxUa8ItuC5VHczdJY_Bx2K-nb0my9XL22y6TDSlOCZcF1IJRgUimhFZallgQZFAJttJLhRTgpRM6YySojs-1ZxypjKNusCMKzoG-DxXexeCN2Xe-qpR_pRjlPea8l5T3mvKL5o6hv9hdBVV_330qqr_JR_OZGWM-d3EMySZIPQHLkZ4dQ |
| CODEN | ITEVF5 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2019_06_001 crossref_primary_10_1016_j_swevo_2022_101082 crossref_primary_10_1007_s41965_024_00165_w crossref_primary_10_1109_TCYB_2021_3082200 crossref_primary_10_1109_TEVC_2018_2874465 crossref_primary_10_1109_TCYB_2020_3008697 crossref_primary_10_3390_math8101651 crossref_primary_10_1016_j_procs_2018_07_285 crossref_primary_10_1016_j_apenergy_2024_124325 crossref_primary_10_3233_JIFS_212426 crossref_primary_10_1016_j_cor_2018_12_003 crossref_primary_10_1016_j_ins_2020_11_008 crossref_primary_10_1109_TEVC_2020_2978158 crossref_primary_10_1016_j_swevo_2024_101515 crossref_primary_10_1109_TEVC_2020_2987559 crossref_primary_10_1016_j_asoc_2024_111369 crossref_primary_10_1016_j_swevo_2024_101516 crossref_primary_10_1038_s41598_022_10997_0 crossref_primary_10_1016_j_neunet_2025_107904 crossref_primary_10_1109_TEVC_2023_3349313 crossref_primary_10_1109_TSMC_2019_2930737 crossref_primary_10_1016_j_swevo_2022_101079 crossref_primary_10_1016_j_swevo_2020_100669 crossref_primary_10_1109_ACCESS_2020_2999417 crossref_primary_10_1016_j_asoc_2024_111807 crossref_primary_10_1016_j_swevo_2022_101074 crossref_primary_10_1109_TCYB_2017_2737554 crossref_primary_10_1080_00207543_2023_2269584 crossref_primary_10_1016_j_asoc_2022_108505 crossref_primary_10_1109_TEVC_2017_2785224 crossref_primary_10_1109_TEVC_2024_3405197 crossref_primary_10_1109_TCYB_2019_2930979 crossref_primary_10_1109_MCI_2017_2742868 crossref_primary_10_1109_TEVC_2019_2899030 crossref_primary_10_1016_j_ins_2019_01_049 crossref_primary_10_1109_TCYB_2018_2883914 crossref_primary_10_1016_j_asoc_2023_110688 crossref_primary_10_1016_j_ins_2019_12_011 crossref_primary_10_1109_TEVC_2019_2931191 crossref_primary_10_1109_TEVC_2021_3095481 crossref_primary_10_1155_2020_9474580 crossref_primary_10_1155_2021_4296642 crossref_primary_10_1016_j_knosys_2022_108677 crossref_primary_10_1016_j_neucom_2020_01_114 crossref_primary_10_1007_s40747_019_0113_4 crossref_primary_10_1016_j_ins_2018_05_013 crossref_primary_10_1109_TCYB_2021_3056176 crossref_primary_10_1115_1_4039450 crossref_primary_10_1007_s40747_020_00230_8 crossref_primary_10_1016_j_asoc_2020_106316 crossref_primary_10_1016_j_cie_2024_110731 crossref_primary_10_1016_j_swevo_2023_101262 crossref_primary_10_1109_TCYB_2019_2949204 crossref_primary_10_1109_ACCESS_2021_3070071 crossref_primary_10_1109_ACCESS_2021_3101899 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1109_TEVC_2017_2707980 crossref_primary_10_1007_s10489_020_01969_w crossref_primary_10_1109_TEVC_2021_3078478 crossref_primary_10_1109_TCYB_2019_2932451 crossref_primary_10_1109_TCYB_2018_2819360 crossref_primary_10_1016_j_asoc_2018_12_011 