InfusedHeart: A Novel Knowledge-Infused Learning Framework for Diagnosis of Cardiovascular Events

In the undertaken study, we have used a customized dataset termed "Cardiac-200" and the benchmark dataset "PhysioNet." which contains 1500 heartbeat acoustic event samples (without augmentation) and 1950 samples (with augmentation) heartbeat acoustic events such as normal, murmur...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on computational social systems Ročník 11; číslo 3; s. 3060 - 3069
Hlavní autori: Pandya, Sharnil, Gadekallu, Thippa Reddy, Reddy, Praveen Kumar, Wang, Weizheng, Alazab, Mamoun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2329-924X, 2373-7476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the undertaken study, we have used a customized dataset termed "Cardiac-200" and the benchmark dataset "PhysioNet." which contains 1500 heartbeat acoustic event samples (without augmentation) and 1950 samples (with augmentation) heartbeat acoustic events such as normal, murmur, extrasystole, artifact, and other unlabeled heartbeat acoustic events. The primary reason for designing a customized dataset, "cardiac-200," is to balance the total number of samples into categories such as normal and abnormal heartbeat acoustic events. The average duration of the recorded heartbeat acoustic events is 10-12 s. In the undertaken study, we have analyzed and evaluated various heartbeat acoustic events using audio processing libraries such as Chromagram, Chroma-cq, Chroma-short-time Fourier transform (STFT), Chroma-cqt, and Chroma-cens to extract more information from the recorded heartbeat sound signals. The noise removal process has been carried out using local binary pattern (LBP) methodology. The noise-robust heartbeat acoustic images are classified using long short-term memory (LSTM)-convolutional neural network (CNN), recurrent neural network (RNN), LSTM, Bi-LSTM, CNN, K-means Clustering, and support vector machine (SVM) methods. The obtained results have shown that the proposed InfusedHeart Framework had outclassed all the other customized machine learning and deep learning approaches such as RNN, LSTM, Bi-LSTM, CNN, K-means Clustering, and SVM-based classification methodologies. The proposed Knowledge-infused Learning Framework has achieved an accuracy of 89.36% (without augmentation), 93.38% (with augmentation), and a standard deviation of 10.64 (without augmentation), and 6.62 (with augmentation). Furthermore, the proposed framework has been tested for various signal-to-noise ratio conditions such as SignaltoNoiseRatio0, SignaltoNoiseRatio3, SignaltoNoiseRatio6, SignaltoNoiseRatio9, SignaltoNoiseRatio12, SignaltoNoiseRatio15, and SignaltoNoiseRatio18. In the end, we have shown a detailed comparison of texture and without texture approaches and have discussed future enhancements and prospective ways for future directions.
AbstractList In the undertaken study, we have used a customized dataset termed "Cardiac-200'' and the benchmark dataset "PhysioNet.'' which contains 1500 heartbeat acoustic event samples (without augmentation) and 1950 samples (with augmentation) heartbeat acoustic events such as normal, murmur, extrasystole, artifact, and other unlabeled heartbeat acoustic events. The primary reason for designing a customized dataset, "cardiac-200,'' is to balance the total number of samples into categories such as normal and abnormal heartbeat acoustic events. The average duration of the recorded heartbeat acoustic events is 10-12 s. In the undertaken study, we have analyzed and evaluated various heartbeat acoustic events using audio processing libraries such as Chromagram, Chroma-cq, Chroma-short-time Fourier transform (STFT), Chroma-cqt, and Chroma-cens to extract more information from the recorded heartbeat sound signals. The noise removal process has been carried out using local binary pattern (LBP) methodology. The noise-robust heartbeat acoustic images are classified using long short-term memory (LSTM)-convolutional neural network (CNN),  recurrent neural network (RNN), LSTM, Bi-LSTM, CNN, K-means Clustering, and support vector machine (SVM) methods. The obtained results have shown that the proposed InfusedHeart Framework had outclassed all the other customized machine learning and deep learning approaches such as RNN, LSTM, Bi-LSTM, CNN, K-means Clustering, and SVM-based classification methodologies. The proposed Knowledge-infused Learning Framework has achieved an accuracy of 89.36% (without augmentation), 93.38% (with augmentation), and a standard deviation of 10.64 (without augmentation), and 6.62 (with augmentation). Furthermore, the proposed framework has been tested for various signal-to-noise ratio conditions such as SignaltoNoiseRatio0, SignaltoNoiseRatio3, SignaltoNoiseRatio6, SignaltoNoiseRatio9, SignaltoNoiseRatio12, SignaltoNoiseRatio15, and SignaltoNoiseRatio18. In the end, we have shown a detailed comparison of texture and without texture approaches and have discussed future enhancements and prospective ways for future directions.
In the undertaken study, we have used a customized dataset termed “Cardiac-200” and the benchmark dataset “PhysioNet.” which contains 1500 heartbeat acoustic event samples (without augmentation) and 1950 samples (with augmentation) heartbeat acoustic events such as normal, murmur, extrasystole, artifact, and other unlabeled heartbeat acoustic events. The primary reason for designing a customized dataset, “cardiac-200,” is to balance the total number of samples into categories such as normal and abnormal heartbeat acoustic events. The average duration of the recorded heartbeat acoustic events is 10–12 s. In the undertaken study, we have analyzed and evaluated various heartbeat acoustic events using audio processing libraries such as Chromagram, Chroma-cq, Chroma-short-time Fourier transform (STFT), Chroma-cqt, and Chroma-cens to extract more information from the recorded heartbeat sound signals. The noise removal process has been carried out using local binary pattern (LBP) methodology. The noise-robust heartbeat acoustic images are classified using long short-term memory (LSTM)-convolutional neural network (CNN), recurrent neural network (RNN), LSTM, Bi-LSTM, CNN, K-means Clustering, and support vector machine (SVM) methods. The obtained results have shown that the proposed InfusedHeart Framework had outclassed all the other customized machine learning and deep learning approaches such as RNN, LSTM, Bi-LSTM, CNN, K-means Clustering, and SVM-based classification methodologies. The proposed Knowledge-infused Learning Framework has achieved an accuracy of 89.36% (without augmentation), 93.38% (with augmentation), and a standard deviation of 10.64 (without augmentation), and 6.62 (with augmentation). Furthermore, the proposed framework has been tested for various signal-to-noise ratio conditions such as SignaltoNoiseRatio0, SignaltoNoiseRatio3, SignaltoNoiseRatio6, SignaltoNoiseRatio9, SignaltoNoiseRatio12, SignaltoNoiseRatio15, and SignaltoNoiseRatio18. In the end, we have shown a detailed comparison of texture and without texture approaches and have discussed future enhancements and prospective ways for future directions.
Author Pandya, Sharnil
Reddy, Praveen Kumar
Alazab, Mamoun
Gadekallu, Thippa Reddy
Wang, Weizheng
Author_xml – sequence: 1
  givenname: Sharnil
  orcidid: 0000-0002-4507-1844
  surname: Pandya
  fullname: Pandya, Sharnil
  email: sharnil.pandya@sitpune.edu.in
  organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, Maharashtra, India
– sequence: 2
  givenname: Thippa Reddy
  orcidid: 0000-0003-0097-801X
  surname: Gadekallu
  fullname: Gadekallu, Thippa Reddy
  email: thippareddy.g@vit.ac.in
  organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
– sequence: 3
  givenname: Praveen Kumar
  orcidid: 0000-0003-4209-2495
  surname: Reddy
  fullname: Reddy, Praveen Kumar
  email: praveenkumarreddy@vit.ac.in
  organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
– sequence: 4
  givenname: Weizheng
  orcidid: 0000-0002-5879-585X
  surname: Wang
  fullname: Wang, Weizheng
  email: weizheng.wang@ieee.org
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR
– sequence: 5
  givenname: Mamoun
  orcidid: 0000-0002-1928-3704
  surname: Alazab
  fullname: Alazab, Mamoun
  email: alazab.m@ieee.org
  organization: Department of IT and Environment, Charles Darwin University, Casuarina, NT, Australia
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-119164$$DView record from Swedish Publication Index (Linnéuniversitetet)
BookMark eNp9kU9v2zAMxYWhA9Zl_QDDLgJ2diZKlmXtFqR_saA9tB12ExSbCtS5UibZCfrtZyPZDj30RAL8PfKB7yM5CTEgIZ-BzQGY_vawvL-fc8b5XICEqhTvyCkXShSqVNXJ1HNdaF7--kDOcn5ijAGXUnF2SuxNcEPG9hpt6r_TBb2NO-zojxD3HbYbLI5zuhqB4MOGXib7jPuYflMXEz33dhNi9plGR5c2tT7ubG6GziZ6scPQ50_kvbNdxrNjnZHHy4uH5XWxuru6WS5WRSME9EW1FlKBaME2mslaiLasagCuW4Y1VFraqm7XDXeg65ajq2plpdIVMsEcc1rMSHHYm_e4HdZmm_yzTS8mWm_O_c-FiWljujAYAD39aEa-Hvhtin8GzL15ikMKo0Uj2HhayVrKkVIHqkkx54TONL63vY-hT9Z3BpiZIjBTBGaKwBwjGJXwSvnP0VuaLweNR8T_vFZcclmKv-5Ckwk
CODEN ITCSGL
CitedBy_id crossref_primary_10_3389_fcvm_2025_1526247
crossref_primary_10_1109_JBHI_2022_3217559
crossref_primary_10_1002_itl2_437
crossref_primary_10_1155_2022_3185211
crossref_primary_10_1139_bcb_2023_0151
crossref_primary_10_3390_healthcare11091268
crossref_primary_10_1007_s10878_023_00994_y
crossref_primary_10_3390_bioengineering11121290
crossref_primary_10_1109_TITS_2022_3190369
crossref_primary_10_1111_exsy_13359
crossref_primary_10_1007_s00521_024_09452_0
crossref_primary_10_3390_biomimetics8070554
crossref_primary_10_1007_s12553_023_00747_1
crossref_primary_10_1007_s11571_023_10009_5
crossref_primary_10_1109_ACCESS_2023_3266374
crossref_primary_10_1080_00051144_2023_2284031
crossref_primary_10_1016_j_future_2023_05_027
crossref_primary_10_3389_fpubh_2023_1270450
crossref_primary_10_1002_ett_70229
crossref_primary_10_3389_fonc_2022_873268
crossref_primary_10_1007_s00521_024_09554_9
crossref_primary_10_4274_jtgga_galenos_2024_2024_1_8
crossref_primary_10_1111_coin_70076
crossref_primary_10_1186_s40537_023_00769_6
crossref_primary_10_3390_s23156664
crossref_primary_10_1007_s40747_022_00767_w
crossref_primary_10_3389_fpubh_2022_909628
Cites_doi 10.1016/B978-0-12-813148-0.00001-3
10.1016/j.mpaic.2009.06.007
10.1109/TIM.2018.2872387
10.1109/JBHI.2017.2703115
10.3389/fpubh.2021.762303
10.1016/j.bspc.2020.102310
10.3390/electronics9020274
10.1109/TPAMI.2002.1017623
10.1016/j.bspc.2020.102262
10.1111/exsy.12899
10.1109/TBCAS.2017.2751545
10.1109/JSEN.2019.2962364
10.1016/j.eswa.2020.113807
10.1109/JBHI.2019.2949516
10.1007/s12652-020-01963-7
10.1109/TBME.2015.2475278
10.1109/JBHI.2019.2911367
10.1016/j.iccn.2020.102994
10.1016/S0002-9149(02)02465-7
10.1109/TBME.2016.2559800
10.1016/j.bbe.2020.12.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D92
DOI 10.1109/TCSS.2022.3151643
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Linnéuniversitetet
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Social Sciences (General)
EISSN 2373-7476
EndPage 3069
ExternalDocumentID oai_DiVA_org_lnu_119164
10_1109_TCSS_2022_3151643
9725254
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AOWAS
D92
ID FETCH-LOGICAL-c331t-6b35713d1ac905833d4681129d0e81695a68dbc2f198d2ef687a5796e030f0f93
IEDL.DBID RIE
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764867300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-924X
IngestDate Tue Nov 04 16:52:34 EST 2025
Mon Jun 30 14:50:04 EDT 2025
Tue Nov 18 21:29:48 EST 2025
Sat Nov 29 01:37:09 EST 2025
Wed Aug 27 02:06:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-6b35713d1ac905833d4681129d0e81695a68dbc2f198d2ef687a5796e030f0f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4507-1844
0000-0003-0097-801X
0000-0002-1928-3704
0000-0002-5879-585X
0000-0003-4209-2495
PQID 3068175855
PQPubID 2040411
PageCount 10
ParticipantIDs crossref_citationtrail_10_1109_TCSS_2022_3151643
swepub_primary_oai_DiVA_org_lnu_119164
crossref_primary_10_1109_TCSS_2022_3151643
proquest_journals_3068175855
ieee_primary_9725254
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on computational social systems
PublicationTitleAbbrev TCSS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref2
  doi: 10.1016/B978-0-12-813148-0.00001-3
– ident: ref8
  doi: 10.1016/j.mpaic.2009.06.007
– ident: ref17
  doi: 10.1109/TIM.2018.2872387
– ident: ref13
  doi: 10.1109/JBHI.2017.2703115
– ident: ref3
  doi: 10.3389/fpubh.2021.762303
– ident: ref11
  doi: 10.1016/j.bspc.2020.102310
– ident: ref5
  doi: 10.3390/electronics9020274
– ident: ref20
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref9
  doi: 10.1016/j.bspc.2020.102262
– ident: ref10
  doi: 10.1111/exsy.12899
– ident: ref16
  doi: 10.1109/TBCAS.2017.2751545
– ident: ref19
  doi: 10.1109/JSEN.2019.2962364
– ident: ref7
  doi: 10.1016/j.eswa.2020.113807
– ident: ref18
  doi: 10.1109/JBHI.2019.2949516
– ident: ref4
  doi: 10.1007/s12652-020-01963-7
– ident: ref14
  doi: 10.1109/TBME.2015.2475278
– ident: ref21
  doi: 10.1109/JBHI.2019.2911367
– ident: ref6
  doi: 10.1016/j.iccn.2020.102994
– ident: ref1
  doi: 10.1016/S0002-9149(02)02465-7
– ident: ref15
  doi: 10.1109/TBME.2016.2559800
– ident: ref12
  doi: 10.1016/j.bbe.2020.12.002
SSID ssj0001255720
Score 2.4768796
Snippet In the undertaken study, we have used a customized dataset termed "Cardiac-200" and the benchmark dataset "PhysioNet." which contains 1500 heartbeat acoustic...
In the undertaken study, we have used a customized dataset termed “Cardiac-200” and the benchmark dataset “PhysioNet.” which contains 1500 heartbeat acoustic...
In the undertaken study, we have used a customized dataset termed "Cardiac-200'' and the benchmark dataset "PhysioNet.'' which contains 1500 heartbeat acoustic...
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3060
SubjectTerms Acoustic classification
Acoustics
Artificial neural networks
automated knowledge extraction
Cardiac arrest
cardiovascular events
Cluster analysis
Clustering
Computer and Information Sciences Computer Science
Convolutional neural networks
Customization
Data- och informationsvetenskap
Datasets
Deep learning
diagnosis
Fourier transforms
Heart beat
knowledge-infused learning framework
Machine learning
Monitoring
Neural networks
Recurrent neural networks
Signal to noise ratio
Stethoscope
Support vector machines
Texture
Vector quantization
Title InfusedHeart: A Novel Knowledge-Infused Learning Framework for Diagnosis of Cardiovascular Events
URI https://ieeexplore.ieee.org/document/9725254
https://www.proquest.com/docview/3068175855
https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-119164
Volume 11
WOSCitedRecordID wos000764867300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2373-7476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255720
  issn: 2329-924X
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA3b8MEXb1OsTsmDiIp1vaVNfRu7MFGGsCl7C22TyGB0sq77_eZr07GBCL4VmpTQk8t3ku-cIHTDOZeESpCfWcL0pO2aUWwTU63E3I1JEPm8cNd_C0YjOp2G7zX0uNHCCCGK5DPxBI_FWT5fJDlslbXDwCGK0NRRPQiCUqu1tZ9CSOBUB5e2FbYn3fFYEUDHUbyUKFbg7iw9xV0qu2HltlVosbwMDv_XsCN0oMNI3ClxP0Y1kZ4go9TaYj1eM3ynTaXvmyh6SWWeCT5UPXv1jDt4tFiLOX6tttRM_R5rw9UvPKjStrCKa3GvTMmbZXghcXcniRX3IWcyO0Ufg_6kOzT19Qpm4rr2yvRjlyiKyu0oCS0QX3HPpxB-cUtQ2w9J5FMeJ460Q8odIX0aRKBcFWpekJYM3TPUSBepOAfhNyj9Kaeu8FSEwKknEzjgoSIhsYo5DWRVf54l2nscrsCYs4KDWCEDsBiAxTRYBnrYVPkujTf-KtwEUDYFNR4GalXwMj00M6Y4ErWBJalW3ZaQb-qB13Zv9tlhCl02T3MG9ne-d_H75y_RvmqEVyaOtVBjtczFFdpL1qtZtrwuuucPJj3i4g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP3wBvriXZzXPIioWG3apk19G9MxcQ7BKb6FtklkMDqxm7_ffG06HIjgW6FJCT25fCf5zgnAiZRSM65RfuYqJ9DUd5KUMsesxNJPWZSEsnTX70a9Hn97i5_m4HKqhVFKlcln6gofy7N8OcomuFV2HUceM4RmHhZZEHi0Umv92FFhLPLqo0vqxtf91vOzoYCeZ5gpM7zAn1l8yttUZgPLn2ah5QLTXvtf09Zh1QaSpFkhvwFzKt-ERqW2JXbEFuTM2kqfb0Fyn-tJoWTH9O3xDWmS3uhLDclDvanm2PfEWq6-k3aduEVMZEtuq6S8QUFGmrRm0ljJHWZNFtvw0r7rtzqOvWDByXyfjp0w9ZkhqZImWeyi_EoGIccATLqK0zBmSchlmnmaxlx6Soc8SlC7qszMoF0d-zuwkI9ytYvSb9T6c8l9FZgYQfJAZ3jEw1XGUhN1NsCt_7zIrPs4XoIxFCULcWOBYAkES1iwGnAxrfJRWW_8VXgLQZkWtHg04KCGV9jBWQjDkjhFnmRadVpBPq2Hbtu3g9emMOiKYT4RaIAXBnu_f_4Yljv9x67o3vce9mHFNCio0sgOYGH8OVGHsJR9jQfF51HZVb8BF-7mKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=InfusedHeart%3A+A+Novel+Knowledge-Infused+Learning+Framework+for+Diagnosis+of+Cardiovascular+Events&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Pandya%2C+Sharnil&rft.au=Thippa+Reddy+Gadekallu&rft.au=Reddy%2C+Praveen+Kumar&rft.au=Wang%2C+Weizheng&rft.date=2024-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2373-7476&rft.volume=11&rft.issue=3&rft.spage=3060&rft_id=info:doi/10.1109%2FTCSS.2022.3151643&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon