InfusedHeart: A Novel Knowledge-Infused Learning Framework for Diagnosis of Cardiovascular Events
In the undertaken study, we have used a customized dataset termed "Cardiac-200" and the benchmark dataset "PhysioNet." which contains 1500 heartbeat acoustic event samples (without augmentation) and 1950 samples (with augmentation) heartbeat acoustic events such as normal, murmur...
Uložené v:
| Vydané v: | IEEE transactions on computational social systems Ročník 11; číslo 3; s. 3060 - 3069 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2329-924X, 2373-7476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In the undertaken study, we have used a customized dataset termed "Cardiac-200" and the benchmark dataset "PhysioNet." which contains 1500 heartbeat acoustic event samples (without augmentation) and 1950 samples (with augmentation) heartbeat acoustic events such as normal, murmur, extrasystole, artifact, and other unlabeled heartbeat acoustic events. The primary reason for designing a customized dataset, "cardiac-200," is to balance the total number of samples into categories such as normal and abnormal heartbeat acoustic events. The average duration of the recorded heartbeat acoustic events is 10-12 s. In the undertaken study, we have analyzed and evaluated various heartbeat acoustic events using audio processing libraries such as Chromagram, Chroma-cq, Chroma-short-time Fourier transform (STFT), Chroma-cqt, and Chroma-cens to extract more information from the recorded heartbeat sound signals. The noise removal process has been carried out using local binary pattern (LBP) methodology. The noise-robust heartbeat acoustic images are classified using long short-term memory (LSTM)-convolutional neural network (CNN), recurrent neural network (RNN), LSTM, Bi-LSTM, CNN, K-means Clustering, and support vector machine (SVM) methods. The obtained results have shown that the proposed InfusedHeart Framework had outclassed all the other customized machine learning and deep learning approaches such as RNN, LSTM, Bi-LSTM, CNN, K-means Clustering, and SVM-based classification methodologies. The proposed Knowledge-infused Learning Framework has achieved an accuracy of 89.36% (without augmentation), 93.38% (with augmentation), and a standard deviation of 10.64 (without augmentation), and 6.62 (with augmentation). Furthermore, the proposed framework has been tested for various signal-to-noise ratio conditions such as SignaltoNoiseRatio0, SignaltoNoiseRatio3, SignaltoNoiseRatio6, SignaltoNoiseRatio9, SignaltoNoiseRatio12, SignaltoNoiseRatio15, and SignaltoNoiseRatio18. In the end, we have shown a detailed comparison of texture and without texture approaches and have discussed future enhancements and prospective ways for future directions. |
|---|---|
| AbstractList | In the undertaken study, we have used a customized dataset termed "Cardiac-200'' and the benchmark dataset "PhysioNet.'' which contains 1500 heartbeat acoustic event samples (without augmentation) and 1950 samples (with augmentation) heartbeat acoustic events such as normal, murmur, extrasystole, artifact, and other unlabeled heartbeat acoustic events. The primary reason for designing a customized dataset, "cardiac-200,'' is to balance the total number of samples into categories such as normal and abnormal heartbeat acoustic events. The average duration of the recorded heartbeat acoustic events is 10-12 s. In the undertaken study, we have analyzed and evaluated various heartbeat acoustic events using audio processing libraries such as Chromagram, Chroma-cq, Chroma-short-time Fourier transform (STFT), Chroma-cqt, and Chroma-cens to extract more information from the recorded heartbeat sound signals. The noise removal process has been carried out using local binary pattern (LBP) methodology. The noise-robust heartbeat acoustic images are classified using long short-term memory (LSTM)-convolutional neural network (CNN), recurrent neural network (RNN), LSTM, Bi-LSTM, CNN, K-means Clustering, and support vector machine (SVM) methods. The obtained results have shown that the proposed InfusedHeart Framework had outclassed all the other customized machine learning and deep learning approaches such as RNN, LSTM, Bi-LSTM, CNN, K-means Clustering, and SVM-based classification methodologies. The proposed Knowledge-infused Learning Framework has achieved an accuracy of 89.36% (without augmentation), 93.38% (with augmentation), and a standard deviation of 10.64 (without augmentation), and 6.62 (with augmentation). Furthermore, the proposed framework has been tested for various signal-to-noise ratio conditions such as SignaltoNoiseRatio0, SignaltoNoiseRatio3, SignaltoNoiseRatio6, SignaltoNoiseRatio9, SignaltoNoiseRatio12, SignaltoNoiseRatio15, and SignaltoNoiseRatio18. In the end, we have shown a detailed comparison of texture and without texture approaches and have discussed future enhancements and prospective ways for future directions. In the undertaken study, we have used a customized dataset termed “Cardiac-200” and the benchmark dataset “PhysioNet.” which contains 1500 heartbeat acoustic event samples (without augmentation) and 1950 samples (with augmentation) heartbeat acoustic events such as normal, murmur, extrasystole, artifact, and other unlabeled heartbeat acoustic events. The primary reason for designing a customized dataset, “cardiac-200,” is to balance the total number of samples into categories such as normal and abnormal heartbeat acoustic events. The average duration of the recorded heartbeat acoustic events is 10–12 s. In the undertaken study, we have analyzed and evaluated various heartbeat acoustic events using audio processing libraries such as Chromagram, Chroma-cq, Chroma-short-time Fourier transform (STFT), Chroma-cqt, and Chroma-cens to extract more information from the recorded heartbeat sound signals. The noise removal process has been carried out using local binary pattern (LBP) methodology. The noise-robust heartbeat acoustic images are classified using long short-term memory (LSTM)-convolutional neural network (CNN), recurrent neural network (RNN), LSTM, Bi-LSTM, CNN, K-means Clustering, and support vector machine (SVM) methods. The obtained results have shown that the proposed InfusedHeart Framework had outclassed all the other customized machine learning and deep learning approaches such as RNN, LSTM, Bi-LSTM, CNN, K-means Clustering, and SVM-based classification methodologies. The proposed Knowledge-infused Learning Framework has achieved an accuracy of 89.36% (without augmentation), 93.38% (with augmentation), and a standard deviation of 10.64 (without augmentation), and 6.62 (with augmentation). Furthermore, the proposed framework has been tested for various signal-to-noise ratio conditions such as SignaltoNoiseRatio0, SignaltoNoiseRatio3, SignaltoNoiseRatio6, SignaltoNoiseRatio9, SignaltoNoiseRatio12, SignaltoNoiseRatio15, and SignaltoNoiseRatio18. In the end, we have shown a detailed comparison of texture and without texture approaches and have discussed future enhancements and prospective ways for future directions. |
| Author | Pandya, Sharnil Reddy, Praveen Kumar Alazab, Mamoun Gadekallu, Thippa Reddy Wang, Weizheng |
| Author_xml | – sequence: 1 givenname: Sharnil orcidid: 0000-0002-4507-1844 surname: Pandya fullname: Pandya, Sharnil email: sharnil.pandya@sitpune.edu.in organization: Symbiosis Institute of Technology, Symbiosis International (Deemed University), Pune, Maharashtra, India – sequence: 2 givenname: Thippa Reddy orcidid: 0000-0003-0097-801X surname: Gadekallu fullname: Gadekallu, Thippa Reddy email: thippareddy.g@vit.ac.in organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India – sequence: 3 givenname: Praveen Kumar orcidid: 0000-0003-4209-2495 surname: Reddy fullname: Reddy, Praveen Kumar email: praveenkumarreddy@vit.ac.in organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India – sequence: 4 givenname: Weizheng orcidid: 0000-0002-5879-585X surname: Wang fullname: Wang, Weizheng email: weizheng.wang@ieee.org organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR – sequence: 5 givenname: Mamoun orcidid: 0000-0002-1928-3704 surname: Alazab fullname: Alazab, Mamoun email: alazab.m@ieee.org organization: Department of IT and Environment, Charles Darwin University, Casuarina, NT, Australia |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-119164$$DView record from Swedish Publication Index (Linnéuniversitetet) |
| BookMark | eNp9kU9v2zAMxYWhA9Zl_QDDLgJ2diZKlmXtFqR_saA9tB12ExSbCtS5UibZCfrtZyPZDj30RAL8PfKB7yM5CTEgIZ-BzQGY_vawvL-fc8b5XICEqhTvyCkXShSqVNXJ1HNdaF7--kDOcn5ijAGXUnF2SuxNcEPG9hpt6r_TBb2NO-zojxD3HbYbLI5zuhqB4MOGXib7jPuYflMXEz33dhNi9plGR5c2tT7ubG6GziZ6scPQ50_kvbNdxrNjnZHHy4uH5XWxuru6WS5WRSME9EW1FlKBaME2mslaiLasagCuW4Y1VFraqm7XDXeg65ajq2plpdIVMsEcc1rMSHHYm_e4HdZmm_yzTS8mWm_O_c-FiWljujAYAD39aEa-Hvhtin8GzL15ikMKo0Uj2HhayVrKkVIHqkkx54TONL63vY-hT9Z3BpiZIjBTBGaKwBwjGJXwSvnP0VuaLweNR8T_vFZcclmKv-5Ckwk |
| CODEN | ITCSGL |
| CitedBy_id | crossref_primary_10_3389_fcvm_2025_1526247 crossref_primary_10_1109_JBHI_2022_3217559 crossref_primary_10_1002_itl2_437 crossref_primary_10_1155_2022_3185211 crossref_primary_10_1139_bcb_2023_0151 crossref_primary_10_3390_healthcare11091268 crossref_primary_10_1007_s10878_023_00994_y crossref_primary_10_3390_bioengineering11121290 crossref_primary_10_1109_TITS_2022_3190369 crossref_primary_10_1111_exsy_13359 crossref_primary_10_1007_s00521_024_09452_0 crossref_primary_10_3390_biomimetics8070554 crossref_primary_10_1007_s12553_023_00747_1 crossref_primary_10_1007_s11571_023_10009_5 crossref_primary_10_1109_ACCESS_2023_3266374 crossref_primary_10_1080_00051144_2023_2284031 crossref_primary_10_1016_j_future_2023_05_027 crossref_primary_10_3389_fpubh_2023_1270450 crossref_primary_10_1002_ett_70229 crossref_primary_10_3389_fonc_2022_873268 crossref_primary_10_1007_s00521_024_09554_9 crossref_primary_10_4274_jtgga_galenos_2024_2024_1_8 crossref_primary_10_1111_coin_70076 crossref_primary_10_1186_s40537_023_00769_6 crossref_primary_10_3390_s23156664 crossref_primary_10_1007_s40747_022_00767_w crossref_primary_10_3389_fpubh_2022_909628 |
| Cites_doi | 10.1016/B978-0-12-813148-0.00001-3 10.1016/j.mpaic.2009.06.007 10.1109/TIM.2018.2872387 10.1109/JBHI.2017.2703115 10.3389/fpubh.2021.762303 10.1016/j.bspc.2020.102310 10.3390/electronics9020274 10.1109/TPAMI.2002.1017623 10.1016/j.bspc.2020.102262 10.1111/exsy.12899 10.1109/TBCAS.2017.2751545 10.1109/JSEN.2019.2962364 10.1016/j.eswa.2020.113807 10.1109/JBHI.2019.2949516 10.1007/s12652-020-01963-7 10.1109/TBME.2015.2475278 10.1109/JBHI.2019.2911367 10.1016/j.iccn.2020.102994 10.1016/S0002-9149(02)02465-7 10.1109/TBME.2016.2559800 10.1016/j.bbe.2020.12.002 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTPV AOWAS D92 |
| DOI | 10.1109/TCSS.2022.3151643 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Linnéuniversitetet |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Sciences (General) |
| EISSN | 2373-7476 |
| EndPage | 3069 |
| ExternalDocumentID | oai_DiVA_org_lnu_119164 10_1109_TCSS_2022_3151643 9725254 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTPV AOWAS D92 |
| ID | FETCH-LOGICAL-c331t-6b35713d1ac905833d4681129d0e81695a68dbc2f198d2ef687a5796e030f0f93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000764867300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2329-924X |
| IngestDate | Tue Nov 04 16:52:34 EST 2025 Mon Jun 30 14:50:04 EDT 2025 Tue Nov 18 21:29:48 EST 2025 Sat Nov 29 01:37:09 EST 2025 Wed Aug 27 02:06:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-6b35713d1ac905833d4681129d0e81695a68dbc2f198d2ef687a5796e030f0f93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4507-1844 0000-0003-0097-801X 0000-0002-1928-3704 0000-0002-5879-585X 0000-0003-4209-2495 |
| PQID | 3068175855 |
| PQPubID | 2040411 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCSS_2022_3151643 swepub_primary_oai_DiVA_org_lnu_119164 crossref_primary_10_1109_TCSS_2022_3151643 proquest_journals_3068175855 ieee_primary_9725254 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on computational social systems |
| PublicationTitleAbbrev | TCSS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.1016/B978-0-12-813148-0.00001-3 – ident: ref8 doi: 10.1016/j.mpaic.2009.06.007 – ident: ref17 doi: 10.1109/TIM.2018.2872387 – ident: ref13 doi: 10.1109/JBHI.2017.2703115 – ident: ref3 doi: 10.3389/fpubh.2021.762303 – ident: ref11 doi: 10.1016/j.bspc.2020.102310 – ident: ref5 doi: 10.3390/electronics9020274 – ident: ref20 doi: 10.1109/TPAMI.2002.1017623 – ident: ref9 doi: 10.1016/j.bspc.2020.102262 – ident: ref10 doi: 10.1111/exsy.12899 – ident: ref16 doi: 10.1109/TBCAS.2017.2751545 – ident: ref19 doi: 10.1109/JSEN.2019.2962364 – ident: ref7 doi: 10.1016/j.eswa.2020.113807 – ident: ref18 doi: 10.1109/JBHI.2019.2949516 – ident: ref4 doi: 10.1007/s12652-020-01963-7 – ident: ref14 doi: 10.1109/TBME.2015.2475278 – ident: ref21 doi: 10.1109/JBHI.2019.2911367 – ident: ref6 doi: 10.1016/j.iccn.2020.102994 – ident: ref1 doi: 10.1016/S0002-9149(02)02465-7 – ident: ref15 doi: 10.1109/TBME.2016.2559800 – ident: ref12 doi: 10.1016/j.bbe.2020.12.002 |
| SSID | ssj0001255720 |
| Score | 2.4768796 |
| Snippet | In the undertaken study, we have used a customized dataset termed "Cardiac-200" and the benchmark dataset "PhysioNet." which contains 1500 heartbeat acoustic... In the undertaken study, we have used a customized dataset termed “Cardiac-200” and the benchmark dataset “PhysioNet.” which contains 1500 heartbeat acoustic... In the undertaken study, we have used a customized dataset termed "Cardiac-200'' and the benchmark dataset "PhysioNet.'' which contains 1500 heartbeat acoustic... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3060 |
| SubjectTerms | Acoustic classification Acoustics Artificial neural networks automated knowledge extraction Cardiac arrest cardiovascular events Cluster analysis Clustering Computer and Information Sciences Computer Science Convolutional neural networks Customization Data- och informationsvetenskap Datasets Deep learning diagnosis Fourier transforms Heart beat knowledge-infused learning framework Machine learning Monitoring Neural networks Recurrent neural networks Signal to noise ratio Stethoscope Support vector machines Texture Vector quantization |
| Title | InfusedHeart: A Novel Knowledge-Infused Learning Framework for Diagnosis of Cardiovascular Events |
| URI | https://ieeexplore.ieee.org/document/9725254 https://www.proquest.com/docview/3068175855 https://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-119164 |
| Volume | 11 |
| WOSCitedRecordID | wos000764867300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2373-7476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001255720 issn: 2329-924X databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGA3b8MEXb1OsTsmDiIp1vaVNfRu7MFGGsCl7C22TyGB0sq77_eZr07GBCL4VmpTQk8t3ku-cIHTDOZeESpCfWcL0pO2aUWwTU63E3I1JEPm8cNd_C0YjOp2G7zX0uNHCCCGK5DPxBI_FWT5fJDlslbXDwCGK0NRRPQiCUqu1tZ9CSOBUB5e2FbYn3fFYEUDHUbyUKFbg7iw9xV0qu2HltlVosbwMDv_XsCN0oMNI3ClxP0Y1kZ4go9TaYj1eM3ynTaXvmyh6SWWeCT5UPXv1jDt4tFiLOX6tttRM_R5rw9UvPKjStrCKa3GvTMmbZXghcXcniRX3IWcyO0Ufg_6kOzT19Qpm4rr2yvRjlyiKyu0oCS0QX3HPpxB-cUtQ2w9J5FMeJ460Q8odIX0aRKBcFWpekJYM3TPUSBepOAfhNyj9Kaeu8FSEwKknEzjgoSIhsYo5DWRVf54l2nscrsCYs4KDWCEDsBiAxTRYBnrYVPkujTf-KtwEUDYFNR4GalXwMj00M6Y4ErWBJalW3ZaQb-qB13Zv9tlhCl02T3MG9ne-d_H75y_RvmqEVyaOtVBjtczFFdpL1qtZtrwuuucPJj3i4g |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwGP3wBvriXZzXPIioWG3apk19G9MxcQ7BKb6FtklkMDqxm7_ffG06HIjgW6FJCT25fCf5zgnAiZRSM65RfuYqJ9DUd5KUMsesxNJPWZSEsnTX70a9Hn97i5_m4HKqhVFKlcln6gofy7N8OcomuFV2HUceM4RmHhZZEHi0Umv92FFhLPLqo0vqxtf91vOzoYCeZ5gpM7zAn1l8yttUZgPLn2ah5QLTXvtf09Zh1QaSpFkhvwFzKt-ERqW2JXbEFuTM2kqfb0Fyn-tJoWTH9O3xDWmS3uhLDclDvanm2PfEWq6-k3aduEVMZEtuq6S8QUFGmrRm0ljJHWZNFtvw0r7rtzqOvWDByXyfjp0w9ZkhqZImWeyi_EoGIccATLqK0zBmSchlmnmaxlx6Soc8SlC7qszMoF0d-zuwkI9ytYvSb9T6c8l9FZgYQfJAZ3jEw1XGUhN1NsCt_7zIrPs4XoIxFCULcWOBYAkES1iwGnAxrfJRWW_8VXgLQZkWtHg04KCGV9jBWQjDkjhFnmRadVpBPq2Hbtu3g9emMOiKYT4RaIAXBnu_f_4Yljv9x67o3vce9mHFNCio0sgOYGH8OVGHsJR9jQfF51HZVb8BF-7mKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=InfusedHeart%3A+A+Novel+Knowledge-Infused+Learning+Framework+for+Diagnosis+of+Cardiovascular+Events&rft.jtitle=IEEE+transactions+on+computational+social+systems&rft.au=Pandya%2C+Sharnil&rft.au=Thippa+Reddy+Gadekallu&rft.au=Reddy%2C+Praveen+Kumar&rft.au=Wang%2C+Weizheng&rft.date=2024-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2373-7476&rft.volume=11&rft.issue=3&rft.spage=3060&rft_id=info:doi/10.1109%2FTCSS.2022.3151643&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-924X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-924X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-924X&client=summon |