crossref_primary_10_1007_s10489_021_03135_2 crossref_primary_10_1016_j_swevo_2020_100647 crossref_primary_10_1016_j_swevo_2020_100644 crossref_primary_10_1109_TCYB_2017_2737519 crossref_primary_10_1109_TEVC_2022_3188064 crossref_primary_10_1155_2021_6614283 crossref_primary_10_1016_j_ins_2020_12_025 crossref_primary_10_1109_TEVC_2018_2794319 crossref_primary_10_1109_TCYB_2018_2872803 crossref_primary_10_1108_IJICC_05_2017_0050 crossref_primary_10_1016_j_asoc_2018_08_020 crossref_primary_10_1109_TCYB_2020_3016426 crossref_primary_10_1080_0305215X_2024_2448569 crossref_primary_10_1016_j_ejor_2021_10_033 crossref_primary_10_1016_j_ins_2021_06_068 crossref_primary_10_1016_j_ins_2022_11_155 crossref_primary_10_1109_TEVC_2018_2866927 crossref_primary_10_1109_TCYB_2023_3312476 crossref_primary_10_1002_widm_1267 crossref_primary_10_1109_TCYB_2019_2896021 crossref_primary_10_3390_app15094700 crossref_primary_10_1016_j_swevo_2019_02_010 crossref_primary_10_1016_j_asoc_2022_108532 crossref_primary_10_1016_j_ins_2022_12_079 crossref_primary_10_1016_j_artint_2019_08_003 crossref_primary_10_1016_j_ins_2022_12_076 crossref_primary_10_1109_TEVC_2018_2883094 crossref_primary_10_1109_TEVC_2019_2949841 crossref_primary_10_1016_j_neucom_2019_02_002 crossref_primary_10_1016_j_watres_2019_114863 crossref_primary_10_1109_TEVC_2022_3192100 crossref_primary_10_1016_j_asoc_2020_106139 crossref_primary_10_1016_j_inffus_2025_103524 crossref_primary_10_1109_TEVC_2019_2909636 crossref_primary_10_1109_TITS_2025_3559058 crossref_primary_10_1145_3465335 crossref_primary_10_1109_TEVC_2019_2958921 crossref_primary_10_1007_s11047_022_09889_z crossref_primary_10_1016_j_knosys_2018_05_015 crossref_primary_10_1109_MCI_2021_3129961 crossref_primary_10_1016_j_asoc_2025_113106 crossref_primary_10_1016_j_swevo_2021_100987 crossref_primary_10_1007_s00500_020_05369_7 crossref_primary_10_1109_TCYB_2019_2906383 crossref_primary_10_1016_j_swevo_2018_05_004 crossref_primary_10_1109_TEVC_2023_3294307 crossref_primary_10_1016_j_asoc_2022_109412 crossref_primary_10_1108_SSMT_08_2024_0051 crossref_primary_10_1109_TEVC_2021_3076514 crossref_primary_10_1016_j_swevo_2021_100980 crossref_primary_10_1016_j_cor_2022_106052 crossref_primary_10_1016_j_swevo_2021_100862 crossref_primary_10_1109_TEVC_2020_3047835 crossref_primary_10_3233_JIFS_189811 crossref_primary_10_1109_TEVC_2022_3219081 crossref_primary_10_1080_0305215X_2023_2283038 crossref_primary_10_1007_s13042_018_00919_w crossref_primary_10_1016_j_ins_2018_03_012 crossref_primary_10_1109_ACCESS_2018_2877402 crossref_primary_10_1016_j_asoc_2018_11_041 crossref_primary_10_1109_TEVC_2022_3219521 crossref_primary_10_1109_TSMC_2022_3221466 crossref_primary_10_1007_s40747_017_0061_9 crossref_primary_10_1109_ACCESS_2024_3458808 crossref_primary_10_1016_j_knosys_2022_108915 crossref_primary_10_1109_JIOT_2021_3079928 crossref_primary_10_1109_TEVC_2020_2991040 crossref_primary_10_3390_en15051884 crossref_primary_10_1002_tee_23796 crossref_primary_10_1016_j_swevo_2019_100599 crossref_primary_10_1109_TCYB_2022_3165557 crossref_primary_10_1109_TEVC_2020_3013290 crossref_primary_10_3390_a15110420 crossref_primary_10_1016_j_swevo_2019_03_011 crossref_primary_10_1109_TEVC_2022_3144880 crossref_primary_10_1111_itor_13169 crossref_primary_10_1016_j_eswa_2022_119258 crossref_primary_10_1016_j_eswa_2021_116343 crossref_primary_10_1016_j_trb_2025_103238 crossref_primary_10_1109_TITS_2023_3237387 crossref_primary_10_1016_j_ins_2019_06_051 crossref_primary_10_1109_JAS_2021_1003817 crossref_primary_10_1016_j_ress_2022_108970 crossref_primary_10_1049_cth2_12399 crossref_primary_10_1109_ACCESS_2019_2920698 crossref_primary_10_1109_TEVC_2022_3205165 crossref_primary_10_1016_j_asoc_2021_107299 crossref_primary_10_1016_j_swevo_2021_100961 crossref_primary_10_1016_j_asoc_2019_105731 crossref_primary_10_1016_j_ins_2020_08_084 crossref_primary_10_1016_j_swevo_2021_100960 crossref_primary_10_3390_math8101822 crossref_primary_10_1016_j_asoc_2021_107613 crossref_primary_10_1016_j_cie_2022_108389 crossref_primary_10_1109_ACCESS_2020_3032240 crossref_primary_10_1109_ACCESS_2018_2832181 crossref_primary_10_1016_j_asoc_2021_107853 crossref_primary_10_1109_TEVC_2018_2844286 crossref_primary_10_1016_j_rico_2025_100606 crossref_primary_10_1109_TETCI_2018_2849380 crossref_primary_10_1007_s00607_024_01272_3 crossref_primary_10_1016_j_knosys_2023_110708 crossref_primary_10_1016_j_swevo_2019_03_009 crossref_primary_10_1016_j_asoc_2019_02_026 crossref_primary_10_1016_j_rineng_2025_106941 crossref_primary_10_1007_s40747_023_01161_w crossref_primary_10_1109_TCYB_2019_2960302 crossref_primary_10_1109_TEVC_2016_2631279 crossref_primary_10_1109_TEVC_2018_2866854 crossref_primary_10_1145_3376916 crossref_primary_10_1007_s40747_024_01505_0 crossref_primary_10_1016_j_swevo_2019_03_006 crossref_primary_10_1109_TEVC_2025_3531950 crossref_primary_10_1016_j_ins_2018_10_027 crossref_primary_10_1016_j_knosys_2022_108732 crossref_primary_10_1007_s10710_017_9310_3 crossref_primary_10_1109_MCI_2019_2919398 crossref_primary_10_1109_TEVC_2018_2865590 crossref_primary_10_1016_j_ins_2024_121608 crossref_primary_10_1016_j_ejor_2025_08_030 crossref_primary_10_1007_s10664_019_09761_2 crossref_primary_10_1016_j_knosys_2022_108738 crossref_primary_10_1007_s11227_024_06821_3 crossref_primary_10_1109_ACCESS_2023_3331747 crossref_primary_10_1109_TCYB_2018_2834466 crossref_primary_10_1109_TEVC_2020_3035825 crossref_primary_10_1007_s12559_018_9620_7 crossref_primary_10_1016_j_swevo_2020_100825 crossref_primary_10_3390_a14090266 crossref_primary_10_1016_j_asoc_2019_105879 crossref_primary_10_1109_TEVC_2016_2639360 crossref_primary_10_1109_TEVC_2017_2776226 crossref_primary_10_1109_TEVC_2018_2836912 crossref_primary_10_3389_fenrg_2022_928744 crossref_primary_10_1109_TEVC_2016_2608507 crossref_primary_10_1016_j_ins_2021_03_008 crossref_primary_10_1016_j_ins_2023_119932 crossref_primary_10_1016_j_cie_2023_109713 crossref_primary_10_1109_ACCESS_2024_3486255 crossref_primary_10_1016_j_asoc_2023_110295 crossref_primary_10_1016_j_asoc_2024_111881 crossref_primary_10_1016_j_swevo_2023_101405 crossref_primary_10_1007_s40747_020_00136_5 crossref_primary_10_1109_TEVC_2023_3314152 crossref_primary_10_1016_j_swevo_2023_101408 crossref_primary_10_1016_j_asoc_2018_05_014 crossref_primary_10_1109_ACCESS_2020_2973670 crossref_primary_10_1109_TEVC_2017_2749619 crossref_primary_10_1109_TCYB_2021_3086501 crossref_primary_10_1109_TCYB_2019_2922287 crossref_primary_10_1016_j_ins_2019_11_047 crossref_primary_10_1109_TEVC_2022_3162993 crossref_primary_10_1109_TEVC_2022_3212058 crossref_primary_10_1007_s11518_019_5407_y crossref_primary_10_1016_j_knosys_2021_107263 crossref_primary_10_1016_j_ins_2019_06_016 crossref_primary_10_1016_j_ins_2020_02_056 crossref_primary_10_1109_TSMC_2022_3186546 crossref_primary_10_1016_j_ins_2024_121032 crossref_primary_10_1007_s00521_023_08950_x crossref_primary_10_3390_su141811498 crossref_primary_10_1016_j_swevo_2023_101410 crossref_primary_10_1109_TEVC_2023_3321603 crossref_primary_10_1145_3674152 crossref_primary_10_1109_ACCESS_2020_2991752 crossref_primary_10_1016_j_swevo_2017_01_002 crossref_primary_10_1016_j_engappai_2023_106192 crossref_primary_10_1016_j_ins_2024_121837 crossref_primary_10_1109_TEVC_2018_2869001 crossref_primary_10_1007_s10489_020_01976_x crossref_primary_10_1016_j_ins_2021_08_054 crossref_primary_10_1109_TCYB_2020_3031642 crossref_primary_10_1016_j_asoc_2024_112272 crossref_primary_10_1016_j_knosys_2021_107392 crossref_primary_10_3390_w11102021 crossref_primary_10_1016_j_ins_2018_07_012 crossref_primary_10_1109_ACCESS_2020_3029968 crossref_primary_10_1016_j_swevo_2023_101308 crossref_primary_10_1109_TEVC_2023_3287399 crossref_primary_10_1162_evco_a_00269 crossref_primary_10_1016_j_swevo_2023_101305 crossref_primary_10_1109_TEVC_2023_3246922 crossref_primary_10_1007_s40747_021_00590_9 crossref_primary_10_1109_ACCESS_2024_3505436 crossref_primary_10_1109_TEVC_2019_2913831 crossref_primary_10_1109_TEVC_2023_3234269 crossref_primary_10_1109_TCYB_2020_2971638 crossref_primary_10_1016_j_eswa_2023_120451 crossref_primary_10_1109_TEVC_2020_2964705 crossref_primary_10_1016_j_eswa_2023_123044 crossref_primary_10_1109_TCYB_2017_2762701 crossref_primary_10_1016_j_ins_2023_118996 crossref_primary_10_1109_TEVC_2020_2966014 crossref_primary_10_1109_TCYB_2019_2918087 crossref_primary_10_3390_w11122644 crossref_primary_10_1016_j_ins_2023_119289 crossref_primary_10_1016_j_engappai_2021_104385 crossref_primary_10_1109_TEVC_2017_2725902 crossref_primary_10_1002_2050_7038_12935 crossref_primary_10_1007_s10489_020_01988_7 crossref_primary_10_1007_s13748_019_00174_2 crossref_primary_10_1109_TCYB_2018_2884083 crossref_primary_10_1016_j_ins_2022_10_077 crossref_primary_10_1109_ACCESS_2020_3032639 crossref_primary_10_1109_TEVC_2017_2695579 crossref_primary_10_1007_s11042_022_12974_1 crossref_primary_10_1016_j_asoc_2017_07_052 crossref_primary_10_1109_TII_2022_3195170 crossref_primary_10_1007_s40031_021_00703_5 crossref_primary_10_1016_j_swevo_2019_100605 crossref_primary_10_3390_math11204247 crossref_primary_10_1109_TEVC_2018_2848254 crossref_primary_10_1016_j_swevo_2019_100603 crossref_primary_10_1038_s41598_025_98212_8 crossref_primary_10_1093_jcde_qwae055 crossref_primary_10_1109_ACCESS_2019_2923422 crossref_primary_10_1007_s10489_022_03326_5 crossref_primary_10_1109_TCYB_2021_3051078 crossref_primary_10_1016_j_knosys_2021_106922 crossref_primary_10_1109_TEVC_2021_3061545 crossref_primary_10_1016_j_eswa_2022_118333 crossref_primary_10_1109_ACCESS_2017_2751071 crossref_primary_10_1007_s00500_020_04732_y crossref_primary_10_1109_TEVC_2021_3099487 crossref_primary_10_3390_math11020413 crossref_primary_10_1007_s11633_020_1253_0 crossref_primary_10_1016_j_swevo_2019_100619 crossref_primary_10_1109_TCYB_2022_3165374 crossref_primary_10_1109_TEVC_2022_3228516 crossref_primary_10_1016_j_swevo_2024_101667 crossref_primary_10_1109_TEVC_2022_3230828 crossref_primary_10_3390_agriculture13071430 crossref_primary_10_1016_j_ndteint_2025_103464 crossref_primary_10_3390_math11030493 crossref_primary_10_3390_biomimetics9070417 crossref_primary_10_1109_TSMC_2023_3299570 crossref_primary_10_1109_TEVC_2019_2926151 crossref_primary_10_1016_j_swevo_2022_101185 crossref_primary_10_1007_s10489_017_0958_4 crossref_primary_10_1109_TEVC_2020_3011829 crossref_primary_10_1162_evco_a_00223 crossref_primary_10_1109_TCYB_2019_2960039 crossref_primary_10_1109_TEVC_2018_2865931 crossref_primary_10_1109_ACCESS_2020_3022164 crossref_primary_10_1016_j_ins_2023_119260 crossref_primary_10_1109_TCYB_2022_3182167 crossref_primary_10_1109_TEVC_2021_3093114 crossref_primary_10_12677_AAM_2022_1112915 crossref_primary_10_1016_j_eswa_2022_119080 crossref_primary_10_1109_TSMC_2019_2956288 crossref_primary_10_1109_TEVC_2018_2872453 crossref_primary_10_1109_TSMC_2019_2898456 crossref_primary_10_1007_s00521_022_07302_5 crossref_primary_10_1109_ACCESS_2022_3218058 crossref_primary_10_1109_ACCESS_2023_3234226 crossref_primary_10_1109_TEVC_2018_2881153 crossref_primary_10_1007_s10489_021_02669_9 crossref_primary_10_1016_j_conengprac_2021_104733 crossref_primary_10_1162_evco_a_00226 crossref_primary_10_3233_ICA_170542 crossref_primary_10_1016_j_ins_2019_03_016 crossref_primary_10_1109_TEVC_2024_3400801 crossref_primary_10_1016_j_asoc_2020_106872 crossref_primary_10_1016_j_swevo_2022_101168 crossref_primary_10_1016_j_swevo_2024_101641 crossref_primary_10_1093_jcde_qwae022 crossref_primary_10_1007_s00521_019_04660_5 |
| Cites_doi | 10.1109/TEVC.2015.2443001 10.1109/ICSMC.2009.5346628 10.1109/TEVC.2012.2185847 10.1145/2576768.2598297 10.1109/TEVC.2015.2505784 10.1162/106365600568202 10.1007/3-540-44719-9_6 10.1109/MCDM.2014.7007205 10.1007/1-84628-137-7_6 10.1007/978-3-540-70928-2_5 10.1109/4235.996017 10.1109/TEVC.2005.861417 10.1109/TEVC.2013.2281534 10.1109/TEVC.2002.802873 10.1016/j.ejor.2006.08.008 10.1109/GEFS.2008.4484566 10.1109/TEVC.2010.2077298 10.1109/SSCI.2015.127 10.1109/TEVC.2007.910138 10.1109/TEVC.2014.2339823 10.1162/evco.1994.2.3.221 10.1145/2792984 10.1007/3-540-36970-8_27 10.1109/CEC.2007.4424990 10.1109/TEVC.2013.2281535 10.1162/EVCO_a_00009 10.1007/978-3-540-70928-2_56 10.1109/4235.797969 10.1109/TEVC.2014.2373386 10.1007/s10589-014-9644-1 10.1109/ICEC.1994.350037 10.1109/TEVC.2015.2459718 10.1145/1830483.1830577 10.1109/5326.704576 10.1145/1276958.1277115 10.1007/978-3-540-70928-2_55 10.1109/TEVC.2007.892759 10.1109/TEVC.2014.2315442 10.1007/s12065-009-0031-2 10.1109/TEVC.2015.2420112 10.1016/S0377-2217(01)00104-7 10.1109/ICNC.2011.6022367 10.1109/ICEC.1996.542345 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION |
| DOI | 10.1109/TEVC.2016.2587749 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0026 |
| EndPage | 190 |
| ExternalDocumentID | 10_1109_TEVC_2016_2587749 7509682 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science grantid: KAKENHI 24300090; KAKENHI 26540128; KAKENHI 16H02877 funderid: 10.13039/501100001691 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IF 6IK 6IL 6IN 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ADZIZ AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 EBS EJD ESBDL HZ~ H~9 IEGSK IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RIL RNS TN5 VH1 AAYXX CITATION |
| ID | FETCH-LOGICAL-c331t-7cd9a863802c629fc9d183080e5b978a6a82f6ac532d5194c7376a5c0c0c167a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 461 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399011100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1089-778X |
| IngestDate | Sat Nov 29 03:13:47 EST 2025 Tue Nov 18 22:32:15 EST 2025 Tue Aug 26 16:43:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-7cd9a863802c629fc9d183080e5b978a6a82f6ac532d5194c7376a5c0c0c167a3 |
| ORCID | 0000-0001-9186-6472 0000-0003-4853-1305 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/7509682 |
| PageCount | 22 |
| ParticipantIDs | ieee_primary_7509682 crossref_primary_10_1109_TEVC_2016_2587749 crossref_citationtrail_10_1109_TEVC_2016_2587749 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-April 2017-4-00 |
| PublicationDateYYYYMMDD | 2017-04-01 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-April |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on evolutionary computation |
| PublicationTitleAbbrev | TEVC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 ref15 ref14 ref10 ref17 ref16 ref19 ref18 (ref46) 2015 ref51 ref50 ref45 ref42 ref41 ref44 ref43 (ref48) 2016 ref49 ref7 hughes (ref24) 2005 ref9 ref4 ref3 ref6 ref5 ref40 deb (ref36) 2006 ref35 ref34 ref37 ref31 ref30 ref33 ref32 ref1 ref39 ref38 fonseca (ref2) 1993 zitzler (ref8) 2001 ref23 brockhoff (ref11) 2007 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 (ref47) 2016 |
| References_xml | – ident: ref28 doi: 10.1109/TEVC.2015.2443001 – ident: ref16 doi: 10.1109/ICSMC.2009.5346628 – ident: ref37 doi: 10.1109/TEVC.2012.2185847 – start-page: 222 year: 2005 ident: ref24 article-title: Evolutionary many-objective optimisation: Many once or one many? publication-title: Proc IEEE Congr Evol Comput – ident: ref45 doi: 10.1145/2576768.2598297 – year: 2016 ident: ref47 publication-title: Yuan's Many-Objective EA Codes – ident: ref38 doi: 10.1109/TEVC.2015.2505784 – ident: ref5 doi: 10.1162/106365600568202 – ident: ref39 doi: 10.1007/3-540-44719-9_6 – ident: ref1 doi: 10.1109/MCDM.2014.7007205 – ident: ref9 doi: 10.1007/1-84628-137-7_6 – ident: ref17 doi: 10.1007/978-3-540-70928-2_5 – ident: ref7 doi: 10.1109/4235.996017 – ident: ref10 doi: 10.1109/TEVC.2005.861417 – ident: ref44 doi: 10.1109/TEVC.2013.2281534 – ident: ref43 doi: 10.1109/TEVC.2002.802873 – ident: ref22 doi: 10.1016/j.ejor.2006.08.008 – ident: ref12 doi: 10.1109/GEFS.2008.4484566 – ident: ref49 doi: 10.1109/TEVC.2010.2077298 – start-page: 3353 year: 2006 ident: ref36 article-title: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems publication-title: Proc IEEE Congr Evol Comput – ident: ref33 doi: 10.1109/SSCI.2015.127 – ident: ref14 doi: 10.1109/TEVC.2007.910138 – ident: ref27 doi: 10.1109/TEVC.2014.2339823 – ident: ref3 doi: 10.1162/evco.1994.2.3.221 – ident: ref35 doi: 10.1145/2792984 – ident: ref13 doi: 10.1007/3-540-36970-8_27 – ident: ref20 doi: 10.1109/CEC.2007.4424990 – year: 2016 ident: ref48 publication-title: MOEA/DD Code – ident: ref30 doi: 10.1109/TEVC.2013.2281535 – ident: ref23 doi: 10.1162/EVCO_a_00009 – ident: ref15 doi: 10.1007/978-3-540-70928-2_56 – ident: ref6 doi: 10.1109/4235.797969 – ident: ref31 doi: 10.1109/TEVC.2014.2373386 – ident: ref34 doi: 10.1007/s10589-014-9644-1 – ident: ref4 doi: 10.1109/ICEC.1994.350037 – ident: ref32 doi: 10.1109/TEVC.2015.2459718 – ident: ref50 doi: 10.1145/1830483.1830577 – ident: ref41 doi: 10.1109/5326.704576 – ident: ref19 doi: 10.1145/1276958.1277115 – year: 2001 ident: ref8 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm – ident: ref21 doi: 10.1007/978-3-540-70928-2_55 – ident: ref25 doi: 10.1109/TEVC.2007.892759 – ident: ref26 doi: 10.1109/TEVC.2014.2315442 – year: 2015 ident: ref46 publication-title: jMetal Website – ident: ref18 doi: 10.1007/s12065-009-0031-2 – ident: ref29 doi: 10.1109/TEVC.2015.2420112 – ident: ref42 doi: 10.1016/S0377-2217(01)00104-7 – start-page: 416 year: 1993 ident: ref2 article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization publication-title: Proc 5th Int Conf Genetic Algorithms – ident: ref51 doi: 10.1109/ICNC.2011.6022367 – year: 2007 ident: ref11 article-title: Offline and online objective reduction in evolutionary multiobjective optimization based on objective conflicts – ident: ref40 doi: 10.1109/ICEC.1996.542345 |
| SSID | ssj0014519 |
| Score | 2.6648898 |
| Snippet | Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 169 |
| SubjectTerms | Convergence Decomposition-based evolutionary algorithms Evolutionary computation Maintenance engineering many-objective evolutionary algorithms many-objective optimization many-objective test problems Optimization Performance evaluation Search problems Shape |
| Title | Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes |
| URI | https://ieeexplore.ieee.org/document/7509682 |
| Volume | 21 |
| WOSCitedRecordID | wos000399011100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0026 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014519 issn: 1089-778X databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QeNCDKGjEX-nBk7EwOrb2HREhXkQS0HBbStsJBhlhYOJ_b7uNiYkxMbssS5ss_dr3vfa9vg-ha8NxynGpIKB9IE3GFOGhkoSFIYC0lOzJRGyC9Xp8NIJ-Ad3md2G01knyma7Z1ySWryK5tkdldctuPjcGd4cxlt7VyiMGtkxKmkwPxmPkoyyC2XCgPuy8tG0Sl1-jHjfuDvzgoC1RlYRTuqX__c0hOsh8R9xKwT5CBT0vo9JGlwFny7SM9reKDFaQ6n_fDcBRiO-1TSPPcrXInWExhR-NSSBP47fU-uHW7DVaTleT9xgP7FH56-zTdLNquTGO5rhvlXEj3LW1D_BgIhY6PkbP3c6w_UAybQUiXbexIkwqENwsPodKn0IoQRlgjPuovbHZWApfcBr6QnouVWZkm5IZSyQ86Zin4TPhnqDiPJrrU4SVliDAlaE_dpuUatCKS-MWgKspcO1VkbMZ7UBmhcet_sUsSDYgDgQWoMACFGQAVdFN3mWRVt34q3HFgpM3zHA5-_3zOdqjlpmT5JsLVFwt1_oS7cqP1TReXiVz6guUIsoV |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5EBfVgfWJ95uBJjG6zr8yxVoui1oJVelvSJNtWarf0IfjvTXa3tYIIspdlSWDJl8w3yUzmAzg1HKcclwmKOkDqhaGiPFaShnGMKC0l-zIVmwhrNd5sYn0Bzmd3YbTWafKZvrCvaSxfJXJij8ouLbsF3BjcJd_zWCm7rTWLGdhCKVk6PRqfkTfzGGbJwcvGzWvFpnEFF8znxuHBHyw0J6uSskq18L__2YD13Hsk5QzuTVjQ_S0oTJUZSL5Qt2BtrszgNqj69-0AksTkWttE8jxbi14ZHlPk0RgF-tR6y-wfKffaybA77ryPyLM9LG_3Pk03q5c7Ikmf1K02bkKqtvoBee6IgR7twEv1plG5pbm6ApWuWxrTUCoU3Cw_h8mAYSxRGWiMA6n9ltlaikBwFgdC-i5TZmQ9GRpbJHzpmKcUhMLdhcV-0td7QJSWKNCVcdByPcY0asWlcQzQ1Qy59ovgTEc7knnpcauA0YvSLYiDkQUosgBFOUBFOJt1GWR1N_5qvG3BmTXMcdn__fMJrNw2Hh-ih7va_QGsMsvTaSrOISyOhxN9BMvyY9wdDY_T-fUFQGXNXA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+Decomposition-Based+Many-Objective+Algorithms+Strongly+Depends+on+Pareto+Front+Shapes&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Ishibuchi%2C+Hisao&rft.au=Setoguchi%2C+Yu&rft.au=Masuda%2C+Hiroyuki&rft.au=Nojima%2C+Yusuke&rft.date=2017-04-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=21&rft.issue=2&rft.spage=169&rft.epage=190&rft_id=info:doi/10.1109%2FTEVC.2016.2587749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2016_2587749 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon |