Real-time implementation of a parameterized Model Predictive Control for Attitude Control Systems of rigid-flexible satellite

•Model Predictive Control (MPC) can reduce vibrations during satellite maneuvers.•Satellite operational constraints are handled by MPC strategy.•Parameterized MPC reduces computational time to solve optimization problems.•MPC can be executed in hardware with limited resources, desirable for space mi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mechanical systems and signal processing Ročník 149; s. 107129
Hlavní autori: Murilo, André, de Deus Peixoto, Pedro Jorge, Gadelha de Souza, Luiz Carlos, Lopes, Renato Vilela
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin Elsevier Ltd 15.02.2021
Elsevier BV
Predmet:
ISSN:0888-3270, 1096-1216
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Model Predictive Control (MPC) can reduce vibrations during satellite maneuvers.•Satellite operational constraints are handled by MPC strategy.•Parameterized MPC reduces computational time to solve optimization problems.•MPC can be executed in hardware with limited resources, desirable for space missions. Rigid-flexible satellites are aerospace systems with flexible parts attached to their structures, such as antennas or solar panels. Attitude Control Systems (ACS) of satellites are responsible for spatial orientation concerning a fixed reference for executing maneuvers. As a result, ACS can lead to problems in flexible structures, especially in large-scale movements, as undesired vibrations may be induced in the system, which can impair the satellite’s mission. Then, ACS must be designed to carry out attitude control efficiently while regarding several satellite operating restrictions. In this paper, a parameterized Model Predictive Control (MPC) strategy is proposed for the ACS of a rigid-flexible satellite. The parameterized MPC can provide attitude tracking performance as well as meeting operational constraints to limit the maximum allowable flexible displacement of the structure. Besides, the proposed controller also deals with the saturation of the electric motor command variable. Another relevant feature of the proposed control strategy is the parameterization of MPC, which reduces the complexity of the optimization problem enabling short computation times and allowing real-time implementation. A Hardware-in-the-Loop (HIL) platform is used to validate the proposed control scheme in an embedded system as well as evaluate the closed-loop performance, robustness, and control feasibility. Numerical and experimental results emphasize the efficiency of the parameterized MPC strategy, and a comparison with a Linear Quadratic Regulator (LQR) is performed.
AbstractList •Model Predictive Control (MPC) can reduce vibrations during satellite maneuvers.•Satellite operational constraints are handled by MPC strategy.•Parameterized MPC reduces computational time to solve optimization problems.•MPC can be executed in hardware with limited resources, desirable for space missions. Rigid-flexible satellites are aerospace systems with flexible parts attached to their structures, such as antennas or solar panels. Attitude Control Systems (ACS) of satellites are responsible for spatial orientation concerning a fixed reference for executing maneuvers. As a result, ACS can lead to problems in flexible structures, especially in large-scale movements, as undesired vibrations may be induced in the system, which can impair the satellite’s mission. Then, ACS must be designed to carry out attitude control efficiently while regarding several satellite operating restrictions. In this paper, a parameterized Model Predictive Control (MPC) strategy is proposed for the ACS of a rigid-flexible satellite. The parameterized MPC can provide attitude tracking performance as well as meeting operational constraints to limit the maximum allowable flexible displacement of the structure. Besides, the proposed controller also deals with the saturation of the electric motor command variable. Another relevant feature of the proposed control strategy is the parameterization of MPC, which reduces the complexity of the optimization problem enabling short computation times and allowing real-time implementation. A Hardware-in-the-Loop (HIL) platform is used to validate the proposed control scheme in an embedded system as well as evaluate the closed-loop performance, robustness, and control feasibility. Numerical and experimental results emphasize the efficiency of the parameterized MPC strategy, and a comparison with a Linear Quadratic Regulator (LQR) is performed.
Rigid-flexible satellites are aerospace systems with flexible parts attached to their structures, such as antennas or solar panels. Attitude Control Systems (ACS) of satellites are responsible for spatial orientation concerning a fixed reference for executing maneuvers. As a result, ACS can lead to problems in flexible structures, especially in large-scale movements, as undesired vibrations may be induced in the system, which can impair the satellite's mission. Then, ACS must be designed to carry out attitude control efficiently while regarding several satellite operating restrictions. In this paper, a parameterized Model Predictive Control (MPC) strategy is proposed for the ACS of a rigid-flexible satellite. The parameterized MPC can provide attitude tracking performance as well as meeting operational constraints to limit the maximum allowable flexible displacement of the structure. Besides, the proposed controller also deals with the saturation of the electric motor command variable. Another relevant feature of the proposed control strategy is the parameterization of MPC, which reduces the complexity of the optimization problem enabling short computation times and allowing real-time implementation. A Hardware-in-the-Loop (HIL) platform is used to validate the proposed control scheme in an embedded system as well as evaluate the closed-loop performance, robustness, and control feasibility. Numerical and experimental results emphasize the efficiency of the parameterized MPC strategy, and a comparison with a Linear Quadratic Regulator (LQR) is performed.
ArticleNumber 107129
Author de Deus Peixoto, Pedro Jorge
Lopes, Renato Vilela
Murilo, André
Gadelha de Souza, Luiz Carlos
Author_xml – sequence: 1
  givenname: André
  surname: Murilo
  fullname: Murilo, André
  email: andremurilo@unb.br
  organization: University of Brasília, Faculty of Gama Campus, Área Especial de Indústria Projeção A, 72444-240 Brasília, Brazil
– sequence: 2
  givenname: Pedro Jorge
  surname: de Deus Peixoto
  fullname: de Deus Peixoto, Pedro Jorge
  organization: University of Brasília, Faculty of Gama Campus, Área Especial de Indústria Projeção A, 72444-240 Brasília, Brazil
– sequence: 3
  givenname: Luiz Carlos
  surname: Gadelha de Souza
  fullname: Gadelha de Souza, Luiz Carlos
  organization: Federal University of ABC, Av. dos Estados, 09210-580 Santo André, Brazil
– sequence: 4
  givenname: Renato Vilela
  surname: Lopes
  fullname: Lopes, Renato Vilela
  organization: University of Brasília, Faculty of Gama Campus, Área Especial de Indústria Projeção A, 72444-240 Brasília, Brazil
BookMark eNqFkE1r3DAQhkVJoJukv6AXQc_eSPZatg49hKVNAgkJ-TgLWRqVWWTLlbQhG8h_jzcuFHJoTwMv7zPDPEfkYAgDEPKVsyVnXJxulrs-pXFZsnKfNLyUn8iCMykKXnJxQBasbduiKhv2mRyltGGMyRUTC_J6B9oXGXug2I8eehiyzhgGGhzVdNRR95Ah4gtYeh0seHobwaLJ-AR0HYYcg6cuRHqWM-at_Rve71KGPu0XRfyFtnAenrHzQJPO4D1mOCGHTvsEX_7MY_L488fD-qK4ujm_XJ9dFaaqeC5WdVcx6FrWWSsllyBdV7pOGAGcr0QrS6hd09RCcNfIuuIajAU29ZiQbAqOybd57xjD7y2krDZhG4fppConvmrrVq6mlpxbJoaUIjhlcJaRo0avOFN722qj3m2rvW01257Y6gM7Rux13P2H-j5TMD3_hBBVMgiDmQRHMFnZgP_k3wCknZ6l
CitedBy_id crossref_primary_10_1016_j_asr_2022_05_055
crossref_primary_10_1109_ACCESS_2022_3159480
crossref_primary_10_3390_act11120378
crossref_primary_10_1007_s11071_025_11609_y
crossref_primary_10_1016_j_actaastro_2023_10_011
crossref_primary_10_1016_j_actaastro_2021_11_008
crossref_primary_10_1109_TAES_2025_3560270
crossref_primary_10_1016_j_eswa_2021_114679
crossref_primary_10_1007_s11071_025_11058_7
crossref_primary_10_1016_j_ast_2024_108901
crossref_primary_10_1016_j_actaastro_2025_03_006
crossref_primary_10_1109_TFUZZ_2024_3485098
crossref_primary_10_37394_23201_2021_20_12
crossref_primary_10_1007_s00707_024_04140_5
crossref_primary_10_1109_ACCESS_2025_3554719
crossref_primary_10_1016_j_ress_2023_109382
crossref_primary_10_1016_j_measurement_2024_114370
crossref_primary_10_1007_s40430_022_03887_z
Cites_doi 10.1177/0959651819847053
10.1007/BF00940784
10.1109/ACCESS.2019.2934420
10.1016/j.ast.2013.05.001
10.4028/www.scientific.net/AMM.706.14
10.1155/2013/257193
10.1155/2012/254895
10.1109/JESTPE.2018.2890592
10.2514/2.5085
10.1561/2200000016
10.1109/ACCESS.2019.2949731
10.1016/j.automatica.2005.06.015
10.1016/S0967-0661(98)00205-6
10.1016/S0005-1098(99)00214-9
10.1007/BF03546255
10.1007/s11740-011-0302-5
10.1155/2008/141465
10.1109/TAES.2017.2761199
10.1109/TCYB.2018.2804759
10.1155/2012/716975
10.1007/s10846-016-0357-9
10.1007/s12532-014-0071-1
10.1016/j.ymssp.2018.07.002
10.1007/s40435-014-0108-3
10.1109/TPEL.2018.2793818
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier BV Feb 15, 2021
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 15, 2021
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.ymssp.2020.107129
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-1216
ExternalDocumentID 10_1016_j_ymssp_2020_107129
S088832702030515X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-45b30eb80bdd9919e9fb2fb6c6e1146892e5f775661f79531aecde09e90690953
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000587905100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Sun Nov 09 07:27:20 EST 2025
Tue Nov 18 20:50:32 EST 2025
Sat Nov 29 07:10:09 EST 2025
Sun Apr 21 12:55:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Rigid-flexible satellite
Parameterized MPC
Hardware-in-the-Loop
Constraints
Attitude Control System
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-45b30eb80bdd9919e9fb2fb6c6e1146892e5f775661f79531aecde09e90690953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2468385894
PQPubID 2045429
ParticipantIDs proquest_journals_2468385894
crossref_citationtrail_10_1016_j_ymssp_2020_107129
crossref_primary_10_1016_j_ymssp_2020_107129
elsevier_sciencedirect_doi_10_1016_j_ymssp_2020_107129
PublicationCentury 2000
PublicationDate 2021-02-15
PublicationDateYYYYMMDD 2021-02-15
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Souza, Gonzales (b0025) 2012; 19
Isermann, Schaffnit, Sinsel (b0095) 1999; 7
Conti, Souza (b0020) 2008; 15
Xing, Low, Pham (b0085) 2012
Abdelrahman, Algarny, Youssef (b0175) 2018; 33
Kaplan (b0030) 1976
Bigot (b0050) 2014; 8
Boyd, Parikh, Chu, Peleato, Eckstein (b0160) 2011; 3
Rock (b0100) 2011; 5
Richter, Jones, Morari (b0155) 2009
D.W. Gu, P. Petkov, M. Konstantinov, Robust control design with MATLAB, 2005.
Pinheiro, Souza (b0060) 2013
Hegrenaes, J.T. Gravdahl, P. Tondel, Spacecraft attitude control using explicit model predictive control, Automatica, 41 (12) (2005) 2107 – 2114.
A.G. Souza, Estudo do uso de metodos de controle robusto em sistemas espaciais rigidos-flexiveis, Ph.D. thesis, Instituto Nacional de Pesquisas Espaciais (INPE), 2017.
S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, vol. 2, 2005.
Wright (b0145) 1993; 77
Souza, de Souza L. (b0045) 2014; 706
A. Murilo, R.V. Lopes, Unified NMPC framework for attitude and position control for a VTOL UAV, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233 (7) (2019) 889–903.
Rodrigues, Murilo, Lopes, Souza (b0070) 2019; 7
Zhou, Doyle (b0115) 2019
Kim, Velenis, Kriengsiri, Tsiotras (b0035) 2001
Mayne, Rawlings, Rao, Scokaert (b0075) 2000; 36
Souza, Souza (b0005) 2019; 116
Schwartz, Peck, Hall (b0015) 2003; 26
Zhang, Zhang, Zhang (b0130) 2018; 54
Quanser, Rotary Flexible Link, www.quanser.com/products/rotary-flexible-link, 2019.
Sales, Rade, Souza (b0040) 2013; 29
Fletcher (b0150) 1987
Zhang, Shi, Zhang, Yan (b0135) 2019; 49
Ferreau, Kirches, Potschka, Bock, Diehl (b0165) 2014; 6
P. Sarhadi, S. Yousefpour, State of the art: hardware in the loop modeling and simulation with its applications in design, development and implementation of system and control software, International Journal of Dynamics and Control, 3.
Pizetta, Brando, Sarcinelli-Filho (b0185) 2016; 84
De Farias, Rodrigues, Murilo, Lopes, Avila (b0090) 2019; 7
Amin, Abdel Aziz (b0180) 2019; 7
C. Hall, P. Tsiotras, H. Shen, Tracking rigid body motion using thrusters and momentum wheels, The Journal of the Astronautical Sciences, 50.
Alamir (b0140) 2013
Mainenti-Lopes, Souza, De Sousa (b0055) 2012; 19
Fletcher (10.1016/j.ymssp.2020.107129_b0150) 1987
Souza (10.1016/j.ymssp.2020.107129_b0005) 2019; 116
Kim (10.1016/j.ymssp.2020.107129_b0035) 2001
Conti (10.1016/j.ymssp.2020.107129_b0020) 2008; 15
10.1016/j.ymssp.2020.107129_b0010
Alamir (10.1016/j.ymssp.2020.107129_b0140) 2013
Mayne (10.1016/j.ymssp.2020.107129_b0075) 2000; 36
10.1016/j.ymssp.2020.107129_b0110
Zhang (10.1016/j.ymssp.2020.107129_b0135) 2019; 49
Abdelrahman (10.1016/j.ymssp.2020.107129_b0175) 2018; 33
Mainenti-Lopes (10.1016/j.ymssp.2020.107129_b0055) 2012; 19
Xing (10.1016/j.ymssp.2020.107129_b0085) 2012
Zhou (10.1016/j.ymssp.2020.107129_b0115) 2019
Sales (10.1016/j.ymssp.2020.107129_b0040) 2013; 29
Kaplan (10.1016/j.ymssp.2020.107129_b0030) 1976
Ferreau (10.1016/j.ymssp.2020.107129_b0165) 2014; 6
Pinheiro (10.1016/j.ymssp.2020.107129_b0060) 2013
Boyd (10.1016/j.ymssp.2020.107129_b0160) 2011; 3
Rock (10.1016/j.ymssp.2020.107129_b0100) 2011; 5
Isermann (10.1016/j.ymssp.2020.107129_b0095) 1999; 7
10.1016/j.ymssp.2020.107129_b0080
10.1016/j.ymssp.2020.107129_b0125
Souza (10.1016/j.ymssp.2020.107129_b0025) 2012; 19
10.1016/j.ymssp.2020.107129_b0065
10.1016/j.ymssp.2020.107129_b0120
Schwartz (10.1016/j.ymssp.2020.107129_b0015) 2003; 26
Pizetta (10.1016/j.ymssp.2020.107129_b0185) 2016; 84
10.1016/j.ymssp.2020.107129_b0105
Wright (10.1016/j.ymssp.2020.107129_b0145) 1993; 77
Rodrigues (10.1016/j.ymssp.2020.107129_b0070) 2019; 7
Bigot (10.1016/j.ymssp.2020.107129_b0050) 2014; 8
Zhang (10.1016/j.ymssp.2020.107129_b0130) 2018; 54
10.1016/j.ymssp.2020.107129_b0170
Amin (10.1016/j.ymssp.2020.107129_b0180) 2019; 7
De Farias (10.1016/j.ymssp.2020.107129_b0090) 2019; 7
Souza (10.1016/j.ymssp.2020.107129_b0045) 2014; 706
Richter (10.1016/j.ymssp.2020.107129_b0155) 2009
References_xml – reference: Quanser, Rotary Flexible Link, www.quanser.com/products/rotary-flexible-link, 2019.
– volume: 7
  start-page: 936
  year: 2019
  end-page: 945
  ident: b0180
  article-title: A Hardware-in-the-Loop realization of a robust discrete-time current control of PMa-SynRM for aerospace vehicle applications
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
– reference: . Hegrenaes, J.T. Gravdahl, P. Tondel, Spacecraft attitude control using explicit model predictive control, Automatica, 41 (12) (2005) 2107 – 2114.
– start-page: 7387
  year: 2009
  end-page: 7393
  ident: b0155
  article-title: Real-time input-constrained MPC using fast gradient methods
  publication-title: Proceedings of the 48th IEEE Conference on Decision and Control
– volume: 116
  start-page: 641
  year: 2019
  end-page: 650
  ident: b0005
  article-title: Design of a controller for a rigid-flexible satellite using the H-infinity method considering the parametric uncertainty
  publication-title: Mechanical Systems and Signal Processing
– year: 2013
  ident: b0060
  article-title: Design of the microsatellite attitude control system using the mixed method via LMI optimization
  publication-title: Mathematical Problems in Engineering
– volume: 77
  start-page: 161
  year: 1993
  end-page: 187
  ident: b0145
  article-title: Interior point methods for optimal control of discrete time systems
  publication-title: Journal of Optimization Theory and Applications
– volume: 19
  start-page: 947
  year: 2012
  end-page: 956
  ident: b0055
  article-title: Design of a nonlinear controller for a rigid-flexible satellite using multi-objective generalized extremal optimization with real codification
  publication-title: Shock and Vibration
– volume: 5
  start-page: 329
  year: 2011
  end-page: 337
  ident: b0100
  article-title: Hardware in the loop simulation of production systems dynamics
  publication-title: Production Engineering
– volume: 7
  start-page: 643
  year: 1999
  end-page: 653
  ident: b0095
  article-title: Hardware-in-the-loop simulation for the design and testing of engine-control systems
  publication-title: Control Engineering Practice
– volume: 36
  start-page: 789
  year: 2000
  end-page: 814
  ident: b0075
  article-title: Constrained model predictive control: stability and optimality
  publication-title: Automatica
– start-page: 230
  year: 2012
  end-page: 235
  ident: b0085
  article-title: Distributed Model Predictive Control of satellite attitude using hybrid reaction wheels and magnetic actuators
  publication-title: Proceedings of ISIEA IEEE Symposium on Industrial Electronics and Applications
– volume: 26
  start-page: 513
  year: 2003
  end-page: 522
  ident: b0015
  article-title: Historical review of air-bearing spacecraft simulators
  publication-title: Journal of Guidance, Control, and Dynamics
– volume: 6
  start-page: 327
  year: 2014
  end-page: 363
  ident: b0165
  article-title: qpOASES: A parametric active-set algorithm for quadratic programming
  publication-title: Mathematical Programming Computation
– volume: 54
  start-page: 642
  year: 2018
  end-page: 654
  ident: b0130
  article-title: Distributed attitude control for multispacecraft via Takagi-Sugeno fuzzy approach
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– reference: A.G. Souza, Estudo do uso de metodos de controle robusto em sistemas espaciais rigidos-flexiveis, Ph.D. thesis, Instituto Nacional de Pesquisas Espaciais (INPE), 2017.
– volume: 706
  start-page: 14
  year: 2014
  end-page: 24
  ident: b0045
  article-title: Design of satellite attitude control system considering the interaction between fuel slosh and flexible dynamics during the system parameters estimation
  publication-title: Applied Mechanics and Materials
– reference: S. Skogestad, I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, vol. 2, 2005.
– volume: 7
  start-page: 111499
  year: 2019
  end-page: 111512
  ident: b0090
  article-title: Low-cost hardware-in-the-loop platform for embedded control strategies simulation
  publication-title: IEEE Access
– volume: 15
  start-page: 395
  year: 2008
  end-page: 402
  ident: b0020
  article-title: Satellite attitude control system simulator
  publication-title: Shock and Vibration
– start-page: 897
  year: 2001
  end-page: 914
  ident: b0035
  article-title: A spacecraft simulator for research and education
  publication-title: Proceedings of AIAA/AAS Astrodynamics Specialists Conference
– volume: 8
  start-page: 92
  year: 2014
  end-page: 99
  ident: b0050
  article-title: Investigation of the state dependent Riccati equation (SDRE) adaptive control advantages for controlling non-linear systems as a flexible rotatory beam
  publication-title: International Journal of System Application, Engineering & Development
– volume: 49
  start-page: 1592
  year: 2019
  end-page: 1604
  ident: b0135
  article-title: New results on sliding-mode control for Takagi-Sugeno fuzzy multiagent systems
  publication-title: IEEE Transactions on Cybernetics
– year: 2013
  ident: b0140
  article-title: A Pragmatic Story of Model Predictive Control: Self-Contained Algorithms and Case-Studies
  publication-title: CreateSpace Independent Publishing Platform
– volume: 7
  start-page: 157401
  year: 2019
  end-page: 157416
  ident: b0070
  article-title: Hardware in the loop simulation for model predictive control applied to satellite attitude control
  publication-title: IEEE Access
– volume: 33
  start-page: 9762
  year: 2018
  end-page: 9771
  ident: b0175
  article-title: A novel platform for powertrain modeling of electric cars with experimental validation using real-time Hardware in the Loop (HIL): a case study of GM Second Generation Chevrolet Volt
  publication-title: IEEE Transactions on Power Electronics
– reference: A. Murilo, R.V. Lopes, Unified NMPC framework for attitude and position control for a VTOL UAV, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233 (7) (2019) 889–903.
– year: 2019
  ident: b0115
  article-title: Essentials of Robust Control
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: b0160
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
– year: 1987
  ident: b0150
  article-title: Practical Methods of Optimization
– start-page: 427
  year: 1976
  ident: b0030
  article-title: Modern Spacecraft Dynamics & Control
– volume: 29
  start-page: 403
  year: 2013
  end-page: 412
  ident: b0040
  article-title: Passive vibration control of flexible spacecraft using shunted piezoelectric transducers
  publication-title: Aerospace Science and Technology
– volume: 19
  start-page: 939
  year: 2012
  end-page: 946
  ident: b0025
  article-title: Application of the state-dependent Riccati equation and Kalman filter techniques to the design of a satellite control system
  publication-title: Shock and Vibration
– reference: P. Sarhadi, S. Yousefpour, State of the art: hardware in the loop modeling and simulation with its applications in design, development and implementation of system and control software, International Journal of Dynamics and Control, 3.
– reference: C. Hall, P. Tsiotras, H. Shen, Tracking rigid body motion using thrusters and momentum wheels, The Journal of the Astronautical Sciences, 50.
– volume: 84
  start-page: 725
  year: 2016
  end-page: 743
  ident: b0185
  article-title: A Hardware-in-the-Loop platform for rotary-wing unmanned aerial vehicles
  publication-title: Journal of Intelligent & Robotic Systems
– reference: D.W. Gu, P. Petkov, M. Konstantinov, Robust control design with MATLAB, 2005.
– ident: 10.1016/j.ymssp.2020.107129_b0065
  doi: 10.1177/0959651819847053
– ident: 10.1016/j.ymssp.2020.107129_b0125
– volume: 77
  start-page: 161
  issue: 1
  year: 1993
  ident: 10.1016/j.ymssp.2020.107129_b0145
  article-title: Interior point methods for optimal control of discrete time systems
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/BF00940784
– year: 1987
  ident: 10.1016/j.ymssp.2020.107129_b0150
– volume: 7
  start-page: 111499
  year: 2019
  ident: 10.1016/j.ymssp.2020.107129_b0090
  article-title: Low-cost hardware-in-the-loop platform for embedded control strategies simulation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934420
– volume: 29
  start-page: 403
  year: 2013
  ident: 10.1016/j.ymssp.2020.107129_b0040
  article-title: Passive vibration control of flexible spacecraft using shunted piezoelectric transducers
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2013.05.001
– volume: 706
  start-page: 14
  year: 2014
  ident: 10.1016/j.ymssp.2020.107129_b0045
  article-title: Design of satellite attitude control system considering the interaction between fuel slosh and flexible dynamics during the system parameters estimation
  publication-title: Applied Mechanics and Materials
  doi: 10.4028/www.scientific.net/AMM.706.14
– year: 2013
  ident: 10.1016/j.ymssp.2020.107129_b0060
  article-title: Design of the microsatellite attitude control system using the mixed method via LMI optimization
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2013/257193
– volume: 19
  start-page: 947
  year: 2012
  ident: 10.1016/j.ymssp.2020.107129_b0055
  article-title: Design of a nonlinear controller for a rigid-flexible satellite using multi-objective generalized extremal optimization with real codification
  publication-title: Shock and Vibration
  doi: 10.1155/2012/254895
– volume: 7
  start-page: 936
  issue: 2
  year: 2019
  ident: 10.1016/j.ymssp.2020.107129_b0180
  article-title: A Hardware-in-the-Loop realization of a robust discrete-time current control of PMa-SynRM for aerospace vehicle applications
  publication-title: IEEE Journal of Emerging and Selected Topics in Power Electronics
  doi: 10.1109/JESTPE.2018.2890592
– start-page: 230
  year: 2012
  ident: 10.1016/j.ymssp.2020.107129_b0085
  article-title: Distributed Model Predictive Control of satellite attitude using hybrid reaction wheels and magnetic actuators
– ident: 10.1016/j.ymssp.2020.107129_b0110
– volume: 26
  start-page: 513
  issue: 4
  year: 2003
  ident: 10.1016/j.ymssp.2020.107129_b0015
  article-title: Historical review of air-bearing spacecraft simulators
  publication-title: Journal of Guidance, Control, and Dynamics
  doi: 10.2514/2.5085
– year: 2013
  ident: 10.1016/j.ymssp.2020.107129_b0140
  article-title: A Pragmatic Story of Model Predictive Control: Self-Contained Algorithms and Case-Studies
  publication-title: CreateSpace Independent Publishing Platform
– year: 2019
  ident: 10.1016/j.ymssp.2020.107129_b0115
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.ymssp.2020.107129_b0160
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Foundations and Trends in Machine Learning
  doi: 10.1561/2200000016
– volume: 7
  start-page: 157401
  year: 2019
  ident: 10.1016/j.ymssp.2020.107129_b0070
  article-title: Hardware in the loop simulation for model predictive control applied to satellite attitude control
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949731
– ident: 10.1016/j.ymssp.2020.107129_b0080
  doi: 10.1016/j.automatica.2005.06.015
– start-page: 427
  year: 1976
  ident: 10.1016/j.ymssp.2020.107129_b0030
– volume: 7
  start-page: 643
  issue: 5
  year: 1999
  ident: 10.1016/j.ymssp.2020.107129_b0095
  article-title: Hardware-in-the-loop simulation for the design and testing of engine-control systems
  publication-title: Control Engineering Practice
  doi: 10.1016/S0967-0661(98)00205-6
– volume: 36
  start-page: 789
  issue: 6
  year: 2000
  ident: 10.1016/j.ymssp.2020.107129_b0075
  article-title: Constrained model predictive control: stability and optimality
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00214-9
– ident: 10.1016/j.ymssp.2020.107129_b0010
  doi: 10.1007/BF03546255
– volume: 8
  start-page: 92
  year: 2014
  ident: 10.1016/j.ymssp.2020.107129_b0050
  article-title: Investigation of the state dependent Riccati equation (SDRE) adaptive control advantages for controlling non-linear systems as a flexible rotatory beam
  publication-title: International Journal of System Application, Engineering & Development
– volume: 5
  start-page: 329
  year: 2011
  ident: 10.1016/j.ymssp.2020.107129_b0100
  article-title: Hardware in the loop simulation of production systems dynamics
  publication-title: Production Engineering
  doi: 10.1007/s11740-011-0302-5
– volume: 15
  start-page: 395
  year: 2008
  ident: 10.1016/j.ymssp.2020.107129_b0020
  article-title: Satellite attitude control system simulator
  publication-title: Shock and Vibration
  doi: 10.1155/2008/141465
– volume: 54
  start-page: 642
  issue: 2
  year: 2018
  ident: 10.1016/j.ymssp.2020.107129_b0130
  article-title: Distributed attitude control for multispacecraft via Takagi-Sugeno fuzzy approach
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2017.2761199
– volume: 49
  start-page: 1592
  issue: 5
  year: 2019
  ident: 10.1016/j.ymssp.2020.107129_b0135
  article-title: New results on sliding-mode control for Takagi-Sugeno fuzzy multiagent systems
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2804759
– start-page: 7387
  year: 2009
  ident: 10.1016/j.ymssp.2020.107129_b0155
  article-title: Real-time input-constrained MPC using fast gradient methods
– volume: 19
  start-page: 939
  year: 2012
  ident: 10.1016/j.ymssp.2020.107129_b0025
  article-title: Application of the state-dependent Riccati equation and Kalman filter techniques to the design of a satellite control system
  publication-title: Shock and Vibration
  doi: 10.1155/2012/716975
– volume: 84
  start-page: 725
  year: 2016
  ident: 10.1016/j.ymssp.2020.107129_b0185
  article-title: A Hardware-in-the-Loop platform for rotary-wing unmanned aerial vehicles
  publication-title: Journal of Intelligent & Robotic Systems
  doi: 10.1007/s10846-016-0357-9
– start-page: 897
  year: 2001
  ident: 10.1016/j.ymssp.2020.107129_b0035
  article-title: A spacecraft simulator for research and education
– volume: 6
  start-page: 327
  issue: 4
  year: 2014
  ident: 10.1016/j.ymssp.2020.107129_b0165
  article-title: qpOASES: A parametric active-set algorithm for quadratic programming
  publication-title: Mathematical Programming Computation
  doi: 10.1007/s12532-014-0071-1
– volume: 116
  start-page: 641
  year: 2019
  ident: 10.1016/j.ymssp.2020.107129_b0005
  article-title: Design of a controller for a rigid-flexible satellite using the H-infinity method considering the parametric uncertainty
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.07.002
– ident: 10.1016/j.ymssp.2020.107129_b0170
  doi: 10.1007/s40435-014-0108-3
– ident: 10.1016/j.ymssp.2020.107129_b0105
– volume: 33
  start-page: 9762
  issue: 11
  year: 2018
  ident: 10.1016/j.ymssp.2020.107129_b0175
  article-title: A novel platform for powertrain modeling of electric cars with experimental validation using real-time Hardware in the Loop (HIL): a case study of GM Second Generation Chevrolet Volt
  publication-title: IEEE Transactions on Power Electronics
  doi: 10.1109/TPEL.2018.2793818
– ident: 10.1016/j.ymssp.2020.107129_b0120
SSID ssj0009406
Score 2.4408464
Snippet •Model Predictive Control (MPC) can reduce vibrations during satellite maneuvers.•Satellite operational constraints are handled by MPC strategy.•Parameterized...
Rigid-flexible satellites are aerospace systems with flexible parts attached to their structures, such as antennas or solar panels. Attitude Control Systems...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107129
SubjectTerms Aerospace systems
Attitude Control System
Constraints
Control systems
Electric motors
Embedded systems
Flexible structures
Hardware-in-the-Loop
Linear quadratic regulator
Maneuvers
Optimization
Parameterization
Parameterized MPC
Performance evaluation
Predictive control
Real time
Rigid-flexible satellite
Robust control
Satellite attitude control
Satellite tracking
Satellites
Strategy
Title Real-time implementation of a parameterized Model Predictive Control for Attitude Control Systems of rigid-flexible satellite
URI https://dx.doi.org/10.1016/j.ymssp.2020.107129
https://www.proquest.com/docview/2468385894
Volume 149
WOSCitedRecordID wos000587905100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FlAMcKj5FaUF74BZcxRs76z1GqAiqUlVtQblZtndNXaV2FCdViMRP5D8xsx92TUUFSFwia2OvI8_L7Oz4zRtC3vgRZzLwcy_jgsMGJUy8SIVImxoqWH1FmMlcN5vgx8fRdCpOer0frhbmesbLMlqvxfy_mhrGwNhYOvsX5m4mhQE4BqPDJ5gdPv_I8KcQ-nnYMh4rIC053IWFyQClvq-QAlNsINTETmgzpGHIQvs9LADUzHUkH06WSCOQ7aBVN8eJsJ2W9HJU08TSqzrRwp7LDq_ok8KqYlN2aa_UWfriK0bAc1Oh4FZOY_PCvAhClqV5g---k0hvWtWDE1WsK935CQ7lohocYkq_IRGh5uVFMoCzz6rVRsfFR6tig7SWWdXsHo6quXGOp6rE1jdfwDPOkpv5D-YjZdpUgJqknCvMaVlQxndG3oiZniT7yvh22K15PjOlnY3zN4KptxYSk9O43P92Vdcoa8pwjPs2O9NV6D7Du-HNGHpPP5zeI1uMhyLqk63Jx4PpYasCHehmr82vczJYmnB461a_C5V-CRp0JHT-iGzbLQydGOg9Jj1VPiEPbwhbPiXfGxDSLghpldOEdkBINQhpC0Jq8UYBhNSBsBm0IMSJuiCkDQifkc_vD87fffBsow8vG438pReE6Wio0miYSgn7FaFEnrI8HWdjhUXzkWAqzDmHnYefcwGrRqIyqYZwHupsw8Bz0i-rUr0gVIY8GEqe-pkfBJwnqcSU-VgEUapga8x3CHPPNM6sCj42Y5nFju54GWtDxGiI2Bhih7xtLpobEZi7Tx87Y8U2jjXxaQzouvvCPWfa2HqUOmbwAPDtvQhe_uu8u-RB-8_ZI_3lYqVekfvZ9bKoF68tSH8C_bXTSg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+implementation+of+a+parameterized+Model+Predictive+Control+for+Attitude+Control+Systems+of+rigid-flexible+satellite&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Murilo%2C+Andr%C3%A9&rft.au=de+Deus+Peixoto%2C+Pedro+Jorge&rft.au=Gadelha+de+Souza%2C+Luiz+Carlos&rft.au=Lopes%2C+Renato+Vilela&rft.date=2021-02-15&rft.pub=Elsevier+Ltd&rft.issn=0888-3270&rft.eissn=1096-1216&rft.volume=149&rft_id=info:doi/10.1016%2Fj.ymssp.2020.107129&rft.externalDocID=S088832702030515X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon