Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes

Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the literature. Those algorithms often show surprisingly good performance on widely used DTLZ and WFG test problems. The performance of those algorithms ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation Jg. 21; H. 2; S. 169 - 190
Hauptverfasser: Ishibuchi, Hisao, Setoguchi, Yu, Masuda, Hiroyuki, Nojima, Yusuke
Format: Journal Article
Sprache:Englisch
Veröffentlicht: IEEE 01.04.2017
Schlagworte:
ISSN:1089-778X, 1941-0026
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the literature. Those algorithms often show surprisingly good performance on widely used DTLZ and WFG test problems. The performance of those algorithms has continued to be improved. The aim of this paper is to show our concern that such a performance improvement race may lead to the overspecialization of developed algorithms for the frequently used many-objective test problems. In this paper, we first explain the DTLZ and WFG test problems. Next, we explain many-objective evolutionary algorithms characterized by the use of systematically generated weight vectors. Then we discuss the relation between the features of the test problems and the search mechanisms of weight vector-based algorithms such as multiobjective evolutionary algorithm based on decomposition (MOEA/D), nondominated sorting genetic algorithm III (NSGA-III), MOEA/dominance and decomposition (MOEA/DD), and θ-dominance based evolutionary algorithm (θ-DEA). Through computational experiments, we demonstrate that a slight change in the problem formulations of DTLZ and WFG deteriorates the performance of those algorithms. After explaining the reason for the performance deterioration, we discuss the necessity of more general test problems and more flexible algorithms.
AbstractList Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the literature. Those algorithms often show surprisingly good performance on widely used DTLZ and WFG test problems. The performance of those algorithms has continued to be improved. The aim of this paper is to show our concern that such a performance improvement race may lead to the overspecialization of developed algorithms for the frequently used many-objective test problems. In this paper, we first explain the DTLZ and WFG test problems. Next, we explain many-objective evolutionary algorithms characterized by the use of systematically generated weight vectors. Then we discuss the relation between the features of the test problems and the search mechanisms of weight vector-based algorithms such as multiobjective evolutionary algorithm based on decomposition (MOEA/D), nondominated sorting genetic algorithm III (NSGA-III), MOEA/dominance and decomposition (MOEA/DD), and θ-dominance based evolutionary algorithm (θ-DEA). Through computational experiments, we demonstrate that a slight change in the problem formulations of DTLZ and WFG deteriorates the performance of those algorithms. After explaining the reason for the performance deterioration, we discuss the necessity of more general test problems and more flexible algorithms.
Author Setoguchi, Yu
Ishibuchi, Hisao
Nojima, Yusuke
Masuda, Hiroyuki
Author_xml – sequence: 1
  givenname: Hisao
  surname: Ishibuchi
  fullname: Ishibuchi, Hisao
  email: hisaoi@cs.osakafu-u.ac.jp
  organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
– sequence: 2
  givenname: Yu
  surname: Setoguchi
  fullname: Setoguchi, Yu
  email: yu.setoguchi@ci.cs.osakafu-u.ac.jp
  organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
– sequence: 3
  givenname: Hiroyuki
  surname: Masuda
  fullname: Masuda, Hiroyuki
  email: hiroyuki.masuda@ci.cs.osakafu-u.ac.jp
  organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
– sequence: 4
  givenname: Yusuke
  surname: Nojima
  fullname: Nojima, Yusuke
  email: nojima@cs.osakafu-u.ac.jp
  organization: Dept. of Comput. Sci. & Intell. Syst., Osaka Prefecture Univ., Sakai, Japan
BookMark eNp9kFtLwzAUgINMcJv-APElf6AzlzaXxzk3FSYbbIpvJUvTraNNShKE_XtbNnzwQc7DOXD4zuUbgYF11gBwj9EEYyQft_PP2YQgzCYkE5yn8goMsUxxghBhg65GQiaci68bMArhiBBOMyyHoFgbXzrfKKsNdCV8Nto1rQtVrJxNnlQwBXxX9pSsdkejY_Vt4LTeO1_FQxPgJnpn9_Wpw1pjiwCdhWvlTXRw0XUi3BxUa8ItuC5VHczdJY_Bx2K-nb0my9XL22y6TDSlOCZcF1IJRgUimhFZallgQZFAJttJLhRTgpRM6YySojs-1ZxypjKNusCMKzoG-DxXexeCN2Xe-qpR_pRjlPea8l5T3mvKL5o6hv9hdBVV_330qqr_JR_OZGWM-d3EMySZIPQHLkZ4dQ
CODEN ITEVF5
CitedBy_id crossref_primary_10_1016_j_swevo_2019_06_001
crossref_primary_10_1016_j_swevo_2022_101082
crossref_primary_10_1007_s41965_024_00165_w
crossref_primary_10_1109_TCYB_2021_3082200
crossref_primary_10_1109_TEVC_2018_2874465
crossref_primary_10_1109_TCYB_2020_3008697
crossref_primary_10_3390_math8101651
crossref_primary_10_1016_j_procs_2018_07_285
crossref_primary_10_1016_j_apenergy_2024_124325
crossref_primary_10_3233_JIFS_212426
crossref_primary_10_1016_j_cor_2018_12_003
crossref_primary_10_1016_j_ins_2020_11_008
crossref_primary_10_1109_TEVC_2020_2978158
crossref_primary_10_1016_j_swevo_2024_101515
crossref_primary_10_1109_TEVC_2020_2987559
crossref_primary_10_1016_j_asoc_2024_111369
crossref_primary_10_1016_j_swevo_2024_101516
crossref_primary_10_1038_s41598_022_10997_0
crossref_primary_10_1016_j_neunet_2025_107904
crossref_primary_10_1109_TEVC_2023_3349313
crossref_primary_10_1109_TSMC_2019_2930737
crossref_primary_10_1016_j_swevo_2022_101079
crossref_primary_10_1016_j_swevo_2020_100669
crossref_primary_10_1109_ACCESS_2020_2999417
crossref_primary_10_1016_j_asoc_2024_111807
crossref_primary_10_1016_j_swevo_2022_101074
crossref_primary_10_1109_TCYB_2017_2737554
crossref_primary_10_1080_00207543_2023_2269584
crossref_primary_10_1016_j_asoc_2022_108505
crossref_primary_10_1109_TEVC_2017_2785224
crossref_primary_10_1109_TEVC_2024_3405197
crossref_primary_10_1109_TCYB_2019_2930979
crossref_primary_10_1109_MCI_2017_2742868
crossref_primary_10_1109_TEVC_2019_2899030
crossref_primary_10_1016_j_ins_2019_01_049
crossref_primary_10_1109_TCYB_2018_2883914
crossref_primary_10_1016_j_asoc_2023_110688
crossref_primary_10_1016_j_ins_2019_12_011
crossref_primary_10_1109_TEVC_2019_2931191
crossref_primary_10_1109_TEVC_2021_3095481
crossref_primary_10_1155_2020_9474580
crossref_primary_10_1155_2021_4296642
crossref_primary_10_1016_j_knosys_2022_108677
crossref_primary_10_1016_j_neucom_2020_01_114
crossref_primary_10_1007_s40747_019_0113_4
crossref_primary_10_1016_j_ins_2018_05_013
crossref_primary_10_1109_TCYB_2021_3056176
crossref_primary_10_1115_1_4039450
crossref_primary_10_1007_s40747_020_00230_8
crossref_primary_10_1016_j_asoc_2020_106316
crossref_primary_10_1016_j_cie_2024_110731
crossref_primary_10_1016_j_swevo_2023_101262
crossref_primary_10_1109_TCYB_2019_2949204
crossref_primary_10_1109_ACCESS_2021_3070071
crossref_primary_10_1109_ACCESS_2021_3101899
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1109_TEVC_2017_2707980
crossref_primary_10_1007_s10489_020_01969_w
crossref_primary_10_1109_TEVC_2021_3078478
crossref_primary_10_1109_TCYB_2019_2932451
crossref_primary_10_1109_TCYB_2018_2819360
crossref_primary_10_1016_j_asoc_2018_12_011
crossref_primary_10_1007_s10489_021_03135_2
crossref_primary_10_1016_j_swevo_2020_100647
crossref_primary_10_1016_j_swevo_2020_100644
crossref_primary_10_1109_TCYB_2017_2737519
crossref_primary_10_1109_TEVC_2022_3188064
crossref_primary_10_1155_2021_6614283
crossref_primary_10_1016_j_ins_2020_12_025
crossref_primary_10_1109_TEVC_2018_2794319
crossref_primary_10_1109_TCYB_2018_2872803
crossref_primary_10_1108_IJICC_05_2017_0050
crossref_primary_10_1016_j_asoc_2018_08_020
crossref_primary_10_1109_TCYB_2020_3016426
crossref_primary_10_1080_0305215X_2024_2448569
crossref_primary_10_1016_j_ejor_2021_10_033
crossref_primary_10_1016_j_ins_2021_06_068
crossref_primary_10_1016_j_ins_2022_11_155
crossref_primary_10_1109_TEVC_2018_2866927
crossref_primary_10_1109_TCYB_2023_3312476
crossref_primary_10_1002_widm_1267
crossref_primary_10_1109_TCYB_2019_2896021
crossref_primary_10_3390_app15094700
crossref_primary_10_1016_j_swevo_2019_02_010
crossref_primary_10_1016_j_asoc_2022_108532
crossref_primary_10_1016_j_ins_2022_12_079
crossref_primary_10_1016_j_artint_2019_08_003
crossref_primary_10_1016_j_ins_2022_12_076
crossref_primary_10_1109_TEVC_2018_2883094
crossref_primary_10_1109_TEVC_2019_2949841
crossref_primary_10_1016_j_neucom_2019_02_002
crossref_primary_10_1016_j_watres_2019_114863
crossref_primary_10_1109_TEVC_2022_3192100
crossref_primary_10_1016_j_asoc_2020_106139
crossref_primary_10_1016_j_inffus_2025_103524
crossref_primary_10_1109_TEVC_2019_2909636
crossref_primary_10_1109_TITS_2025_3559058
crossref_primary_10_1145_3465335
crossref_primary_10_1109_TEVC_2019_2958921
crossref_primary_10_1007_s11047_022_09889_z
crossref_primary_10_1016_j_knosys_2018_05_015
crossref_primary_10_1109_MCI_2021_3129961
crossref_primary_10_1016_j_asoc_2025_113106
crossref_primary_10_1016_j_swevo_2021_100987
crossref_primary_10_1007_s00500_020_05369_7
crossref_primary_10_1109_TCYB_2019_2906383
crossref_primary_10_1016_j_swevo_2018_05_004
crossref_primary_10_1109_TEVC_2023_3294307
crossref_primary_10_1016_j_asoc_2022_109412
crossref_primary_10_1108_SSMT_08_2024_0051
crossref_primary_10_1109_TEVC_2021_3076514
crossref_primary_10_1016_j_swevo_2021_100980
crossref_primary_10_1016_j_cor_2022_106052
crossref_primary_10_1016_j_swevo_2021_100862
crossref_primary_10_1109_TEVC_2020_3047835
crossref_primary_10_3233_JIFS_189811
crossref_primary_10_1109_TEVC_2022_3219081
crossref_primary_10_1080_0305215X_2023_2283038
crossref_primary_10_1007_s13042_018_00919_w
crossref_primary_10_1016_j_ins_2018_03_012
crossref_primary_10_1109_ACCESS_2018_2877402
crossref_primary_10_1016_j_asoc_2018_11_041
crossref_primary_10_1109_TEVC_2022_3219521
crossref_primary_10_1109_TSMC_2022_3221466
crossref_primary_10_1007_s40747_017_0061_9
crossref_primary_10_1109_ACCESS_2024_3458808
crossref_primary_10_1016_j_knosys_2022_108915
crossref_primary_10_1109_JIOT_2021_3079928
crossref_primary_10_1109_TEVC_2020_2991040
crossref_primary_10_3390_en15051884
crossref_primary_10_1002_tee_23796
crossref_primary_10_1016_j_swevo_2019_100599
crossref_primary_10_1109_TCYB_2022_3165557
crossref_primary_10_1109_TEVC_2020_3013290
crossref_primary_10_3390_a15110420
crossref_primary_10_1016_j_swevo_2019_03_011
crossref_primary_10_1109_TEVC_2022_3144880
crossref_primary_10_1111_itor_13169
crossref_primary_10_1016_j_eswa_2022_119258
crossref_primary_10_1016_j_eswa_2021_116343
crossref_primary_10_1016_j_trb_2025_103238
crossref_primary_10_1109_TITS_2023_3237387
crossref_primary_10_1016_j_ins_2019_06_051
crossref_primary_10_1109_JAS_2021_1003817
crossref_primary_10_1016_j_ress_2022_108970
crossref_primary_10_1049_cth2_12399
crossref_primary_10_1109_ACCESS_2019_2920698
crossref_primary_10_1109_TEVC_2022_3205165
crossref_primary_10_1016_j_asoc_2021_107299
crossref_primary_10_1016_j_swevo_2021_100961
crossref_primary_10_1016_j_asoc_2019_105731
crossref_primary_10_1016_j_ins_2020_08_084
crossref_primary_10_1016_j_swevo_2021_100960
crossref_primary_10_3390_math8101822
crossref_primary_10_1016_j_asoc_2021_107613
crossref_primary_10_1016_j_cie_2022_108389
crossref_primary_10_1109_ACCESS_2020_3032240
crossref_primary_10_1109_ACCESS_2018_2832181
crossref_primary_10_1016_j_asoc_2021_107853
crossref_primary_10_1109_TEVC_2018_2844286
crossref_primary_10_1016_j_rico_2025_100606
crossref_primary_10_1109_TETCI_2018_2849380
crossref_primary_10_1007_s00607_024_01272_3
crossref_primary_10_1016_j_knosys_2023_110708
crossref_primary_10_1016_j_swevo_2019_03_009
crossref_primary_10_1016_j_asoc_2019_02_026
crossref_primary_10_1016_j_rineng_2025_106941
crossref_primary_10_1007_s40747_023_01161_w
crossref_primary_10_1109_TCYB_2019_2960302
crossref_primary_10_1109_TEVC_2016_2631279
crossref_primary_10_1109_TEVC_2018_2866854
crossref_primary_10_1145_3376916
crossref_primary_10_1007_s40747_024_01505_0
crossref_primary_10_1016_j_swevo_2019_03_006
crossref_primary_10_1109_TEVC_2025_3531950
crossref_primary_10_1016_j_ins_2018_10_027
crossref_primary_10_1016_j_knosys_2022_108732
crossref_primary_10_1007_s10710_017_9310_3
crossref_primary_10_1109_MCI_2019_2919398
crossref_primary_10_1109_TEVC_2018_2865590
crossref_primary_10_1016_j_ins_2024_121608
crossref_primary_10_1016_j_ejor_2025_08_030
crossref_primary_10_1007_s10664_019_09761_2
crossref_primary_10_1016_j_knosys_2022_108738
crossref_primary_10_1007_s11227_024_06821_3
crossref_primary_10_1109_ACCESS_2023_3331747
crossref_primary_10_1109_TCYB_2018_2834466
crossref_primary_10_1109_TEVC_2020_3035825
crossref_primary_10_1007_s12559_018_9620_7
crossref_primary_10_1016_j_swevo_2020_100825
crossref_primary_10_3390_a14090266
crossref_primary_10_1016_j_asoc_2019_105879
crossref_primary_10_1109_TEVC_2016_2639360
crossref_primary_10_1109_TEVC_2017_2776226
crossref_primary_10_1109_TEVC_2018_2836912
crossref_primary_10_3389_fenrg_2022_928744
crossref_primary_10_1109_TEVC_2016_2608507
crossref_primary_10_1016_j_ins_2021_03_008
crossref_primary_10_1016_j_ins_2023_119932
crossref_primary_10_1016_j_cie_2023_109713
crossref_primary_10_1109_ACCESS_2024_3486255
crossref_primary_10_1016_j_asoc_2023_110295
crossref_primary_10_1016_j_asoc_2024_111881
crossref_primary_10_1016_j_swevo_2023_101405
crossref_primary_10_1007_s40747_020_00136_5
crossref_primary_10_1109_TEVC_2023_3314152
crossref_primary_10_1016_j_swevo_2023_101408
crossref_primary_10_1016_j_asoc_2018_05_014
crossref_primary_10_1109_ACCESS_2020_2973670
crossref_primary_10_1109_TEVC_2017_2749619
crossref_primary_10_1109_TCYB_2021_3086501
crossref_primary_10_1109_TCYB_2019_2922287
crossref_primary_10_1016_j_ins_2019_11_047
crossref_primary_10_1109_TEVC_2022_3162993
crossref_primary_10_1109_TEVC_2022_3212058
crossref_primary_10_1007_s11518_019_5407_y
crossref_primary_10_1016_j_knosys_2021_107263
crossref_primary_10_1016_j_ins_2019_06_016
crossref_primary_10_1016_j_ins_2020_02_056
crossref_primary_10_1109_TSMC_2022_3186546
crossref_primary_10_1016_j_ins_2024_121032
crossref_primary_10_1007_s00521_023_08950_x
crossref_primary_10_3390_su141811498
crossref_primary_10_1016_j_swevo_2023_101410
crossref_primary_10_1109_TEVC_2023_3321603
crossref_primary_10_1145_3674152
crossref_primary_10_1109_ACCESS_2020_2991752
crossref_primary_10_1016_j_swevo_2017_01_002
crossref_primary_10_1016_j_engappai_2023_106192
crossref_primary_10_1016_j_ins_2024_121837
crossref_primary_10_1109_TEVC_2018_2869001
crossref_primary_10_1007_s10489_020_01976_x
crossref_primary_10_1016_j_ins_2021_08_054
crossref_primary_10_1109_TCYB_2020_3031642
crossref_primary_10_1016_j_asoc_2024_112272
crossref_primary_10_1016_j_knosys_2021_107392
crossref_primary_10_3390_w11102021
crossref_primary_10_1016_j_ins_2018_07_012
crossref_primary_10_1109_ACCESS_2020_3029968
crossref_primary_10_1016_j_swevo_2023_101308
crossref_primary_10_1109_TEVC_2023_3287399
crossref_primary_10_1162_evco_a_00269
crossref_primary_10_1016_j_swevo_2023_101305
crossref_primary_10_1109_TEVC_2023_3246922
crossref_primary_10_1007_s40747_021_00590_9
crossref_primary_10_1109_ACCESS_2024_3505436
crossref_primary_10_1109_TEVC_2019_2913831
crossref_primary_10_1109_TEVC_2023_3234269
crossref_primary_10_1109_TCYB_2020_2971638
crossref_primary_10_1016_j_eswa_2023_120451
crossref_primary_10_1109_TEVC_2020_2964705
crossref_primary_10_1016_j_eswa_2023_123044
crossref_primary_10_1109_TCYB_2017_2762701
crossref_primary_10_1016_j_ins_2023_118996
crossref_primary_10_1109_TEVC_2020_2966014
crossref_primary_10_1109_TCYB_2019_2918087
crossref_primary_10_3390_w11122644
crossref_primary_10_1016_j_ins_2023_119289
crossref_primary_10_1016_j_engappai_2021_104385
crossref_primary_10_1109_TEVC_2017_2725902
crossref_primary_10_1002_2050_7038_12935
crossref_primary_10_1007_s10489_020_01988_7
crossref_primary_10_1007_s13748_019_00174_2
crossref_primary_10_1109_TCYB_2018_2884083
crossref_primary_10_1016_j_ins_2022_10_077
crossref_primary_10_1109_ACCESS_2020_3032639
crossref_primary_10_1109_TEVC_2017_2695579
crossref_primary_10_1007_s11042_022_12974_1
crossref_primary_10_1016_j_asoc_2017_07_052
crossref_primary_10_1109_TII_2022_3195170
crossref_primary_10_1007_s40031_021_00703_5
crossref_primary_10_1016_j_swevo_2019_100605
crossref_primary_10_3390_math11204247
crossref_primary_10_1109_TEVC_2018_2848254
crossref_primary_10_1016_j_swevo_2019_100603
crossref_primary_10_1038_s41598_025_98212_8
crossref_primary_10_1093_jcde_qwae055
crossref_primary_10_1109_ACCESS_2019_2923422
crossref_primary_10_1007_s10489_022_03326_5
crossref_primary_10_1109_TCYB_2021_3051078
crossref_primary_10_1016_j_knosys_2021_106922
crossref_primary_10_1109_TEVC_2021_3061545
crossref_primary_10_1016_j_eswa_2022_118333
crossref_primary_10_1109_ACCESS_2017_2751071
crossref_primary_10_1007_s00500_020_04732_y
crossref_primary_10_1109_TEVC_2021_3099487
crossref_primary_10_3390_math11020413
crossref_primary_10_1007_s11633_020_1253_0
crossref_primary_10_1016_j_swevo_2019_100619
crossref_primary_10_1109_TCYB_2022_3165374
crossref_primary_10_1109_TEVC_2022_3228516
crossref_primary_10_1016_j_swevo_2024_101667
crossref_primary_10_1109_TEVC_2022_3230828
crossref_primary_10_3390_agriculture13071430
crossref_primary_10_1016_j_ndteint_2025_103464
crossref_primary_10_3390_math11030493
crossref_primary_10_3390_biomimetics9070417
crossref_primary_10_1109_TSMC_2023_3299570
crossref_primary_10_1109_TEVC_2019_2926151
crossref_primary_10_1016_j_swevo_2022_101185
crossref_primary_10_1007_s10489_017_0958_4
crossref_primary_10_1109_TEVC_2020_3011829
crossref_primary_10_1162_evco_a_00223
crossref_primary_10_1109_TCYB_2019_2960039
crossref_primary_10_1109_TEVC_2018_2865931
crossref_primary_10_1109_ACCESS_2020_3022164
crossref_primary_10_1016_j_ins_2023_119260
crossref_primary_10_1109_TCYB_2022_3182167
crossref_primary_10_1109_TEVC_2021_3093114
crossref_primary_10_12677_AAM_2022_1112915
crossref_primary_10_1016_j_eswa_2022_119080
crossref_primary_10_1109_TSMC_2019_2956288
crossref_primary_10_1109_TEVC_2018_2872453
crossref_primary_10_1109_TSMC_2019_2898456
crossref_primary_10_1007_s00521_022_07302_5
crossref_primary_10_1109_ACCESS_2022_3218058
crossref_primary_10_1109_ACCESS_2023_3234226
crossref_primary_10_1109_TEVC_2018_2881153
crossref_primary_10_1007_s10489_021_02669_9
crossref_primary_10_1016_j_conengprac_2021_104733
crossref_primary_10_1162_evco_a_00226
crossref_primary_10_3233_ICA_170542
crossref_primary_10_1016_j_ins_2019_03_016
crossref_primary_10_1109_TEVC_2024_3400801
crossref_primary_10_1016_j_asoc_2020_106872
crossref_primary_10_1016_j_swevo_2022_101168
crossref_primary_10_1016_j_swevo_2024_101641
crossref_primary_10_1093_jcde_qwae022
crossref_primary_10_1007_s00521_019_04660_5
Cites_doi 10.1109/TEVC.2015.2443001
10.1109/ICSMC.2009.5346628
10.1109/TEVC.2012.2185847
10.1145/2576768.2598297
10.1109/TEVC.2015.2505784
10.1162/106365600568202
10.1007/3-540-44719-9_6
10.1109/MCDM.2014.7007205
10.1007/1-84628-137-7_6
10.1007/978-3-540-70928-2_5
10.1109/4235.996017
10.1109/TEVC.2005.861417
10.1109/TEVC.2013.2281534
10.1109/TEVC.2002.802873
10.1016/j.ejor.2006.08.008
10.1109/GEFS.2008.4484566
10.1109/TEVC.2010.2077298
10.1109/SSCI.2015.127
10.1109/TEVC.2007.910138
10.1109/TEVC.2014.2339823
10.1162/evco.1994.2.3.221
10.1145/2792984
10.1007/3-540-36970-8_27
10.1109/CEC.2007.4424990
10.1109/TEVC.2013.2281535
10.1162/EVCO_a_00009
10.1007/978-3-540-70928-2_56
10.1109/4235.797969
10.1109/TEVC.2014.2373386
10.1007/s10589-014-9644-1
10.1109/ICEC.1994.350037
10.1109/TEVC.2015.2459718
10.1145/1830483.1830577
10.1109/5326.704576
10.1145/1276958.1277115
10.1007/978-3-540-70928-2_55
10.1109/TEVC.2007.892759
10.1109/TEVC.2014.2315442
10.1007/s12065-009-0031-2
10.1109/TEVC.2015.2420112
10.1016/S0377-2217(01)00104-7
10.1109/ICNC.2011.6022367
10.1109/ICEC.1996.542345
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TEVC.2016.2587749
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0026
EndPage 190
ExternalDocumentID 10_1109_TEVC_2016_2587749
7509682
Genre orig-research
GrantInformation_xml – fundername: Japan Society for the Promotion of Science
  grantid: KAKENHI 24300090; KAKENHI 26540128; KAKENHI 16H02877
  funderid: 10.13039/501100001691
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IF
6IK
6IL
6IN
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ADZIZ
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
EBS
EJD
ESBDL
HZ~
H~9
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RIL
RNS
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c331t-7cd9a863802c629fc9d183080e5b978a6a82f6ac532d5194c7376a5c0c0c167a3
IEDL.DBID RIE
ISICitedReferencesCount 461
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399011100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1089-778X
IngestDate Sat Nov 29 03:13:47 EST 2025
Tue Nov 18 22:32:15 EST 2025
Tue Aug 26 16:43:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-7cd9a863802c629fc9d183080e5b978a6a82f6ac532d5194c7376a5c0c0c167a3
ORCID 0000-0001-9186-6472
0000-0003-4853-1305
OpenAccessLink https://ieeexplore.ieee.org/document/7509682
PageCount 22
ParticipantIDs ieee_primary_7509682
crossref_primary_10_1109_TEVC_2016_2587749
crossref_citationtrail_10_1109_TEVC_2016_2587749
PublicationCentury 2000
PublicationDate 2017-April
2017-4-00
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-April
PublicationDecade 2010
PublicationTitle IEEE transactions on evolutionary computation
PublicationTitleAbbrev TEVC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref10
ref17
ref16
ref19
ref18
(ref46) 2015
ref51
ref50
ref45
ref42
ref41
ref44
ref43
(ref48) 2016
ref49
ref7
hughes (ref24) 2005
ref9
ref4
ref3
ref6
ref5
ref40
deb (ref36) 2006
ref35
ref34
ref37
ref31
ref30
ref33
ref32
ref1
ref39
ref38
fonseca (ref2) 1993
zitzler (ref8) 2001
ref23
brockhoff (ref11) 2007
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
(ref47) 2016
References_xml – ident: ref28
  doi: 10.1109/TEVC.2015.2443001
– ident: ref16
  doi: 10.1109/ICSMC.2009.5346628
– ident: ref37
  doi: 10.1109/TEVC.2012.2185847
– start-page: 222
  year: 2005
  ident: ref24
  article-title: Evolutionary many-objective optimisation: Many once or one many?
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref45
  doi: 10.1145/2576768.2598297
– year: 2016
  ident: ref47
  publication-title: Yuan's Many-Objective EA Codes
– ident: ref38
  doi: 10.1109/TEVC.2015.2505784
– ident: ref5
  doi: 10.1162/106365600568202
– ident: ref39
  doi: 10.1007/3-540-44719-9_6
– ident: ref1
  doi: 10.1109/MCDM.2014.7007205
– ident: ref9
  doi: 10.1007/1-84628-137-7_6
– ident: ref17
  doi: 10.1007/978-3-540-70928-2_5
– ident: ref7
  doi: 10.1109/4235.996017
– ident: ref10
  doi: 10.1109/TEVC.2005.861417
– ident: ref44
  doi: 10.1109/TEVC.2013.2281534
– ident: ref43
  doi: 10.1109/TEVC.2002.802873
– ident: ref22
  doi: 10.1016/j.ejor.2006.08.008
– ident: ref12
  doi: 10.1109/GEFS.2008.4484566
– ident: ref49
  doi: 10.1109/TEVC.2010.2077298
– start-page: 3353
  year: 2006
  ident: ref36
  article-title: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref33
  doi: 10.1109/SSCI.2015.127
– ident: ref14
  doi: 10.1109/TEVC.2007.910138
– ident: ref27
  doi: 10.1109/TEVC.2014.2339823
– ident: ref3
  doi: 10.1162/evco.1994.2.3.221
– ident: ref35
  doi: 10.1145/2792984
– ident: ref13
  doi: 10.1007/3-540-36970-8_27
– ident: ref20
  doi: 10.1109/CEC.2007.4424990
– year: 2016
  ident: ref48
  publication-title: MOEA/DD Code
– ident: ref30
  doi: 10.1109/TEVC.2013.2281535
– ident: ref23
  doi: 10.1162/EVCO_a_00009
– ident: ref15
  doi: 10.1007/978-3-540-70928-2_56
– ident: ref6
  doi: 10.1109/4235.797969
– ident: ref31
  doi: 10.1109/TEVC.2014.2373386
– ident: ref34
  doi: 10.1007/s10589-014-9644-1
– ident: ref4
  doi: 10.1109/ICEC.1994.350037
– ident: ref32
  doi: 10.1109/TEVC.2015.2459718
– ident: ref50
  doi: 10.1145/1830483.1830577
– ident: ref41
  doi: 10.1109/5326.704576
– ident: ref19
  doi: 10.1145/1276958.1277115
– year: 2001
  ident: ref8
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
– ident: ref21
  doi: 10.1007/978-3-540-70928-2_55
– ident: ref25
  doi: 10.1109/TEVC.2007.892759
– ident: ref26
  doi: 10.1109/TEVC.2014.2315442
– year: 2015
  ident: ref46
  publication-title: jMetal Website
– ident: ref18
  doi: 10.1007/s12065-009-0031-2
– ident: ref29
  doi: 10.1109/TEVC.2015.2420112
– ident: ref42
  doi: 10.1016/S0377-2217(01)00104-7
– start-page: 416
  year: 1993
  ident: ref2
  article-title: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
  publication-title: Proc 5th Int Conf Genetic Algorithms
– ident: ref51
  doi: 10.1109/ICNC.2011.6022367
– year: 2007
  ident: ref11
  article-title: Offline and online objective reduction in evolutionary multiobjective optimization based on objective conflicts
– ident: ref40
  doi: 10.1109/ICEC.1996.542345
SSID ssj0014519
Score 2.6648898
Snippet Recently, a number of high performance many-objective evolutionary algorithms with systematically generated weight vectors have been proposed in the...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 169
SubjectTerms Convergence
Decomposition-based evolutionary algorithms
Evolutionary computation
Maintenance engineering
many-objective evolutionary algorithms
many-objective optimization
many-objective test problems
Optimization
Performance evaluation
Search problems
Shape
Title Performance of Decomposition-Based Many-Objective Algorithms Strongly Depends on Pareto Front Shapes
URI https://ieeexplore.ieee.org/document/7509682
Volume 21
WOSCitedRecordID wos000399011100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0026
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014519
  issn: 1089-778X
  databaseCode: RIE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT8IwFG6QeNCDKGjEX-nBk7EwOrb2HREhXkQS0HBbStsJBhlhYOJ_b7uNiYkxMbssS5ss_dr3vfa9vg-ha8NxynGpIKB9IE3GFOGhkoSFIYC0lOzJRGyC9Xp8NIJ-Ad3md2G01knyma7Z1ySWryK5tkdldctuPjcGd4cxlt7VyiMGtkxKmkwPxmPkoyyC2XCgPuy8tG0Sl1-jHjfuDvzgoC1RlYRTuqX__c0hOsh8R9xKwT5CBT0vo9JGlwFny7SM9reKDFaQ6n_fDcBRiO-1TSPPcrXInWExhR-NSSBP47fU-uHW7DVaTleT9xgP7FH56-zTdLNquTGO5rhvlXEj3LW1D_BgIhY6PkbP3c6w_UAybQUiXbexIkwqENwsPodKn0IoQRlgjPuovbHZWApfcBr6QnouVWZkm5IZSyQ86Zin4TPhnqDiPJrrU4SVliDAlaE_dpuUatCKS-MWgKspcO1VkbMZ7UBmhcet_sUsSDYgDgQWoMACFGQAVdFN3mWRVt34q3HFgpM3zHA5-_3zOdqjlpmT5JsLVFwt1_oS7cqP1TReXiVz6guUIsoV
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5EBfVgfWJ95uBJjG6zr8yxVoui1oJVelvSJNtWarf0IfjvTXa3tYIIspdlSWDJl8w3yUzmAzg1HKcclwmKOkDqhaGiPFaShnGMKC0l-zIVmwhrNd5sYn0Bzmd3YbTWafKZvrCvaSxfJXJij8ouLbsF3BjcJd_zWCm7rTWLGdhCKVk6PRqfkTfzGGbJwcvGzWvFpnEFF8znxuHBHyw0J6uSskq18L__2YD13Hsk5QzuTVjQ_S0oTJUZSL5Qt2BtrszgNqj69-0AksTkWttE8jxbi14ZHlPk0RgF-tR6y-wfKffaybA77ryPyLM9LG_3Pk03q5c7Ikmf1K02bkKqtvoBee6IgR7twEv1plG5pbm6ApWuWxrTUCoU3Cw_h8mAYSxRGWiMA6n9ltlaikBwFgdC-i5TZmQ9GRpbJHzpmKcUhMLdhcV-0td7QJSWKNCVcdByPcY0asWlcQzQ1Qy59ovgTEc7knnpcauA0YvSLYiDkQUosgBFOUBFOJt1GWR1N_5qvG3BmTXMcdn__fMJrNw2Hh-ih7va_QGsMsvTaSrOISyOhxN9BMvyY9wdDY_T-fUFQGXNXA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+of+Decomposition-Based+Many-Objective+Algorithms+Strongly+Depends+on+Pareto+Front+Shapes&rft.jtitle=IEEE+transactions+on+evolutionary+computation&rft.au=Ishibuchi%2C+Hisao&rft.au=Setoguchi%2C+Yu&rft.au=Masuda%2C+Hiroyuki&rft.au=Nojima%2C+Yusuke&rft.date=2017-04-01&rft.issn=1089-778X&rft.eissn=1941-0026&rft.volume=21&rft.issue=2&rft.spage=169&rft.epage=190&rft_id=info:doi/10.1109%2FTEVC.2016.2587749&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TEVC_2016_2587749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-778X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-778X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-778X&client=summon