Topological Data Analysis for fault classification on transmission lines

This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised Machine Learning. Through persistent homology, signal topological signatures are extracted from each current’s phase and residual current. The...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electric power systems research Ročník 248; s. 111915
Hlavní autori: Gravot, Eloi, Torregrosa, Sergio, Hascoët, Nicolas, Kestelyn, Xavier, Chinesta, Francisco
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2025
Elsevier
Predmet:
ISSN:0378-7796, 1873-2046
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised Machine Learning. Through persistent homology, signal topological signatures are extracted from each current’s phase and residual current. The spatial properties of the signatures are then fed to a K-means clustering algorithm for fault classification. The method produces accurate and consistent results across a variety of fault records, even when tested under diverse parameterized faults and noise intensities. To investigate further, the model is applied to field records of the French transmission operator RTE (Réseau de Transport d’Electricité) without any parametrization or prior training. The accuracy reflects the generalization abilities of the approach. [Display omitted] •Topological Data Analysis for Transmission Line Fault Classification.•A simple and interpretable model with low resource requirements•Robust, tuning-free model for accurate real-time results on raw current data
AbstractList This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised Machine Learning. Through persistent homology, signal topological signatures are extracted from each current’s phase and residual current. The spatial properties of the signatures are then fed to a K-means clustering algorithm for fault classification. The method produces accurate and consistent results across a variety of fault records, even when tested under diverse parameterized faults and noise intensities. To investigate further, the model is applied to field records of the French transmission operator RTE (Réseau de Transport d’Electricité) without any parametrization or prior training. The accuracy reflects the generalization abilities of the approach.
This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised Machine Learning. Through persistent homology, signal topological signatures are extracted from each current’s phase and residual current. The spatial properties of the signatures are then fed to a K-means clustering algorithm for fault classification. The method produces accurate and consistent results across a variety of fault records, even when tested under diverse parameterized faults and noise intensities. To investigate further, the model is applied to field records of the French transmission operator RTE (Réseau de Transport d’Electricité) without any parametrization or prior training. The accuracy reflects the generalization abilities of the approach. [Display omitted] •Topological Data Analysis for Transmission Line Fault Classification.•A simple and interpretable model with low resource requirements•Robust, tuning-free model for accurate real-time results on raw current data
ArticleNumber 111915
Author Chinesta, Francisco
Gravot, Eloi
Torregrosa, Sergio
Hascoët, Nicolas
Kestelyn, Xavier
Author_xml – sequence: 1
  givenname: Eloi
  orcidid: 0009-0003-6162-7536
  surname: Gravot
  fullname: Gravot, Eloi
  email: eloi.gravot@ensam.eu
  organization: Chimera RTE Chair @ PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France
– sequence: 2
  givenname: Sergio
  surname: Torregrosa
  fullname: Torregrosa, Sergio
  email: sergio.torregrosa_jordan@ensam.eu
  organization: PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France
– sequence: 3
  givenname: Nicolas
  surname: Hascoët
  fullname: Hascoët, Nicolas
  email: nicolas.hascoet@ensam.eu
  organization: Chimera RTE Chair @ PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France
– sequence: 4
  givenname: Xavier
  surname: Kestelyn
  fullname: Kestelyn, Xavier
  email: xavier.kestelyn@ensam.eu
  organization: Chimera RTE Chair @ PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France
– sequence: 5
  givenname: Francisco
  surname: Chinesta
  fullname: Chinesta, Francisco
  email: francisco.chinesta@ensam.eu
  organization: Chimera RTE Chair @ PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France
BackLink https://hal.science/hal-05263230$$DView record in HAL
BookMark eNp9kE1rwzAMhs3oYF23P7BTrjskk-0mjmGX0n10UNilOxvFsTcXNy52Vui_X0LGjgOBkHgfgZ5rMutCZwi5o1BQoNXDvjDHFAsGrCwopZKWF2ROa8FzBstqRubARZ0LIasrcp3SHgAqKco52ezCMfjw6TT67Al7zFYd-nNyKbMhZha_fZ9pjyk5O2R6F7psqD5ilw5u2A6Dd51JN-TSok_m9rcvyMfL8269ybfvr2_r1TbXnNM-F3WthRSS1hYYr9pKtw1gA62UjaZol7ZshIVl3ZQambW80VxayajGmknD-YLcT3e_0KtjdAeMZxXQqc1qq8YdlKzijMOJDlk2ZXUMKUVj_wAKavSm9mr0pkZvavI2QI8TZIYvTs5ElbQznTati0b3qg3uP_wHNdF44g
Cites_doi 10.1016/j.epsr.2024.111143
10.1016/j.epsr.2024.110178
10.1109/TSG.2017.2672881
10.1016/j.epsr.2020.106437
10.1109/TPWRD.2011.2141157
10.1109/TPWRD.2006.876659
10.1016/j.epsr.2023.109526
10.21105/joss.00925
10.1109/TPWRD.2008.917919
10.1109/TII.2024.3359450
10.1016/j.epsr.2020.106914
10.1109/ACCESS.2020.2975431
10.3390/en13236447
10.3934/matersci.2020.4.364
10.1016/j.epsr.2022.108031
10.1016/j.neucom.2015.05.026
10.1109/TPAS.1982.317332
10.1007/s00202-011-0218-2
10.3390/e25111509
10.1049/iet-gtd.2013.0200
10.1016/j.apenergy.2023.120932
10.1109/TII.2022.3229497
10.1016/j.epsr.2020.106876
10.1109/JSEN.2022.3153647
ContentType Journal Article
Copyright 2025 The Authors
Attribution
Copyright_xml – notice: 2025 The Authors
– notice: Attribution
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.epsr.2025.111915
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID oai:HAL:hal-05263230v1
10_1016_j_epsr_2025_111915
S0378779625005061
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9DU
9JN
AABNK
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADHUB
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
~HD
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c331t-788c797918f0236d6cdb0ab0d99bc1af4f5b7f048b5ca2ff3bc39f921ca829e33
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001519918400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Sat Oct 25 03:37:05 EDT 2025
Thu Nov 27 01:05:24 EST 2025
Sat Nov 29 17:15:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Signal processing
Fault classification
Transmission grid
Machine Learning
Topological Data Analysis
Fault classification Signal processing Topological Data Analysis Transmission grid Machine Learning
Language English
License This is an open access article under the CC BY license.
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-788c797918f0236d6cdb0ab0d99bc1af4f5b7f048b5ca2ff3bc39f921ca829e33
ORCID 0009-0003-6162-7536
0000-0002-8192-0743
0000-0002-6272-3429
0000-0002-3823-1045
OpenAccessLink https://hal.science/hal-05263230
ParticipantIDs hal_primary_oai_HAL_hal_05263230v1
crossref_primary_10_1016_j_epsr_2025_111915
elsevier_sciencedirect_doi_10_1016_j_epsr_2025_111915
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Electric power systems research
PublicationYear 2025
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Wang, Lin, Inoue, Kanemaru (b31) 2022
El-Yaagoubi, Chung, Ombao (b25) 2023; 25
Salim, De Oliveira, Filomena, Resener, Bretas (b4) 2008; 23
Tralie, Saul, Bar-On (b27) 2018; 3
Panigrahy, Chandel (b20) 2020
Aljohani, Habiballah (b33) 2020; 13
Pandey, Kishor, Mohanty, Samuel (b23) 2024; 20
Abdollahi, Seyedtabaii (b10) 2010
Tong, Qiu, Zhang, Yang, Ding, Shi (b18) 2021
Khabaz, Saad, Mehrjerdi (b13) 2025; 238
Han, Miao, Li, Yang, Yin (b17) 2021; 191
Stefanidou-Voziki, Sapountzoglou, Raison, Dominguez-Garcia (b24) 2022; 209
Godse, Bhat (b6) 2020; 8
Jiang, Chuang, Wang, Hung, Wang, Lee, Hsiao (b21) 2011; 26
Marti (b32) 1982; PAS-101
Usama, Lu, Imam, Sen, Kar (b5) 2014; 8
Silva, Souza, Brito (b9) 2006; 21
Lejeune, Hascoët, Rébillat, Monteiro, Mechbal (b30) 2023
Rai, Londhe, Raj (b12) 2021; 192
Frahi, Argerich, Yun, Falco, Barasinski, Chinesta (b29) 2020; 7
Goodman (b26) 2008
Fahim, Sarker, Sarker, Sheikh, Das (b16) 2020; 187
Siddique, Shafiullah, Mekhilef, Pota, Abido (b14) 2024; 229
Youssef (b3) 2001; Vol. 1
Biswas, Nayak, Panigrahi, Pradhan (b15) 2023; 223
Sifuzzaman, Islam, Ali (b2) 2009; 13
Fang, Chen, Liu, He (b19) 2023; 19
Abdelgayed, Morsi, Sidhu (b22) 2018; 9
Rizeakos, Bachoumis, Andriopoulos, Birbas, Birbas (b11) 2023; 338
Asuhaimi Mohd Zin, Saini, Mustafa, Sultan, Rahimuddin (b8) 2015; 168
Jiang, Xu, Zhu, Zhang (b28) 2022; 22
Aslan (b7) 2012; 94
Addison (b1) 2016
Lejeune (10.1016/j.epsr.2025.111915_b30) 2023
Aljohani (10.1016/j.epsr.2025.111915_b33) 2020; 13
Siddique (10.1016/j.epsr.2025.111915_b14) 2024; 229
Fahim (10.1016/j.epsr.2025.111915_b16) 2020; 187
Abdelgayed (10.1016/j.epsr.2025.111915_b22) 2018; 9
Panigrahy (10.1016/j.epsr.2025.111915_b20) 2020
Wang (10.1016/j.epsr.2025.111915_b31) 2022
Addison (10.1016/j.epsr.2025.111915_b1) 2016
Salim (10.1016/j.epsr.2025.111915_b4) 2008; 23
Sifuzzaman (10.1016/j.epsr.2025.111915_b2) 2009; 13
Usama (10.1016/j.epsr.2025.111915_b5) 2014; 8
Youssef (10.1016/j.epsr.2025.111915_b3) 2001; Vol. 1
Asuhaimi Mohd Zin (10.1016/j.epsr.2025.111915_b8) 2015; 168
Abdollahi (10.1016/j.epsr.2025.111915_b10) 2010
Jiang (10.1016/j.epsr.2025.111915_b21) 2011; 26
Han (10.1016/j.epsr.2025.111915_b17) 2021; 191
Fang (10.1016/j.epsr.2025.111915_b19) 2023; 19
Marti (10.1016/j.epsr.2025.111915_b32) 1982; PAS-101
Tong (10.1016/j.epsr.2025.111915_b18) 2021
Silva (10.1016/j.epsr.2025.111915_b9) 2006; 21
Aslan (10.1016/j.epsr.2025.111915_b7) 2012; 94
Rizeakos (10.1016/j.epsr.2025.111915_b11) 2023; 338
Biswas (10.1016/j.epsr.2025.111915_b15) 2023; 223
Frahi (10.1016/j.epsr.2025.111915_b29) 2020; 7
Pandey (10.1016/j.epsr.2025.111915_b23) 2024; 20
El-Yaagoubi (10.1016/j.epsr.2025.111915_b25) 2023; 25
Tralie (10.1016/j.epsr.2025.111915_b27) 2018; 3
Goodman (10.1016/j.epsr.2025.111915_b26) 2008
Rai (10.1016/j.epsr.2025.111915_b12) 2021; 192
Stefanidou-Voziki (10.1016/j.epsr.2025.111915_b24) 2022; 209
Jiang (10.1016/j.epsr.2025.111915_b28) 2022; 22
Godse (10.1016/j.epsr.2025.111915_b6) 2020; 8
Khabaz (10.1016/j.epsr.2025.111915_b13) 2025; 238
References_xml – volume: 191
  year: 2021
  ident: b17
  article-title: Faulted-phase classification for transmission lines using gradient similarity visualization and cross-domain adaption-based convolutional neural network
  publication-title: Electr. Power Syst. Res.
– volume: 192
  year: 2021
  ident: b12
  article-title: Fault classification in power system distribution network integrated with distributed generators using CNN
  publication-title: Electr. Power Syst. Res.
– year: 2023
  ident: b30
  article-title: An enhanced topological analysis for lamb waves based SHM methods
  publication-title: Struct. Heal. Monit.
– volume: 19
  start-page: 10182
  year: 2023
  end-page: 10191
  ident: b19
  article-title: An explainable and robust method for fault classification and location on transmission lines
  publication-title: IEEE Trans. Ind. Inform.
– volume: 22
  start-page: 6920
  year: 2022
  end-page: 6930
  ident: b28
  article-title: Topological data analysis approach to extract the persistent homology features of ballistocardiogram signal in unobstructive atrial fibrillation detection
  publication-title: IEEE Sensors J.
– volume: 168
  start-page: 983
  year: 2015
  end-page: 993
  ident: b8
  article-title: New algorithm for detection and fault classification on parallel transmission line using DWT and BPNN based on Clarke’s transformation
  publication-title: Neurocomputing
– start-page: 1
  year: 2022
  end-page: 6
  ident: b31
  article-title: Topological data analysis for electric motor eccentricity fault detection
  publication-title: IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society
– year: 2016
  ident: b1
  article-title: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, Second Edition
– volume: 94
  start-page: 125
  year: 2012
  end-page: 134
  ident: b7
  article-title: An alternative approach to fault location on power distribution feeders with embedded remote-end power generation using artificial neural networks
  publication-title: Electr. Eng.
– start-page: 339
  year: 2020
  end-page: 349
  ident: b20
  article-title: A hybrid framework for fault classification and location in power distribution system using wavelet and support vector machine
  publication-title: Innovation in Electrical Power Engineering, Communication, and Computing Technology
– volume: 187
  year: 2020
  ident: b16
  article-title: Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification
  publication-title: Electr. Power Syst. Res.
– volume: 238
  year: 2025
  ident: b13
  article-title: Fault classification in distribution system utilizing imaging time-series, convolutional neural network and adaptive relay protection
  publication-title: Electr. Power Syst. Res.
– volume: 13
  start-page: 121
  year: 2009
  end-page: 134
  ident: b2
  article-title: Application of wavelet transform and its advantages compared to Fourier transform
  publication-title: J. Phys. Sci.
– volume: 338
  year: 2023
  ident: b11
  article-title: Deep learning-based application for fault location identification and type classification in active distribution grids
  publication-title: Appl. Energy
– volume: 3
  start-page: 925
  year: 2018
  ident: b27
  article-title: Ripser.py: A lean persistent homology library for python
  publication-title: J. Open Sour. Softw.
– volume: PAS-101
  start-page: 147
  year: 1982
  end-page: 157
  ident: b32
  article-title: Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations
  publication-title: IEEE Trans. Power Appar. Syst.
– volume: 21
  start-page: 2058
  year: 2006
  end-page: 2063
  ident: b9
  article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN
  publication-title: IEEE Trans. Power Deliv.
– volume: 25
  start-page: 1509
  year: 2023
  ident: b25
  article-title: Topological data analysis for multivariate time series data
  publication-title: Entropy
– volume: 9
  start-page: 4838
  year: 2018
  end-page: 4846
  ident: b22
  article-title: A new approach for fault classification in microgrids using optimal wavelet functions matching pursuit
  publication-title: IEEE Trans. Smart Grid
– volume: 20
  start-page: 7325
  year: 2024
  end-page: 7334
  ident: b23
  article-title: Intelligent fault detection and classification for an unbalanced network with inverter-based DG units
  publication-title: IEEE Trans. Ind. Inform.
– start-page: 579
  year: 2010
  end-page: 584
  ident: b10
  article-title: Comparison of fourier & wavelet transform methods for transmission line fault classification
  publication-title: 2010 4th International Power Engineering and Optimization Conference (PEOCO)
– volume: 8
  start-page: 38459
  year: 2020
  end-page: 38471
  ident: b6
  article-title: Mathematical morphology-based feature-extraction technique for detection and classification of faults on power transmission line
  publication-title: IEEE Access
– volume: 7
  start-page: 364
  year: 2020
  end-page: 380
  ident: b29
  article-title: Tape surfaces characterization with persistence images
  publication-title: AIMS Mater. Sci.
– year: 2008
  ident: b26
  article-title: Surveys on Discrete and Computational Geometry: Twenty Years Later : AMS-IMS-SIAM Joint Summer Research Conference, June 18-22, 2006, Snowbird, Utah
– volume: 13
  start-page: 6447
  year: 2020
  ident: b33
  article-title: High-impedance fault diagnosis: a review
  publication-title: Energies
– volume: 23
  start-page: 1846
  year: 2008
  end-page: 1856
  ident: b4
  article-title: Hybrid fault diagnosis scheme implementation for power distribution systems automation
  publication-title: IEEE Trans. Power Deliv.
– volume: 8
  start-page: 431
  year: 2014
  end-page: 441
  ident: b5
  article-title: Design and implementation of a wavelet analysis-based shunt fault detection and identification module for transmission lines application
  publication-title: IET Gener. Transm. Distrib.
– volume: 223
  year: 2023
  ident: b15
  article-title: An intelligent fault detection and classification technique based on variational mode decomposition-CNN for transmission lines installed with UPFC and wind farm
  publication-title: Electr. Power Syst. Res.
– volume: 229
  year: 2024
  ident: b14
  article-title: Fault classification and location of a PMU-equipped active distribution network using deep convolution neural network (CNN)
  publication-title: Electr. Power Syst. Res.
– volume: Vol. 1
  start-page: 531
  year: 2001
  end-page: 536
  ident: b3
  article-title: Fault classification based on wavelet transforms
  publication-title: 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No.01CH37294)
– volume: 26
  start-page: 1988
  year: 2011
  end-page: 1998
  ident: b21
  article-title: A hybrid framework for fault detection, classification, and location—part i: concept, structure, and methodology
  publication-title: IEEE Trans. Power Deliv.
– year: 2021
  ident: b18
  article-title: Detection and classification of transmission line transient faults based on graph convolutional neural network
  publication-title: CSEE J. Power Energy Syst.
– volume: 209
  year: 2022
  ident: b24
  article-title: A review of fault location and classification methods in distribution grids
  publication-title: Electr. Power Syst. Res.
– volume: 238
  year: 2025
  ident: 10.1016/j.epsr.2025.111915_b13
  article-title: Fault classification in distribution system utilizing imaging time-series, convolutional neural network and adaptive relay protection
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2024.111143
– start-page: 579
  year: 2010
  ident: 10.1016/j.epsr.2025.111915_b10
  article-title: Comparison of fourier & wavelet transform methods for transmission line fault classification
– start-page: 339
  year: 2020
  ident: 10.1016/j.epsr.2025.111915_b20
  article-title: A hybrid framework for fault classification and location in power distribution system using wavelet and support vector machine
– volume: 229
  year: 2024
  ident: 10.1016/j.epsr.2025.111915_b14
  article-title: Fault classification and location of a PMU-equipped active distribution network using deep convolution neural network (CNN)
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2024.110178
– start-page: 1
  year: 2022
  ident: 10.1016/j.epsr.2025.111915_b31
  article-title: Topological data analysis for electric motor eccentricity fault detection
– volume: Vol. 1
  start-page: 531
  year: 2001
  ident: 10.1016/j.epsr.2025.111915_b3
  article-title: Fault classification based on wavelet transforms
– volume: 13
  start-page: 121
  year: 2009
  ident: 10.1016/j.epsr.2025.111915_b2
  article-title: Application of wavelet transform and its advantages compared to Fourier transform
  publication-title: J. Phys. Sci.
– volume: 9
  start-page: 4838
  issue: 5
  year: 2018
  ident: 10.1016/j.epsr.2025.111915_b22
  article-title: A new approach for fault classification in microgrids using optimal wavelet functions matching pursuit
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2672881
– volume: 187
  year: 2020
  ident: 10.1016/j.epsr.2025.111915_b16
  article-title: Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106437
– volume: 26
  start-page: 1988
  issue: 3
  year: 2011
  ident: 10.1016/j.epsr.2025.111915_b21
  article-title: A hybrid framework for fault detection, classification, and location—part i: concept, structure, and methodology
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2011.2141157
– volume: 21
  start-page: 2058
  issue: 4
  year: 2006
  ident: 10.1016/j.epsr.2025.111915_b9
  article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2006.876659
– volume: 223
  year: 2023
  ident: 10.1016/j.epsr.2025.111915_b15
  article-title: An intelligent fault detection and classification technique based on variational mode decomposition-CNN for transmission lines installed with UPFC and wind farm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2023.109526
– volume: 3
  start-page: 925
  issue: 29
  year: 2018
  ident: 10.1016/j.epsr.2025.111915_b27
  article-title: Ripser.py: A lean persistent homology library for python
  publication-title: J. Open Sour. Softw.
  doi: 10.21105/joss.00925
– volume: 23
  start-page: 1846
  issue: 4
  year: 2008
  ident: 10.1016/j.epsr.2025.111915_b4
  article-title: Hybrid fault diagnosis scheme implementation for power distribution systems automation
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2008.917919
– volume: 20
  start-page: 7325
  issue: 5
  year: 2024
  ident: 10.1016/j.epsr.2025.111915_b23
  article-title: Intelligent fault detection and classification for an unbalanced network with inverter-based DG units
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2024.3359450
– year: 2023
  ident: 10.1016/j.epsr.2025.111915_b30
  article-title: An enhanced topological analysis for lamb waves based SHM methods
  publication-title: Struct. Heal. Monit.
– volume: 192
  year: 2021
  ident: 10.1016/j.epsr.2025.111915_b12
  article-title: Fault classification in power system distribution network integrated with distributed generators using CNN
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106914
– volume: 8
  start-page: 38459
  year: 2020
  ident: 10.1016/j.epsr.2025.111915_b6
  article-title: Mathematical morphology-based feature-extraction technique for detection and classification of faults on power transmission line
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2975431
– year: 2008
  ident: 10.1016/j.epsr.2025.111915_b26
– volume: 13
  start-page: 6447
  issue: 23
  year: 2020
  ident: 10.1016/j.epsr.2025.111915_b33
  article-title: High-impedance fault diagnosis: a review
  publication-title: Energies
  doi: 10.3390/en13236447
– volume: 7
  start-page: 364
  issue: 4
  year: 2020
  ident: 10.1016/j.epsr.2025.111915_b29
  article-title: Tape surfaces characterization with persistence images
  publication-title: AIMS Mater. Sci.
  doi: 10.3934/matersci.2020.4.364
– volume: 209
  year: 2022
  ident: 10.1016/j.epsr.2025.111915_b24
  article-title: A review of fault location and classification methods in distribution grids
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2022.108031
– volume: 168
  start-page: 983
  year: 2015
  ident: 10.1016/j.epsr.2025.111915_b8
  article-title: New algorithm for detection and fault classification on parallel transmission line using DWT and BPNN based on Clarke’s transformation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.05.026
– volume: PAS-101
  start-page: 147
  issue: 1
  year: 1982
  ident: 10.1016/j.epsr.2025.111915_b32
  article-title: Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations
  publication-title: IEEE Trans. Power Appar. Syst.
  doi: 10.1109/TPAS.1982.317332
– volume: 94
  start-page: 125
  issue: 3
  year: 2012
  ident: 10.1016/j.epsr.2025.111915_b7
  article-title: An alternative approach to fault location on power distribution feeders with embedded remote-end power generation using artificial neural networks
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-011-0218-2
– year: 2016
  ident: 10.1016/j.epsr.2025.111915_b1
– volume: 25
  start-page: 1509
  issue: 11
  year: 2023
  ident: 10.1016/j.epsr.2025.111915_b25
  article-title: Topological data analysis for multivariate time series data
  publication-title: Entropy
  doi: 10.3390/e25111509
– volume: 8
  start-page: 431
  issue: 3
  year: 2014
  ident: 10.1016/j.epsr.2025.111915_b5
  article-title: Design and implementation of a wavelet analysis-based shunt fault detection and identification module for transmission lines application
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2013.0200
– volume: 338
  year: 2023
  ident: 10.1016/j.epsr.2025.111915_b11
  article-title: Deep learning-based application for fault location identification and type classification in active distribution grids
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.120932
– volume: 19
  start-page: 10182
  issue: 10
  year: 2023
  ident: 10.1016/j.epsr.2025.111915_b19
  article-title: An explainable and robust method for fault classification and location on transmission lines
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2022.3229497
– volume: 191
  year: 2021
  ident: 10.1016/j.epsr.2025.111915_b17
  article-title: Faulted-phase classification for transmission lines using gradient similarity visualization and cross-domain adaption-based convolutional neural network
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2020.106876
– year: 2021
  ident: 10.1016/j.epsr.2025.111915_b18
  article-title: Detection and classification of transmission line transient faults based on graph convolutional neural network
  publication-title: CSEE J. Power Energy Syst.
– volume: 22
  start-page: 6920
  issue: 7
  year: 2022
  ident: 10.1016/j.epsr.2025.111915_b28
  article-title: Topological data analysis approach to extract the persistent homology features of ballistocardiogram signal in unobstructive atrial fibrillation detection
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2022.3153647
SSID ssj0006975
Score 2.45753
Snippet This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 111915
SubjectTerms Engineering Sciences
Fault classification
Machine Learning
Signal processing
Topological Data Analysis
Transmission grid
Title Topological Data Analysis for fault classification on transmission lines
URI https://dx.doi.org/10.1016/j.epsr.2025.111915
https://hal.science/hal-05263230
Volume 248
WOSCitedRecordID wos001519918400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5ieclC3KpITdzE8bHArrpQVSuxoN4s20l2u6rSqslWyw_h_zJjO4-CQMsBqYoq9-35-nk8nvmGkHdAgAqZP-DZOMEWZmGgVaaDkVGRSJWKjJVr-jbj83m6WIizweBHUwuzW_GyTG9uxOa_mhrGwNhYOvsP5m7fFAbgPhgdrmB2uN7O8K7tgSM0VatOdwQzCgt1vaqHBn1mTBLyDmOJrSLKCmyOwbMhup7VXszeNstZmuEGm6p5-Wc8cOjFwlzZ9W5du2yx9bILYG-3-QWsxtZPBXK6cLlfjvgqs7aH9e_rFpiqO2DCaOzqu2XGhcIlvB-liGJfrteGzvw632M3BttXzoXXwXbsm3IGtvQxSU_PkVPi_I3qXdThClbtCnVdoxjZX7ja0H1d7enkizz7eCJnp_PP-4_2khGnkxlcL9UqQAUcBjuzHWyqDyMeCyDLw8np8eJTu8Qnwio4t7_BV2O5xMFfv9CfPJ47l03s3voy5w_JA78JoRMHnkdkkJePyf2eNOUTMu3BiCKMaAMjCjCiFkZ0H0YUbn0YUQujp-TryfH5h2ngu24EhrGwxvRSwwUXYVpgd4EsMZkeKT3KhNAmVMW4iDUvgPh1DP_nomDaMFGIKDQqjUTO2DNyUK7L_DmhLBYGHNw41CkYNdd6nJicw4ajMOC2pskRGTYzIzdOXEU2WYdXEudR4jxKN49HJG4mT3r30Ll9EiDx19e9hZluPwD11MHYEsc6U7-4zZNeknsdtl-Rg3p7nb8md82uXlbbNx4kPwH_bpDv
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Data+Analysis+for+fault+classification+on+transmission+lines&rft.jtitle=Electric+power+systems+research&rft.au=Gravot%2C+Eloi&rft.au=Torregrosa%2C+Sergio&rft.au=Hasco%C3%ABt%2C+Nicolas&rft.au=Kestelyn%2C+Xavier&rft.date=2025-11-01&rft.pub=Elsevier&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=248&rft_id=info:doi/10.1016%2Fj.epsr.2025.111915&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-05263230v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon