Topological Data Analysis for fault classification on transmission lines
This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised Machine Learning. Through persistent homology, signal topological signatures are extracted from each current’s phase and residual current. The...
Saved in:
| Published in: | Electric power systems research Vol. 248; p. 111915 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2025
Elsevier |
| Subjects: | |
| ISSN: | 0378-7796, 1873-2046 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised Machine Learning. Through persistent homology, signal topological signatures are extracted from each current’s phase and residual current. The spatial properties of the signatures are then fed to a K-means clustering algorithm for fault classification. The method produces accurate and consistent results across a variety of fault records, even when tested under diverse parameterized faults and noise intensities. To investigate further, the model is applied to field records of the French transmission operator RTE (Réseau de Transport d’Electricité) without any parametrization or prior training. The accuracy reflects the generalization abilities of the approach.
[Display omitted]
•Topological Data Analysis for Transmission Line Fault Classification.•A simple and interpretable model with low resource requirements•Robust, tuning-free model for accurate real-time results on raw current data |
|---|---|
| AbstractList | This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised Machine Learning. Through persistent homology, signal topological signatures are extracted from each current’s phase and residual current. The spatial properties of the signatures are then fed to a K-means clustering algorithm for fault classification. The method produces accurate and consistent results across a variety of fault records, even when tested under diverse parameterized faults and noise intensities. To investigate further, the model is applied to field records of the French transmission operator RTE (Réseau de Transport d’Electricité) without any parametrization or prior training. The accuracy reflects the generalization abilities of the approach. This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised Machine Learning. Through persistent homology, signal topological signatures are extracted from each current’s phase and residual current. The spatial properties of the signatures are then fed to a K-means clustering algorithm for fault classification. The method produces accurate and consistent results across a variety of fault records, even when tested under diverse parameterized faults and noise intensities. To investigate further, the model is applied to field records of the French transmission operator RTE (Réseau de Transport d’Electricité) without any parametrization or prior training. The accuracy reflects the generalization abilities of the approach. [Display omitted] •Topological Data Analysis for Transmission Line Fault Classification.•A simple and interpretable model with low resource requirements•Robust, tuning-free model for accurate real-time results on raw current data |
| ArticleNumber | 111915 |
| Author | Chinesta, Francisco Gravot, Eloi Torregrosa, Sergio Hascoët, Nicolas Kestelyn, Xavier |
| Author_xml | – sequence: 1 givenname: Eloi orcidid: 0009-0003-6162-7536 surname: Gravot fullname: Gravot, Eloi email: eloi.gravot@ensam.eu organization: Chimera RTE Chair @ PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France – sequence: 2 givenname: Sergio surname: Torregrosa fullname: Torregrosa, Sergio email: sergio.torregrosa_jordan@ensam.eu organization: PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France – sequence: 3 givenname: Nicolas surname: Hascoët fullname: Hascoët, Nicolas email: nicolas.hascoet@ensam.eu organization: Chimera RTE Chair @ PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France – sequence: 4 givenname: Xavier surname: Kestelyn fullname: Kestelyn, Xavier email: xavier.kestelyn@ensam.eu organization: Chimera RTE Chair @ PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France – sequence: 5 givenname: Francisco surname: Chinesta fullname: Chinesta, Francisco email: francisco.chinesta@ensam.eu organization: Chimera RTE Chair @ PIMM Lab, Arts et Métiers Institute of Technology, 151 Bd de l’Hôpital, Paris, 75013, France |
| BackLink | https://hal.science/hal-05263230$$DView record in HAL |
| BookMark | eNp9kE1rwzAMhs3oYF23P7BTrjskk-0mjmGX0n10UNilOxvFsTcXNy52Vui_X0LGjgOBkHgfgZ5rMutCZwi5o1BQoNXDvjDHFAsGrCwopZKWF2ROa8FzBstqRubARZ0LIasrcp3SHgAqKco52ezCMfjw6TT67Al7zFYd-nNyKbMhZha_fZ9pjyk5O2R6F7psqD5ilw5u2A6Dd51JN-TSok_m9rcvyMfL8269ybfvr2_r1TbXnNM-F3WthRSS1hYYr9pKtw1gA62UjaZol7ZshIVl3ZQambW80VxayajGmknD-YLcT3e_0KtjdAeMZxXQqc1qq8YdlKzijMOJDlk2ZXUMKUVj_wAKavSm9mr0pkZvavI2QI8TZIYvTs5ElbQznTati0b3qg3uP_wHNdF44g |
| Cites_doi | 10.1016/j.epsr.2024.111143 10.1016/j.epsr.2024.110178 10.1109/TSG.2017.2672881 10.1016/j.epsr.2020.106437 10.1109/TPWRD.2011.2141157 10.1109/TPWRD.2006.876659 10.1016/j.epsr.2023.109526 10.21105/joss.00925 10.1109/TPWRD.2008.917919 10.1109/TII.2024.3359450 10.1016/j.epsr.2020.106914 10.1109/ACCESS.2020.2975431 10.3390/en13236447 10.3934/matersci.2020.4.364 10.1016/j.epsr.2022.108031 10.1016/j.neucom.2015.05.026 10.1109/TPAS.1982.317332 10.1007/s00202-011-0218-2 10.3390/e25111509 10.1049/iet-gtd.2013.0200 10.1016/j.apenergy.2023.120932 10.1109/TII.2022.3229497 10.1016/j.epsr.2020.106876 10.1109/JSEN.2022.3153647 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors Attribution |
| Copyright_xml | – notice: 2025 The Authors – notice: Attribution |
| DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES |
| DOI | 10.1016/j.epsr.2025.111915 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| ExternalDocumentID | oai:HAL:hal-05263230v1 10_1016_j_epsr_2025_111915 S0378779625005061 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9DU 9JN AABNK AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADHUB ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- ~HD AAYXX CITATION 1XC VOOES |
| ID | FETCH-LOGICAL-c331t-788c797918f0236d6cdb0ab0d99bc1af4f5b7f048b5ca2ff3bc39f921ca829e33 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001519918400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0378-7796 |
| IngestDate | Sat Oct 25 03:37:05 EDT 2025 Thu Nov 27 01:05:24 EST 2025 Sat Nov 29 17:15:14 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Signal processing Fault classification Transmission grid Machine Learning Topological Data Analysis Fault classification Signal processing Topological Data Analysis Transmission grid Machine Learning |
| Language | English |
| License | This is an open access article under the CC BY license. Attribution: http://creativecommons.org/licenses/by |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-788c797918f0236d6cdb0ab0d99bc1af4f5b7f048b5ca2ff3bc39f921ca829e33 |
| ORCID | 0009-0003-6162-7536 0000-0002-8192-0743 0000-0002-6272-3429 0000-0002-3823-1045 |
| OpenAccessLink | https://hal.science/hal-05263230 |
| ParticipantIDs | hal_primary_oai_HAL_hal_05263230v1 crossref_primary_10_1016_j_epsr_2025_111915 elsevier_sciencedirect_doi_10_1016_j_epsr_2025_111915 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Wang, Lin, Inoue, Kanemaru (b31) 2022 El-Yaagoubi, Chung, Ombao (b25) 2023; 25 Salim, De Oliveira, Filomena, Resener, Bretas (b4) 2008; 23 Tralie, Saul, Bar-On (b27) 2018; 3 Panigrahy, Chandel (b20) 2020 Aljohani, Habiballah (b33) 2020; 13 Pandey, Kishor, Mohanty, Samuel (b23) 2024; 20 Abdollahi, Seyedtabaii (b10) 2010 Tong, Qiu, Zhang, Yang, Ding, Shi (b18) 2021 Khabaz, Saad, Mehrjerdi (b13) 2025; 238 Han, Miao, Li, Yang, Yin (b17) 2021; 191 Stefanidou-Voziki, Sapountzoglou, Raison, Dominguez-Garcia (b24) 2022; 209 Godse, Bhat (b6) 2020; 8 Jiang, Chuang, Wang, Hung, Wang, Lee, Hsiao (b21) 2011; 26 Marti (b32) 1982; PAS-101 Usama, Lu, Imam, Sen, Kar (b5) 2014; 8 Silva, Souza, Brito (b9) 2006; 21 Lejeune, Hascoët, Rébillat, Monteiro, Mechbal (b30) 2023 Rai, Londhe, Raj (b12) 2021; 192 Frahi, Argerich, Yun, Falco, Barasinski, Chinesta (b29) 2020; 7 Goodman (b26) 2008 Fahim, Sarker, Sarker, Sheikh, Das (b16) 2020; 187 Siddique, Shafiullah, Mekhilef, Pota, Abido (b14) 2024; 229 Youssef (b3) 2001; Vol. 1 Biswas, Nayak, Panigrahi, Pradhan (b15) 2023; 223 Sifuzzaman, Islam, Ali (b2) 2009; 13 Fang, Chen, Liu, He (b19) 2023; 19 Abdelgayed, Morsi, Sidhu (b22) 2018; 9 Rizeakos, Bachoumis, Andriopoulos, Birbas, Birbas (b11) 2023; 338 Asuhaimi Mohd Zin, Saini, Mustafa, Sultan, Rahimuddin (b8) 2015; 168 Jiang, Xu, Zhu, Zhang (b28) 2022; 22 Aslan (b7) 2012; 94 Addison (b1) 2016 Lejeune (10.1016/j.epsr.2025.111915_b30) 2023 Aljohani (10.1016/j.epsr.2025.111915_b33) 2020; 13 Siddique (10.1016/j.epsr.2025.111915_b14) 2024; 229 Fahim (10.1016/j.epsr.2025.111915_b16) 2020; 187 Abdelgayed (10.1016/j.epsr.2025.111915_b22) 2018; 9 Panigrahy (10.1016/j.epsr.2025.111915_b20) 2020 Wang (10.1016/j.epsr.2025.111915_b31) 2022 Addison (10.1016/j.epsr.2025.111915_b1) 2016 Salim (10.1016/j.epsr.2025.111915_b4) 2008; 23 Sifuzzaman (10.1016/j.epsr.2025.111915_b2) 2009; 13 Usama (10.1016/j.epsr.2025.111915_b5) 2014; 8 Youssef (10.1016/j.epsr.2025.111915_b3) 2001; Vol. 1 Asuhaimi Mohd Zin (10.1016/j.epsr.2025.111915_b8) 2015; 168 Abdollahi (10.1016/j.epsr.2025.111915_b10) 2010 Jiang (10.1016/j.epsr.2025.111915_b21) 2011; 26 Han (10.1016/j.epsr.2025.111915_b17) 2021; 191 Fang (10.1016/j.epsr.2025.111915_b19) 2023; 19 Marti (10.1016/j.epsr.2025.111915_b32) 1982; PAS-101 Tong (10.1016/j.epsr.2025.111915_b18) 2021 Silva (10.1016/j.epsr.2025.111915_b9) 2006; 21 Aslan (10.1016/j.epsr.2025.111915_b7) 2012; 94 Rizeakos (10.1016/j.epsr.2025.111915_b11) 2023; 338 Biswas (10.1016/j.epsr.2025.111915_b15) 2023; 223 Frahi (10.1016/j.epsr.2025.111915_b29) 2020; 7 Pandey (10.1016/j.epsr.2025.111915_b23) 2024; 20 El-Yaagoubi (10.1016/j.epsr.2025.111915_b25) 2023; 25 Tralie (10.1016/j.epsr.2025.111915_b27) 2018; 3 Goodman (10.1016/j.epsr.2025.111915_b26) 2008 Rai (10.1016/j.epsr.2025.111915_b12) 2021; 192 Stefanidou-Voziki (10.1016/j.epsr.2025.111915_b24) 2022; 209 Jiang (10.1016/j.epsr.2025.111915_b28) 2022; 22 Godse (10.1016/j.epsr.2025.111915_b6) 2020; 8 Khabaz (10.1016/j.epsr.2025.111915_b13) 2025; 238 |
| References_xml | – volume: 191 year: 2021 ident: b17 article-title: Faulted-phase classification for transmission lines using gradient similarity visualization and cross-domain adaption-based convolutional neural network publication-title: Electr. Power Syst. Res. – volume: 192 year: 2021 ident: b12 article-title: Fault classification in power system distribution network integrated with distributed generators using CNN publication-title: Electr. Power Syst. Res. – year: 2023 ident: b30 article-title: An enhanced topological analysis for lamb waves based SHM methods publication-title: Struct. Heal. Monit. – volume: 19 start-page: 10182 year: 2023 end-page: 10191 ident: b19 article-title: An explainable and robust method for fault classification and location on transmission lines publication-title: IEEE Trans. Ind. Inform. – volume: 22 start-page: 6920 year: 2022 end-page: 6930 ident: b28 article-title: Topological data analysis approach to extract the persistent homology features of ballistocardiogram signal in unobstructive atrial fibrillation detection publication-title: IEEE Sensors J. – volume: 168 start-page: 983 year: 2015 end-page: 993 ident: b8 article-title: New algorithm for detection and fault classification on parallel transmission line using DWT and BPNN based on Clarke’s transformation publication-title: Neurocomputing – start-page: 1 year: 2022 end-page: 6 ident: b31 article-title: Topological data analysis for electric motor eccentricity fault detection publication-title: IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society – year: 2016 ident: b1 article-title: The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, Second Edition – volume: 94 start-page: 125 year: 2012 end-page: 134 ident: b7 article-title: An alternative approach to fault location on power distribution feeders with embedded remote-end power generation using artificial neural networks publication-title: Electr. Eng. – start-page: 339 year: 2020 end-page: 349 ident: b20 article-title: A hybrid framework for fault classification and location in power distribution system using wavelet and support vector machine publication-title: Innovation in Electrical Power Engineering, Communication, and Computing Technology – volume: 187 year: 2020 ident: b16 article-title: Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification publication-title: Electr. Power Syst. Res. – volume: 238 year: 2025 ident: b13 article-title: Fault classification in distribution system utilizing imaging time-series, convolutional neural network and adaptive relay protection publication-title: Electr. Power Syst. Res. – volume: 13 start-page: 121 year: 2009 end-page: 134 ident: b2 article-title: Application of wavelet transform and its advantages compared to Fourier transform publication-title: J. Phys. Sci. – volume: 338 year: 2023 ident: b11 article-title: Deep learning-based application for fault location identification and type classification in active distribution grids publication-title: Appl. Energy – volume: 3 start-page: 925 year: 2018 ident: b27 article-title: Ripser.py: A lean persistent homology library for python publication-title: J. Open Sour. Softw. – volume: PAS-101 start-page: 147 year: 1982 end-page: 157 ident: b32 article-title: Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations publication-title: IEEE Trans. Power Appar. Syst. – volume: 21 start-page: 2058 year: 2006 end-page: 2063 ident: b9 article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN publication-title: IEEE Trans. Power Deliv. – volume: 25 start-page: 1509 year: 2023 ident: b25 article-title: Topological data analysis for multivariate time series data publication-title: Entropy – volume: 9 start-page: 4838 year: 2018 end-page: 4846 ident: b22 article-title: A new approach for fault classification in microgrids using optimal wavelet functions matching pursuit publication-title: IEEE Trans. Smart Grid – volume: 20 start-page: 7325 year: 2024 end-page: 7334 ident: b23 article-title: Intelligent fault detection and classification for an unbalanced network with inverter-based DG units publication-title: IEEE Trans. Ind. Inform. – start-page: 579 year: 2010 end-page: 584 ident: b10 article-title: Comparison of fourier & wavelet transform methods for transmission line fault classification publication-title: 2010 4th International Power Engineering and Optimization Conference (PEOCO) – volume: 8 start-page: 38459 year: 2020 end-page: 38471 ident: b6 article-title: Mathematical morphology-based feature-extraction technique for detection and classification of faults on power transmission line publication-title: IEEE Access – volume: 7 start-page: 364 year: 2020 end-page: 380 ident: b29 article-title: Tape surfaces characterization with persistence images publication-title: AIMS Mater. Sci. – year: 2008 ident: b26 article-title: Surveys on Discrete and Computational Geometry: Twenty Years Later : AMS-IMS-SIAM Joint Summer Research Conference, June 18-22, 2006, Snowbird, Utah – volume: 13 start-page: 6447 year: 2020 ident: b33 article-title: High-impedance fault diagnosis: a review publication-title: Energies – volume: 23 start-page: 1846 year: 2008 end-page: 1856 ident: b4 article-title: Hybrid fault diagnosis scheme implementation for power distribution systems automation publication-title: IEEE Trans. Power Deliv. – volume: 8 start-page: 431 year: 2014 end-page: 441 ident: b5 article-title: Design and implementation of a wavelet analysis-based shunt fault detection and identification module for transmission lines application publication-title: IET Gener. Transm. Distrib. – volume: 223 year: 2023 ident: b15 article-title: An intelligent fault detection and classification technique based on variational mode decomposition-CNN for transmission lines installed with UPFC and wind farm publication-title: Electr. Power Syst. Res. – volume: 229 year: 2024 ident: b14 article-title: Fault classification and location of a PMU-equipped active distribution network using deep convolution neural network (CNN) publication-title: Electr. Power Syst. Res. – volume: Vol. 1 start-page: 531 year: 2001 end-page: 536 ident: b3 article-title: Fault classification based on wavelet transforms publication-title: 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No.01CH37294) – volume: 26 start-page: 1988 year: 2011 end-page: 1998 ident: b21 article-title: A hybrid framework for fault detection, classification, and location—part i: concept, structure, and methodology publication-title: IEEE Trans. Power Deliv. – year: 2021 ident: b18 article-title: Detection and classification of transmission line transient faults based on graph convolutional neural network publication-title: CSEE J. Power Energy Syst. – volume: 209 year: 2022 ident: b24 article-title: A review of fault location and classification methods in distribution grids publication-title: Electr. Power Syst. Res. – volume: 238 year: 2025 ident: 10.1016/j.epsr.2025.111915_b13 article-title: Fault classification in distribution system utilizing imaging time-series, convolutional neural network and adaptive relay protection publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2024.111143 – start-page: 579 year: 2010 ident: 10.1016/j.epsr.2025.111915_b10 article-title: Comparison of fourier & wavelet transform methods for transmission line fault classification – start-page: 339 year: 2020 ident: 10.1016/j.epsr.2025.111915_b20 article-title: A hybrid framework for fault classification and location in power distribution system using wavelet and support vector machine – volume: 229 year: 2024 ident: 10.1016/j.epsr.2025.111915_b14 article-title: Fault classification and location of a PMU-equipped active distribution network using deep convolution neural network (CNN) publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2024.110178 – start-page: 1 year: 2022 ident: 10.1016/j.epsr.2025.111915_b31 article-title: Topological data analysis for electric motor eccentricity fault detection – volume: Vol. 1 start-page: 531 year: 2001 ident: 10.1016/j.epsr.2025.111915_b3 article-title: Fault classification based on wavelet transforms – volume: 13 start-page: 121 year: 2009 ident: 10.1016/j.epsr.2025.111915_b2 article-title: Application of wavelet transform and its advantages compared to Fourier transform publication-title: J. Phys. Sci. – volume: 9 start-page: 4838 issue: 5 year: 2018 ident: 10.1016/j.epsr.2025.111915_b22 article-title: A new approach for fault classification in microgrids using optimal wavelet functions matching pursuit publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2017.2672881 – volume: 187 year: 2020 ident: 10.1016/j.epsr.2025.111915_b16 article-title: Self attention convolutional neural network with time series imaging based feature extraction for transmission line fault detection and classification publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106437 – volume: 26 start-page: 1988 issue: 3 year: 2011 ident: 10.1016/j.epsr.2025.111915_b21 article-title: A hybrid framework for fault detection, classification, and location—part i: concept, structure, and methodology publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2011.2141157 – volume: 21 start-page: 2058 issue: 4 year: 2006 ident: 10.1016/j.epsr.2025.111915_b9 article-title: Fault detection and classification in transmission lines based on wavelet transform and ANN publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2006.876659 – volume: 223 year: 2023 ident: 10.1016/j.epsr.2025.111915_b15 article-title: An intelligent fault detection and classification technique based on variational mode decomposition-CNN for transmission lines installed with UPFC and wind farm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.109526 – volume: 3 start-page: 925 issue: 29 year: 2018 ident: 10.1016/j.epsr.2025.111915_b27 article-title: Ripser.py: A lean persistent homology library for python publication-title: J. Open Sour. Softw. doi: 10.21105/joss.00925 – volume: 23 start-page: 1846 issue: 4 year: 2008 ident: 10.1016/j.epsr.2025.111915_b4 article-title: Hybrid fault diagnosis scheme implementation for power distribution systems automation publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2008.917919 – volume: 20 start-page: 7325 issue: 5 year: 2024 ident: 10.1016/j.epsr.2025.111915_b23 article-title: Intelligent fault detection and classification for an unbalanced network with inverter-based DG units publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2024.3359450 – year: 2023 ident: 10.1016/j.epsr.2025.111915_b30 article-title: An enhanced topological analysis for lamb waves based SHM methods publication-title: Struct. Heal. Monit. – volume: 192 year: 2021 ident: 10.1016/j.epsr.2025.111915_b12 article-title: Fault classification in power system distribution network integrated with distributed generators using CNN publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106914 – volume: 8 start-page: 38459 year: 2020 ident: 10.1016/j.epsr.2025.111915_b6 article-title: Mathematical morphology-based feature-extraction technique for detection and classification of faults on power transmission line publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2975431 – year: 2008 ident: 10.1016/j.epsr.2025.111915_b26 – volume: 13 start-page: 6447 issue: 23 year: 2020 ident: 10.1016/j.epsr.2025.111915_b33 article-title: High-impedance fault diagnosis: a review publication-title: Energies doi: 10.3390/en13236447 – volume: 7 start-page: 364 issue: 4 year: 2020 ident: 10.1016/j.epsr.2025.111915_b29 article-title: Tape surfaces characterization with persistence images publication-title: AIMS Mater. Sci. doi: 10.3934/matersci.2020.4.364 – volume: 209 year: 2022 ident: 10.1016/j.epsr.2025.111915_b24 article-title: A review of fault location and classification methods in distribution grids publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.108031 – volume: 168 start-page: 983 year: 2015 ident: 10.1016/j.epsr.2025.111915_b8 article-title: New algorithm for detection and fault classification on parallel transmission line using DWT and BPNN based on Clarke’s transformation publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.05.026 – volume: PAS-101 start-page: 147 issue: 1 year: 1982 ident: 10.1016/j.epsr.2025.111915_b32 article-title: Accurate modelling of frequency-dependent transmission lines in electromagnetic transient simulations publication-title: IEEE Trans. Power Appar. Syst. doi: 10.1109/TPAS.1982.317332 – volume: 94 start-page: 125 issue: 3 year: 2012 ident: 10.1016/j.epsr.2025.111915_b7 article-title: An alternative approach to fault location on power distribution feeders with embedded remote-end power generation using artificial neural networks publication-title: Electr. Eng. doi: 10.1007/s00202-011-0218-2 – year: 2016 ident: 10.1016/j.epsr.2025.111915_b1 – volume: 25 start-page: 1509 issue: 11 year: 2023 ident: 10.1016/j.epsr.2025.111915_b25 article-title: Topological data analysis for multivariate time series data publication-title: Entropy doi: 10.3390/e25111509 – volume: 8 start-page: 431 issue: 3 year: 2014 ident: 10.1016/j.epsr.2025.111915_b5 article-title: Design and implementation of a wavelet analysis-based shunt fault detection and identification module for transmission lines application publication-title: IET Gener. Transm. Distrib. doi: 10.1049/iet-gtd.2013.0200 – volume: 338 year: 2023 ident: 10.1016/j.epsr.2025.111915_b11 article-title: Deep learning-based application for fault location identification and type classification in active distribution grids publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.120932 – volume: 19 start-page: 10182 issue: 10 year: 2023 ident: 10.1016/j.epsr.2025.111915_b19 article-title: An explainable and robust method for fault classification and location on transmission lines publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3229497 – volume: 191 year: 2021 ident: 10.1016/j.epsr.2025.111915_b17 article-title: Faulted-phase classification for transmission lines using gradient similarity visualization and cross-domain adaption-based convolutional neural network publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2020.106876 – year: 2021 ident: 10.1016/j.epsr.2025.111915_b18 article-title: Detection and classification of transmission line transient faults based on graph convolutional neural network publication-title: CSEE J. Power Energy Syst. – volume: 22 start-page: 6920 issue: 7 year: 2022 ident: 10.1016/j.epsr.2025.111915_b28 article-title: Topological data analysis approach to extract the persistent homology features of ballistocardiogram signal in unobstructive atrial fibrillation detection publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2022.3153647 |
| SSID | ssj0006975 |
| Score | 2.45753 |
| Snippet | This paper proposes a novel method for fault classification on transmission lines through a hybrid model combining Topological Data Analysis and unsupervised... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 111915 |
| SubjectTerms | Engineering Sciences Fault classification Machine Learning Signal processing Topological Data Analysis Transmission grid |
| Title | Topological Data Analysis for fault classification on transmission lines |
| URI | https://dx.doi.org/10.1016/j.epsr.2025.111915 https://hal.science/hal-05263230 |
| Volume | 248 |
| WOSCitedRecordID | wos001519918400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBZO0kN7KE0fJH0hQm5my761OrolxQ0h5JCAb4ukXaUOZm28G5P213dG0j4cmtIcAmYxwtYKzbczs6OZbwg59hWanayAJ41zL45D4fE41p6vCmNRuVSxaTbBzs-z2YxfjEa_21qYzYJVVXZ3x1dPKmoYA2Fj6ewjxN1NCgPwHYQOVxA7XP9P8LbtgVVoohE97whmFGpxu2jGCn1mTBJyDmOFrSKqGmSOwbMxup71VszeNMuZq_EKm6o5-mc8cBjEwmzZ9WbZ2Gyx5bwPYK_X5TVYY-OngnK6trlfVvHVamkO6782HTBFf8CE0djFL6MZZwJN-DBKESauXK9XZhG8rTJmu9e2mje0JJtOdwbINZf8Va3bCMMNWOgaOVzD5Ev_420O7Xu2rcs4bJPZbnKcI8c5cjvHDtkLWcJBI-5NfpzMTjs7nnJD09yt3JVc2ezA-yt5yK3Z-dkG6I3DcvmKvHRvGnRiEbJPRmX1mrwY8E--IdMBVihihbZYoYAVarBCt7FC4TPECjVYeUuuvp9cfpt6rrWGp6IoaDCHVDHOeJBpbCFQpKqQvpB-weHhDISOdSKZBu0uEyVCrSOpIq55GCiRhbyMondkt1pW5QGheKogpJYCPT2dyqxgOvUVspawlKvkkIzbnclXlkElf1gahyRpNy93PqD17XLAwj__dwQ73d0ASdOnk7Mcx5DRKIJVboL3j1rKB_K8R_JHstusb8tP5JnaNPN6_dmh5Q8ptIpl |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topological+Data+Analysis+for+fault+classification+on+transmission+lines&rft.jtitle=Electric+power+systems+research&rft.au=Gravot%2C+Eloi&rft.au=Torregrosa%2C+Sergio&rft.au=Hasco%C3%ABt%2C+Nicolas&rft.au=Kestelyn%2C+Xavier&rft.date=2025-11-01&rft.issn=0378-7796&rft.volume=248&rft.spage=111915&rft_id=info:doi/10.1016%2Fj.epsr.2025.111915&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_epsr_2025_111915 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |