Real-time implementation of a parameterized Model Predictive Control for Attitude Control Systems of rigid-flexible satellite
•Model Predictive Control (MPC) can reduce vibrations during satellite maneuvers.•Satellite operational constraints are handled by MPC strategy.•Parameterized MPC reduces computational time to solve optimization problems.•MPC can be executed in hardware with limited resources, desirable for space mi...
Uložené v:
| Vydané v: | Mechanical systems and signal processing Ročník 149; s. 107129 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Berlin
Elsevier Ltd
15.02.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0888-3270, 1096-1216 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •Model Predictive Control (MPC) can reduce vibrations during satellite maneuvers.•Satellite operational constraints are handled by MPC strategy.•Parameterized MPC reduces computational time to solve optimization problems.•MPC can be executed in hardware with limited resources, desirable for space missions.
Rigid-flexible satellites are aerospace systems with flexible parts attached to their structures, such as antennas or solar panels. Attitude Control Systems (ACS) of satellites are responsible for spatial orientation concerning a fixed reference for executing maneuvers. As a result, ACS can lead to problems in flexible structures, especially in large-scale movements, as undesired vibrations may be induced in the system, which can impair the satellite’s mission. Then, ACS must be designed to carry out attitude control efficiently while regarding several satellite operating restrictions. In this paper, a parameterized Model Predictive Control (MPC) strategy is proposed for the ACS of a rigid-flexible satellite. The parameterized MPC can provide attitude tracking performance as well as meeting operational constraints to limit the maximum allowable flexible displacement of the structure. Besides, the proposed controller also deals with the saturation of the electric motor command variable. Another relevant feature of the proposed control strategy is the parameterization of MPC, which reduces the complexity of the optimization problem enabling short computation times and allowing real-time implementation. A Hardware-in-the-Loop (HIL) platform is used to validate the proposed control scheme in an embedded system as well as evaluate the closed-loop performance, robustness, and control feasibility. Numerical and experimental results emphasize the efficiency of the parameterized MPC strategy, and a comparison with a Linear Quadratic Regulator (LQR) is performed. |
|---|---|
| AbstractList | •Model Predictive Control (MPC) can reduce vibrations during satellite maneuvers.•Satellite operational constraints are handled by MPC strategy.•Parameterized MPC reduces computational time to solve optimization problems.•MPC can be executed in hardware with limited resources, desirable for space missions.
Rigid-flexible satellites are aerospace systems with flexible parts attached to their structures, such as antennas or solar panels. Attitude Control Systems (ACS) of satellites are responsible for spatial orientation concerning a fixed reference for executing maneuvers. As a result, ACS can lead to problems in flexible structures, especially in large-scale movements, as undesired vibrations may be induced in the system, which can impair the satellite’s mission. Then, ACS must be designed to carry out attitude control efficiently while regarding several satellite operating restrictions. In this paper, a parameterized Model Predictive Control (MPC) strategy is proposed for the ACS of a rigid-flexible satellite. The parameterized MPC can provide attitude tracking performance as well as meeting operational constraints to limit the maximum allowable flexible displacement of the structure. Besides, the proposed controller also deals with the saturation of the electric motor command variable. Another relevant feature of the proposed control strategy is the parameterization of MPC, which reduces the complexity of the optimization problem enabling short computation times and allowing real-time implementation. A Hardware-in-the-Loop (HIL) platform is used to validate the proposed control scheme in an embedded system as well as evaluate the closed-loop performance, robustness, and control feasibility. Numerical and experimental results emphasize the efficiency of the parameterized MPC strategy, and a comparison with a Linear Quadratic Regulator (LQR) is performed. Rigid-flexible satellites are aerospace systems with flexible parts attached to their structures, such as antennas or solar panels. Attitude Control Systems (ACS) of satellites are responsible for spatial orientation concerning a fixed reference for executing maneuvers. As a result, ACS can lead to problems in flexible structures, especially in large-scale movements, as undesired vibrations may be induced in the system, which can impair the satellite's mission. Then, ACS must be designed to carry out attitude control efficiently while regarding several satellite operating restrictions. In this paper, a parameterized Model Predictive Control (MPC) strategy is proposed for the ACS of a rigid-flexible satellite. The parameterized MPC can provide attitude tracking performance as well as meeting operational constraints to limit the maximum allowable flexible displacement of the structure. Besides, the proposed controller also deals with the saturation of the electric motor command variable. Another relevant feature of the proposed control strategy is the parameterization of MPC, which reduces the complexity of the optimization problem enabling short computation times and allowing real-time implementation. A Hardware-in-the-Loop (HIL) platform is used to validate the proposed control scheme in an embedded system as well as evaluate the closed-loop performance, robustness, and control feasibility. Numerical and experimental results emphasize the efficiency of the parameterized MPC strategy, and a comparison with a Linear Quadratic Regulator (LQR) is performed. |
| ArticleNumber | 107129 |
| Author | de Deus Peixoto, Pedro Jorge Lopes, Renato Vilela Murilo, André Gadelha de Souza, Luiz Carlos |
| Author_xml | – sequence: 1 givenname: André surname: Murilo fullname: Murilo, André email: andremurilo@unb.br organization: University of Brasília, Faculty of Gama Campus, Área Especial de Indústria Projeção A, 72444-240 Brasília, Brazil – sequence: 2 givenname: Pedro Jorge surname: de Deus Peixoto fullname: de Deus Peixoto, Pedro Jorge organization: University of Brasília, Faculty of Gama Campus, Área Especial de Indústria Projeção A, 72444-240 Brasília, Brazil – sequence: 3 givenname: Luiz Carlos surname: Gadelha de Souza fullname: Gadelha de Souza, Luiz Carlos organization: Federal University of ABC, Av. dos Estados, 09210-580 Santo André, Brazil – sequence: 4 givenname: Renato Vilela surname: Lopes fullname: Lopes, Renato Vilela organization: University of Brasília, Faculty of Gama Campus, Área Especial de Indústria Projeção A, 72444-240 Brasília, Brazil |
| BookMark | eNqFkE1r3DAQhkVJoJukv6AXQc_eSPZatg49hKVNAgkJ-TgLWRqVWWTLlbQhG8h_jzcuFHJoTwMv7zPDPEfkYAgDEPKVsyVnXJxulrs-pXFZsnKfNLyUn8iCMykKXnJxQBasbduiKhv2mRyltGGMyRUTC_J6B9oXGXug2I8eehiyzhgGGhzVdNRR95Ah4gtYeh0seHobwaLJ-AR0HYYcg6cuRHqWM-at_Rve71KGPu0XRfyFtnAenrHzQJPO4D1mOCGHTvsEX_7MY_L488fD-qK4ujm_XJ9dFaaqeC5WdVcx6FrWWSsllyBdV7pOGAGcr0QrS6hd09RCcNfIuuIajAU29ZiQbAqOybd57xjD7y2krDZhG4fppConvmrrVq6mlpxbJoaUIjhlcJaRo0avOFN722qj3m2rvW01257Y6gM7Rux13P2H-j5TMD3_hBBVMgiDmQRHMFnZgP_k3wCknZ6l |
| CitedBy_id | crossref_primary_10_1016_j_asr_2022_05_055 crossref_primary_10_1109_ACCESS_2022_3159480 crossref_primary_10_3390_act11120378 crossref_primary_10_1007_s11071_025_11609_y crossref_primary_10_1016_j_actaastro_2023_10_011 crossref_primary_10_1016_j_actaastro_2021_11_008 crossref_primary_10_1109_TAES_2025_3560270 crossref_primary_10_1016_j_eswa_2021_114679 crossref_primary_10_1007_s11071_025_11058_7 crossref_primary_10_1016_j_ast_2024_108901 crossref_primary_10_1016_j_actaastro_2025_03_006 crossref_primary_10_1109_TFUZZ_2024_3485098 crossref_primary_10_37394_23201_2021_20_12 crossref_primary_10_1007_s00707_024_04140_5 crossref_primary_10_1109_ACCESS_2025_3554719 crossref_primary_10_1016_j_ress_2023_109382 crossref_primary_10_1016_j_measurement_2024_114370 crossref_primary_10_1007_s40430_022_03887_z |
| Cites_doi | 10.1177/0959651819847053 10.1007/BF00940784 10.1109/ACCESS.2019.2934420 10.1016/j.ast.2013.05.001 10.4028/www.scientific.net/AMM.706.14 10.1155/2013/257193 10.1155/2012/254895 10.1109/JESTPE.2018.2890592 10.2514/2.5085 10.1561/2200000016 10.1109/ACCESS.2019.2949731 10.1016/j.automatica.2005.06.015 10.1016/S0967-0661(98)00205-6 10.1016/S0005-1098(99)00214-9 10.1007/BF03546255 10.1007/s11740-011-0302-5 10.1155/2008/141465 10.1109/TAES.2017.2761199 10.1109/TCYB.2018.2804759 10.1155/2012/716975 10.1007/s10846-016-0357-9 10.1007/s12532-014-0071-1 10.1016/j.ymssp.2018.07.002 10.1007/s40435-014-0108-3 10.1109/TPEL.2018.2793818 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Feb 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Feb 15, 2021 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.ymssp.2020.107129 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1096-1216 |
| ExternalDocumentID | 10_1016_j_ymssp_2020_107129 S088832702030515X |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SST SSV SSZ T5K XPP ZMT ZU3 ~G- 29M 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ ~HD 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c331t-45b30eb80bdd9919e9fb2fb6c6e1146892e5f775661f79531aecde09e90690953 |
| ISICitedReferencesCount | 23 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587905100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0888-3270 |
| IngestDate | Sun Nov 09 07:27:20 EST 2025 Tue Nov 18 20:50:32 EST 2025 Sat Nov 29 07:10:09 EST 2025 Sun Apr 21 12:55:47 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Rigid-flexible satellite Parameterized MPC Hardware-in-the-Loop Constraints Attitude Control System |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-45b30eb80bdd9919e9fb2fb6c6e1146892e5f775661f79531aecde09e90690953 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2468385894 |
| PQPubID | 2045429 |
| ParticipantIDs | proquest_journals_2468385894 crossref_citationtrail_10_1016_j_ymssp_2020_107129 crossref_primary_10_1016_j_ymssp_2020_107129 elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107129 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-02-15 |
| PublicationDateYYYYMMDD | 2021-02-15 |
| PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin |
| PublicationPlace_xml | – name: Berlin |
| PublicationTitle | Mechanical systems and signal processing |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Souza, Gonzales (b0025) 2012; 19 Isermann, Schaffnit, Sinsel (b0095) 1999; 7 Conti, Souza (b0020) 2008; 15 Xing, Low, Pham (b0085) 2012 Abdelrahman, Algarny, Youssef (b0175) 2018; 33 Kaplan (b0030) 1976 Bigot (b0050) 2014; 8 Boyd, Parikh, Chu, Peleato, Eckstein (b0160) 2011; 3 Rock (b0100) 2011; 5 Richter, Jones, Morari (b0155) 2009 D.W. Gu, P. Petkov, M. Konstantinov, Robust control design with MATLAB, 2005. Pinheiro, Souza (b0060) 2013 Hegrenaes, J.T. Gravdahl, P. Tondel, Spacecraft attitude control using explicit model predictive control, Automatica, 41 (12) (2005) 2107 – 2114. A.G. Souza, Estudo do uso de metodos de controle robusto em sistemas espaciais rigidos-flexiveis, Ph.D. thesis, Instituto Nacional de Pesquisas Espaciais (INPE), 2017. S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, vol. 2, 2005. Wright (b0145) 1993; 77 Souza, de Souza L. (b0045) 2014; 706 A. Murilo, R.V. Lopes, Unified NMPC framework for attitude and position control for a VTOL UAV, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233 (7) (2019) 889–903. Rodrigues, Murilo, Lopes, Souza (b0070) 2019; 7 Zhou, Doyle (b0115) 2019 Kim, Velenis, Kriengsiri, Tsiotras (b0035) 2001 Mayne, Rawlings, Rao, Scokaert (b0075) 2000; 36 Souza, Souza (b0005) 2019; 116 Schwartz, Peck, Hall (b0015) 2003; 26 Zhang, Zhang, Zhang (b0130) 2018; 54 Quanser, Rotary Flexible Link, www.quanser.com/products/rotary-flexible-link, 2019. Sales, Rade, Souza (b0040) 2013; 29 Fletcher (b0150) 1987 Zhang, Shi, Zhang, Yan (b0135) 2019; 49 Ferreau, Kirches, Potschka, Bock, Diehl (b0165) 2014; 6 P. Sarhadi, S. Yousefpour, State of the art: hardware in the loop modeling and simulation with its applications in design, development and implementation of system and control software, International Journal of Dynamics and Control, 3. Pizetta, Brando, Sarcinelli-Filho (b0185) 2016; 84 De Farias, Rodrigues, Murilo, Lopes, Avila (b0090) 2019; 7 Amin, Abdel Aziz (b0180) 2019; 7 C. Hall, P. Tsiotras, H. Shen, Tracking rigid body motion using thrusters and momentum wheels, The Journal of the Astronautical Sciences, 50. Alamir (b0140) 2013 Mainenti-Lopes, Souza, De Sousa (b0055) 2012; 19 Fletcher (10.1016/j.ymssp.2020.107129_b0150) 1987 Souza (10.1016/j.ymssp.2020.107129_b0005) 2019; 116 Kim (10.1016/j.ymssp.2020.107129_b0035) 2001 Conti (10.1016/j.ymssp.2020.107129_b0020) 2008; 15 10.1016/j.ymssp.2020.107129_b0010 Alamir (10.1016/j.ymssp.2020.107129_b0140) 2013 Mayne (10.1016/j.ymssp.2020.107129_b0075) 2000; 36 10.1016/j.ymssp.2020.107129_b0110 Zhang (10.1016/j.ymssp.2020.107129_b0135) 2019; 49 Abdelrahman (10.1016/j.ymssp.2020.107129_b0175) 2018; 33 Mainenti-Lopes (10.1016/j.ymssp.2020.107129_b0055) 2012; 19 Xing (10.1016/j.ymssp.2020.107129_b0085) 2012 Zhou (10.1016/j.ymssp.2020.107129_b0115) 2019 Sales (10.1016/j.ymssp.2020.107129_b0040) 2013; 29 Kaplan (10.1016/j.ymssp.2020.107129_b0030) 1976 Ferreau (10.1016/j.ymssp.2020.107129_b0165) 2014; 6 Pinheiro (10.1016/j.ymssp.2020.107129_b0060) 2013 Boyd (10.1016/j.ymssp.2020.107129_b0160) 2011; 3 Rock (10.1016/j.ymssp.2020.107129_b0100) 2011; 5 Isermann (10.1016/j.ymssp.2020.107129_b0095) 1999; 7 10.1016/j.ymssp.2020.107129_b0080 10.1016/j.ymssp.2020.107129_b0125 Souza (10.1016/j.ymssp.2020.107129_b0025) 2012; 19 10.1016/j.ymssp.2020.107129_b0065 10.1016/j.ymssp.2020.107129_b0120 Schwartz (10.1016/j.ymssp.2020.107129_b0015) 2003; 26 Pizetta (10.1016/j.ymssp.2020.107129_b0185) 2016; 84 10.1016/j.ymssp.2020.107129_b0105 Wright (10.1016/j.ymssp.2020.107129_b0145) 1993; 77 Rodrigues (10.1016/j.ymssp.2020.107129_b0070) 2019; 7 Bigot (10.1016/j.ymssp.2020.107129_b0050) 2014; 8 Zhang (10.1016/j.ymssp.2020.107129_b0130) 2018; 54 10.1016/j.ymssp.2020.107129_b0170 Amin (10.1016/j.ymssp.2020.107129_b0180) 2019; 7 De Farias (10.1016/j.ymssp.2020.107129_b0090) 2019; 7 Souza (10.1016/j.ymssp.2020.107129_b0045) 2014; 706 Richter (10.1016/j.ymssp.2020.107129_b0155) 2009 |
| References_xml | – reference: Quanser, Rotary Flexible Link, www.quanser.com/products/rotary-flexible-link, 2019. – volume: 7 start-page: 936 year: 2019 end-page: 945 ident: b0180 article-title: A Hardware-in-the-Loop realization of a robust discrete-time current control of PMa-SynRM for aerospace vehicle applications publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics – reference: . Hegrenaes, J.T. Gravdahl, P. Tondel, Spacecraft attitude control using explicit model predictive control, Automatica, 41 (12) (2005) 2107 – 2114. – start-page: 7387 year: 2009 end-page: 7393 ident: b0155 article-title: Real-time input-constrained MPC using fast gradient methods publication-title: Proceedings of the 48th IEEE Conference on Decision and Control – volume: 116 start-page: 641 year: 2019 end-page: 650 ident: b0005 article-title: Design of a controller for a rigid-flexible satellite using the H-infinity method considering the parametric uncertainty publication-title: Mechanical Systems and Signal Processing – year: 2013 ident: b0060 article-title: Design of the microsatellite attitude control system using the mixed method via LMI optimization publication-title: Mathematical Problems in Engineering – volume: 77 start-page: 161 year: 1993 end-page: 187 ident: b0145 article-title: Interior point methods for optimal control of discrete time systems publication-title: Journal of Optimization Theory and Applications – volume: 19 start-page: 947 year: 2012 end-page: 956 ident: b0055 article-title: Design of a nonlinear controller for a rigid-flexible satellite using multi-objective generalized extremal optimization with real codification publication-title: Shock and Vibration – volume: 5 start-page: 329 year: 2011 end-page: 337 ident: b0100 article-title: Hardware in the loop simulation of production systems dynamics publication-title: Production Engineering – volume: 7 start-page: 643 year: 1999 end-page: 653 ident: b0095 article-title: Hardware-in-the-loop simulation for the design and testing of engine-control systems publication-title: Control Engineering Practice – volume: 36 start-page: 789 year: 2000 end-page: 814 ident: b0075 article-title: Constrained model predictive control: stability and optimality publication-title: Automatica – start-page: 230 year: 2012 end-page: 235 ident: b0085 article-title: Distributed Model Predictive Control of satellite attitude using hybrid reaction wheels and magnetic actuators publication-title: Proceedings of ISIEA IEEE Symposium on Industrial Electronics and Applications – volume: 26 start-page: 513 year: 2003 end-page: 522 ident: b0015 article-title: Historical review of air-bearing spacecraft simulators publication-title: Journal of Guidance, Control, and Dynamics – volume: 6 start-page: 327 year: 2014 end-page: 363 ident: b0165 article-title: qpOASES: A parametric active-set algorithm for quadratic programming publication-title: Mathematical Programming Computation – volume: 54 start-page: 642 year: 2018 end-page: 654 ident: b0130 article-title: Distributed attitude control for multispacecraft via Takagi-Sugeno fuzzy approach publication-title: IEEE Transactions on Aerospace and Electronic Systems – reference: A.G. Souza, Estudo do uso de metodos de controle robusto em sistemas espaciais rigidos-flexiveis, Ph.D. thesis, Instituto Nacional de Pesquisas Espaciais (INPE), 2017. – volume: 706 start-page: 14 year: 2014 end-page: 24 ident: b0045 article-title: Design of satellite attitude control system considering the interaction between fuel slosh and flexible dynamics during the system parameters estimation publication-title: Applied Mechanics and Materials – reference: S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, vol. 2, 2005. – volume: 7 start-page: 111499 year: 2019 end-page: 111512 ident: b0090 article-title: Low-cost hardware-in-the-loop platform for embedded control strategies simulation publication-title: IEEE Access – volume: 15 start-page: 395 year: 2008 end-page: 402 ident: b0020 article-title: Satellite attitude control system simulator publication-title: Shock and Vibration – start-page: 897 year: 2001 end-page: 914 ident: b0035 article-title: A spacecraft simulator for research and education publication-title: Proceedings of AIAA/AAS Astrodynamics Specialists Conference – volume: 8 start-page: 92 year: 2014 end-page: 99 ident: b0050 article-title: Investigation of the state dependent Riccati equation (SDRE) adaptive control advantages for controlling non-linear systems as a flexible rotatory beam publication-title: International Journal of System Application, Engineering & Development – volume: 49 start-page: 1592 year: 2019 end-page: 1604 ident: b0135 article-title: New results on sliding-mode control for Takagi-Sugeno fuzzy multiagent systems publication-title: IEEE Transactions on Cybernetics – year: 2013 ident: b0140 article-title: A Pragmatic Story of Model Predictive Control: Self-Contained Algorithms and Case-Studies publication-title: CreateSpace Independent Publishing Platform – volume: 7 start-page: 157401 year: 2019 end-page: 157416 ident: b0070 article-title: Hardware in the loop simulation for model predictive control applied to satellite attitude control publication-title: IEEE Access – volume: 33 start-page: 9762 year: 2018 end-page: 9771 ident: b0175 article-title: A novel platform for powertrain modeling of electric cars with experimental validation using real-time Hardware in the Loop (HIL): a case study of GM Second Generation Chevrolet Volt publication-title: IEEE Transactions on Power Electronics – reference: A. Murilo, R.V. Lopes, Unified NMPC framework for attitude and position control for a VTOL UAV, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233 (7) (2019) 889–903. – year: 2019 ident: b0115 article-title: Essentials of Robust Control – volume: 3 start-page: 1 year: 2011 end-page: 122 ident: b0160 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends in Machine Learning – year: 1987 ident: b0150 article-title: Practical Methods of Optimization – start-page: 427 year: 1976 ident: b0030 article-title: Modern Spacecraft Dynamics & Control – volume: 29 start-page: 403 year: 2013 end-page: 412 ident: b0040 article-title: Passive vibration control of flexible spacecraft using shunted piezoelectric transducers publication-title: Aerospace Science and Technology – volume: 19 start-page: 939 year: 2012 end-page: 946 ident: b0025 article-title: Application of the state-dependent Riccati equation and Kalman filter techniques to the design of a satellite control system publication-title: Shock and Vibration – reference: P. Sarhadi, S. Yousefpour, State of the art: hardware in the loop modeling and simulation with its applications in design, development and implementation of system and control software, International Journal of Dynamics and Control, 3. – reference: C. Hall, P. Tsiotras, H. Shen, Tracking rigid body motion using thrusters and momentum wheels, The Journal of the Astronautical Sciences, 50. – volume: 84 start-page: 725 year: 2016 end-page: 743 ident: b0185 article-title: A Hardware-in-the-Loop platform for rotary-wing unmanned aerial vehicles publication-title: Journal of Intelligent & Robotic Systems – reference: D.W. Gu, P. Petkov, M. Konstantinov, Robust control design with MATLAB, 2005. – ident: 10.1016/j.ymssp.2020.107129_b0065 doi: 10.1177/0959651819847053 – ident: 10.1016/j.ymssp.2020.107129_b0125 – volume: 77 start-page: 161 issue: 1 year: 1993 ident: 10.1016/j.ymssp.2020.107129_b0145 article-title: Interior point methods for optimal control of discrete time systems publication-title: Journal of Optimization Theory and Applications doi: 10.1007/BF00940784 – year: 1987 ident: 10.1016/j.ymssp.2020.107129_b0150 – volume: 7 start-page: 111499 year: 2019 ident: 10.1016/j.ymssp.2020.107129_b0090 article-title: Low-cost hardware-in-the-loop platform for embedded control strategies simulation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2934420 – volume: 29 start-page: 403 year: 2013 ident: 10.1016/j.ymssp.2020.107129_b0040 article-title: Passive vibration control of flexible spacecraft using shunted piezoelectric transducers publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2013.05.001 – volume: 706 start-page: 14 year: 2014 ident: 10.1016/j.ymssp.2020.107129_b0045 article-title: Design of satellite attitude control system considering the interaction between fuel slosh and flexible dynamics during the system parameters estimation publication-title: Applied Mechanics and Materials doi: 10.4028/www.scientific.net/AMM.706.14 – year: 2013 ident: 10.1016/j.ymssp.2020.107129_b0060 article-title: Design of the microsatellite attitude control system using the mixed method via LMI optimization publication-title: Mathematical Problems in Engineering doi: 10.1155/2013/257193 – volume: 19 start-page: 947 year: 2012 ident: 10.1016/j.ymssp.2020.107129_b0055 article-title: Design of a nonlinear controller for a rigid-flexible satellite using multi-objective generalized extremal optimization with real codification publication-title: Shock and Vibration doi: 10.1155/2012/254895 – volume: 7 start-page: 936 issue: 2 year: 2019 ident: 10.1016/j.ymssp.2020.107129_b0180 article-title: A Hardware-in-the-Loop realization of a robust discrete-time current control of PMa-SynRM for aerospace vehicle applications publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics doi: 10.1109/JESTPE.2018.2890592 – start-page: 230 year: 2012 ident: 10.1016/j.ymssp.2020.107129_b0085 article-title: Distributed Model Predictive Control of satellite attitude using hybrid reaction wheels and magnetic actuators – ident: 10.1016/j.ymssp.2020.107129_b0110 – volume: 26 start-page: 513 issue: 4 year: 2003 ident: 10.1016/j.ymssp.2020.107129_b0015 article-title: Historical review of air-bearing spacecraft simulators publication-title: Journal of Guidance, Control, and Dynamics doi: 10.2514/2.5085 – year: 2013 ident: 10.1016/j.ymssp.2020.107129_b0140 article-title: A Pragmatic Story of Model Predictive Control: Self-Contained Algorithms and Case-Studies publication-title: CreateSpace Independent Publishing Platform – year: 2019 ident: 10.1016/j.ymssp.2020.107129_b0115 – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.ymssp.2020.107129_b0160 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Foundations and Trends in Machine Learning doi: 10.1561/2200000016 – volume: 7 start-page: 157401 year: 2019 ident: 10.1016/j.ymssp.2020.107129_b0070 article-title: Hardware in the loop simulation for model predictive control applied to satellite attitude control publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949731 – ident: 10.1016/j.ymssp.2020.107129_b0080 doi: 10.1016/j.automatica.2005.06.015 – start-page: 427 year: 1976 ident: 10.1016/j.ymssp.2020.107129_b0030 – volume: 7 start-page: 643 issue: 5 year: 1999 ident: 10.1016/j.ymssp.2020.107129_b0095 article-title: Hardware-in-the-loop simulation for the design and testing of engine-control systems publication-title: Control Engineering Practice doi: 10.1016/S0967-0661(98)00205-6 – volume: 36 start-page: 789 issue: 6 year: 2000 ident: 10.1016/j.ymssp.2020.107129_b0075 article-title: Constrained model predictive control: stability and optimality publication-title: Automatica doi: 10.1016/S0005-1098(99)00214-9 – ident: 10.1016/j.ymssp.2020.107129_b0010 doi: 10.1007/BF03546255 – volume: 8 start-page: 92 year: 2014 ident: 10.1016/j.ymssp.2020.107129_b0050 article-title: Investigation of the state dependent Riccati equation (SDRE) adaptive control advantages for controlling non-linear systems as a flexible rotatory beam publication-title: International Journal of System Application, Engineering & Development – volume: 5 start-page: 329 year: 2011 ident: 10.1016/j.ymssp.2020.107129_b0100 article-title: Hardware in the loop simulation of production systems dynamics publication-title: Production Engineering doi: 10.1007/s11740-011-0302-5 – volume: 15 start-page: 395 year: 2008 ident: 10.1016/j.ymssp.2020.107129_b0020 article-title: Satellite attitude control system simulator publication-title: Shock and Vibration doi: 10.1155/2008/141465 – volume: 54 start-page: 642 issue: 2 year: 2018 ident: 10.1016/j.ymssp.2020.107129_b0130 article-title: Distributed attitude control for multispacecraft via Takagi-Sugeno fuzzy approach publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2017.2761199 – volume: 49 start-page: 1592 issue: 5 year: 2019 ident: 10.1016/j.ymssp.2020.107129_b0135 article-title: New results on sliding-mode control for Takagi-Sugeno fuzzy multiagent systems publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2804759 – start-page: 7387 year: 2009 ident: 10.1016/j.ymssp.2020.107129_b0155 article-title: Real-time input-constrained MPC using fast gradient methods – volume: 19 start-page: 939 year: 2012 ident: 10.1016/j.ymssp.2020.107129_b0025 article-title: Application of the state-dependent Riccati equation and Kalman filter techniques to the design of a satellite control system publication-title: Shock and Vibration doi: 10.1155/2012/716975 – volume: 84 start-page: 725 year: 2016 ident: 10.1016/j.ymssp.2020.107129_b0185 article-title: A Hardware-in-the-Loop platform for rotary-wing unmanned aerial vehicles publication-title: Journal of Intelligent & Robotic Systems doi: 10.1007/s10846-016-0357-9 – start-page: 897 year: 2001 ident: 10.1016/j.ymssp.2020.107129_b0035 article-title: A spacecraft simulator for research and education – volume: 6 start-page: 327 issue: 4 year: 2014 ident: 10.1016/j.ymssp.2020.107129_b0165 article-title: qpOASES: A parametric active-set algorithm for quadratic programming publication-title: Mathematical Programming Computation doi: 10.1007/s12532-014-0071-1 – volume: 116 start-page: 641 year: 2019 ident: 10.1016/j.ymssp.2020.107129_b0005 article-title: Design of a controller for a rigid-flexible satellite using the H-infinity method considering the parametric uncertainty publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.07.002 – ident: 10.1016/j.ymssp.2020.107129_b0170 doi: 10.1007/s40435-014-0108-3 – ident: 10.1016/j.ymssp.2020.107129_b0105 – volume: 33 start-page: 9762 issue: 11 year: 2018 ident: 10.1016/j.ymssp.2020.107129_b0175 article-title: A novel platform for powertrain modeling of electric cars with experimental validation using real-time Hardware in the Loop (HIL): a case study of GM Second Generation Chevrolet Volt publication-title: IEEE Transactions on Power Electronics doi: 10.1109/TPEL.2018.2793818 – ident: 10.1016/j.ymssp.2020.107129_b0120 |
| SSID | ssj0009406 |
| Score | 2.4408464 |
| Snippet | •Model Predictive Control (MPC) can reduce vibrations during satellite maneuvers.•Satellite operational constraints are handled by MPC strategy.•Parameterized... Rigid-flexible satellites are aerospace systems with flexible parts attached to their structures, such as antennas or solar panels. Attitude Control Systems... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107129 |
| SubjectTerms | Aerospace systems Attitude Control System Constraints Control systems Electric motors Embedded systems Flexible structures Hardware-in-the-Loop Linear quadratic regulator Maneuvers Optimization Parameterization Parameterized MPC Performance evaluation Predictive control Real time Rigid-flexible satellite Robust control Satellite attitude control Satellite tracking Satellites Strategy |
| Title | Real-time implementation of a parameterized Model Predictive Control for Attitude Control Systems of rigid-flexible satellite |
| URI | https://dx.doi.org/10.1016/j.ymssp.2020.107129 https://www.proquest.com/docview/2468385894 |
| Volume | 149 |
| WOSCitedRecordID | wos000587905100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2021 customDbUrl: eissn: 1096-1216 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009406 issn: 0888-3270 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlAMcKj5FaUF74BZcxRs76z1GqAiqUlVtQblZtndNXaV2FCdViMRP5D8xsx92TUUFSFwia2OvI8_L7Oz4zRtC3vgRZzLwcy_jgsMGJUy8SIVImxoqWH1FmMlcN5vgx8fRdCpOer0frhbmesbLMlqvxfy_mhrGwNhYOvsX5m4mhQE4BqPDJ5gdPv_I8KcQ-nnYMh4rIC053IWFyQClvq-QAlNsINTETmgzpGHIQvs9LADUzHUkH06WSCOQ7aBVN8eJsJ2W9HJU08TSqzrRwp7LDq_ok8KqYlN2aa_UWfriK0bAc1Oh4FZOY_PCvAhClqV5g---k0hvWtWDE1WsK935CQ7lohocYkq_IRGh5uVFMoCzz6rVRsfFR6tig7SWWdXsHo6quXGOp6rE1jdfwDPOkpv5D-YjZdpUgJqknCvMaVlQxndG3oiZniT7yvh22K15PjOlnY3zN4KptxYSk9O43P92Vdcoa8pwjPs2O9NV6D7Du-HNGHpPP5zeI1uMhyLqk63Jx4PpYasCHehmr82vczJYmnB461a_C5V-CRp0JHT-iGzbLQydGOg9Jj1VPiEPbwhbPiXfGxDSLghpldOEdkBINQhpC0Jq8UYBhNSBsBm0IMSJuiCkDQifkc_vD87fffBsow8vG438pReE6Wio0miYSgn7FaFEnrI8HWdjhUXzkWAqzDmHnYefcwGrRqIyqYZwHupsw8Bz0i-rUr0gVIY8GEqe-pkfBJwnqcSU-VgEUapga8x3CHPPNM6sCj42Y5nFju54GWtDxGiI2Bhih7xtLpobEZi7Tx87Y8U2jjXxaQzouvvCPWfa2HqUOmbwAPDtvQhe_uu8u-RB-8_ZI_3lYqVekfvZ9bKoF68tSH8C_bXTSg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+implementation+of+a+parameterized+Model+Predictive+Control+for+Attitude+Control+Systems+of+rigid-flexible+satellite&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Murilo%2C+Andr%C3%A9&rft.au=de+Deus+Peixoto%2C+Pedro+Jorge&rft.au=Gadelha+de+Souza%2C+Luiz+Carlos&rft.au=Lopes%2C+Renato+Vilela&rft.date=2021-02-15&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=149&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107129&rft.externalDocID=S088832702030515X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon |