Multi-fidelity optimization for the day-ahead scheduling of Pumped Hydro Energy Storage
Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power conversion efficiency. While traditional methods like Mixed-Integer Linear Programming (MILP) offer theoretical guarantees, they rely on approxim...
Uloženo v:
| Vydáno v: | Journal of energy storage Ročník 103; s. 114096 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.12.2024
Elsevier |
| Témata: | |
| ISSN: | 2352-152X, 2352-1538 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power conversion efficiency. While traditional methods like Mixed-Integer Linear Programming (MILP) offer theoretical guarantees, they rely on approximations that can lead to suboptimal decisions and costly redispatch or penalties. Because of its inherent approximations, MILP is a low-fidelity optimization model. In this paper, we propose a multi-fidelity approach that combines MILP with a Surrogate-Based Optimization Algorithm (SBOA). MILP solutions are used as warm-starts for the SBOA, which refines the solutions using a high-fidelity simulator of PHES dynamics and redispatch costs. This allows the SBOA to handle nonlinearities and improve the initial MILP solution by exploring areas with higher expected value. Our approach is tested on a PHES unit that participates in the energy and reserve markets in Belgium. The results show that, despite the extensive efforts made in MILP modeling, decisions can still be improved through smart integration with SBOAs.
•Exact optimization is augmented with global search methods.•The method is applied to the scheduling of Pumped Hydro Energy Storage.•MILP’s fast results are used as warm-start for higher-fidelity optimization search.•We find the best trade-off regarding the resources allocated to each method.•Multi-fidelity can strongly reduce the gap between ex-ante and ex-post profits. |
|---|---|
| AbstractList | Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power conversion efficiency. While traditional methods like Mixed-Integer Linear Programming (MILP) offer theoretical guarantees, they rely on approximations that can lead to suboptimal decisions and costly redispatch or penalties. Because of its inherent approximations, MILP is a low-fidelity optimization model. In this paper, we propose a multi-fidelity approach that combines MILP with a Surrogate-Based Optimization Algorithm (SBOA). MILP solutions are used as warm-starts for the SBOA, which refines the solutions using a high-fidelity simulator of PHES dynamics and redispatch costs. This allows the SBOA to handle nonlinearities and improve the initial MILP solution by exploring areas with higher expected value. Our approach is tested on a PHES unit that participates in the energy and reserve markets in Belgium. The results show that, despite the extensive efforts made in MILP modeling, decisions can still be improved through smart integration with SBOAs.
•Exact optimization is augmented with global search methods.•The method is applied to the scheduling of Pumped Hydro Energy Storage.•MILP’s fast results are used as warm-start for higher-fidelity optimization search.•We find the best trade-off regarding the resources allocated to each method.•Multi-fidelity can strongly reduce the gap between ex-ante and ex-post profits. |
| ArticleNumber | 114096 |
| Author | Gobert, Maxime Favaro, Pietro Toubeau, Jean-François |
| Author_xml | – sequence: 1 givenname: Pietro orcidid: 0009-0002-0782-4494 surname: Favaro fullname: Favaro, Pietro email: pietro.favaro@umons.ac.be organization: Power System and Market Research Group (PSMR), University of Mons, Boulevard Dolez 31, Mons, 7000, Wallonia, Belgium – sequence: 2 givenname: Maxime orcidid: 0000-0003-4925-4995 surname: Gobert fullname: Gobert, Maxime organization: Mathematics and Operational Research, Rue de Houdain 9, Mons, 7000, Wallonia, Belgium – sequence: 3 givenname: Jean-François orcidid: 0000-0001-9853-2694 surname: Toubeau fullname: Toubeau, Jean-François organization: Power System and Market Research Group (PSMR), University of Mons, Boulevard Dolez 31, Mons, 7000, Wallonia, Belgium |
| BackLink | https://hal.science/hal-04801851$$DView record in HAL |
| BookMark | eNp9kMFOAjEQhhujiYg8gLdePSx2ut1liSdCUEwwmqjRW1PaKZQsW9ItJOvTu4jh4IHTTCb_N5P5rsh55Ssk5AZYHxjkd6s-1rHPGRd9AMGG-Rnp8DTjCWRpcX7s-dcl6dX1irEWygCGeYd8Pm_L6BLrDJYuNtRvolu7bxWdr6j1gcYlUqOaRC1RGVrrJZpt6aoF9Za-btcbNHTamODppMKwaOhb9EEt8JpcWFXW2PurXfLxMHkfT5PZy-PTeDRLdJpCTAQInWfMCD4XlgO0N3hR8FwpkQ6RazPkiIM5KLCqGKQ5wLywGVOFVSD4wKZdcnvYu1Sl3AS3VqGRXjk5Hc3kfsZEwaDIYAdtFg5ZHXxdB7RHAJjci5Qr2YqUe5HyILJlBv8Y7eKvnRiUK0-S9wcS2_d3DoOstcNKo3EBdZTGuxP0D0ljjvg |
| CitedBy_id | crossref_primary_10_1016_j_energy_2025_136910 crossref_primary_10_3390_en18184977 crossref_primary_10_1016_j_est_2025_117677 crossref_primary_10_1016_j_apenergy_2024_125255 crossref_primary_10_1016_j_est_2025_118192 |
| Cites_doi | 10.1016/j.renene.2019.02.118 10.1007/s11269-020-02583-8 10.1016/j.scs.2024.105746 10.1016/j.apenergy.2019.114224 10.1007/s13201-022-01593-8 10.1016/j.ins.2012.05.009 10.1016/j.energy.2019.116657 10.1016/j.apenergy.2023.121006 10.1002/2017WR021039 10.1049/iet-gtd.2019.0204 10.3390/en14030625 10.1016/j.ijepes.2013.03.002 10.1016/j.renene.2022.05.106 10.1016/j.engappai.2024.109075 10.1061/(ASCE)WR.1943-5452.0000343 10.1016/j.enconman.2022.116654 10.1016/j.est.2022.104902 10.1016/j.energy.2018.08.077 10.1109/4235.996017 10.1016/j.energy.2020.117797 10.3390/a15120446 10.1016/j.epsr.2022.108285 10.1016/j.rser.2023.113566 10.1016/j.est.2023.109306 10.1016/j.egyr.2023.10.080 10.3390/su141811287 10.1016/j.enconman.2007.01.034 10.1109/TSTE.2019.2929687 10.1016/j.apenergy.2018.07.078 10.1016/j.energy.2023.129999 10.1016/j.scs.2024.105488 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2024 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.est.2024.114096 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Computer Science |
| EISSN | 2352-1538 |
| ExternalDocumentID | oai:HAL:hal-04801851v1 10_1016_j_est_2024_114096 S2352152X2403682X |
| GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAKOC AALRI AAOAW AAQFI AARIN AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFJKZ AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AATTM AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG EJD 1XC |
| ID | FETCH-LOGICAL-c331t-414c650d42b4f211ead28826aa439e2cd92ee7b1a1fa873611b8f50a8fa1427f3 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350578400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2352-152X |
| IngestDate | Tue Oct 14 21:01:09 EDT 2025 Tue Nov 18 20:49:22 EST 2025 Sat Nov 29 01:58:43 EST 2025 Sat Dec 21 15:59:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-fidelity optimization 90C26 Pumped hydro energy storage Surrogate-based optimization algorithms Electricity markets Mixed-integer linear programming |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-414c650d42b4f211ead28826aa439e2cd92ee7b1a1fa873611b8f50a8fa1427f3 |
| ORCID | 0000-0001-9853-2694 0000-0003-4925-4995 0009-0002-0782-4494 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04801851v1 crossref_primary_10_1016_j_est_2024_114096 crossref_citationtrail_10_1016_j_est_2024_114096 elsevier_sciencedirect_doi_10_1016_j_est_2024_114096 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 2024-12-00 2024-12 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of energy storage |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | N. Srinivas, A. Krause, S. Kakade, M. Seeger, Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design, in: ICML 2010 - Proceedings, 27th International Conference on Machine Learning, 2010, pp. 1015–1022. Holland (b21) 1992 Močkus (b44) 1975 Kushner (b46) 1964; 86 Gobert, Gmys, Toubeau, Melab, Tuyttens, Vallée (b35) 2022; 15 Yu, Yuan, Wang (b25) 2007; 48 Gobert, Briffoteaux, Gmys, Melab, Tuyttens (b40) 2024; 137 Deb, Pratap, Agarwal, Meyarivan (b43) 2002; 6 Zhou, Guo, Chang, Xu (b23) 2018; 228 Shaw, Smith Sawyer, LeBoeuf, McDonald, Hadjerioua (b34) 2017; 53 Pannatier (b4) 2018 Favaro, Dolányi, Vallée, Toubeau (b19) 2024; 289 Cheng, Liu, Feng, Cheng, Ming, Luo, Liu, Xu, Huang, Xia (b31) 2023; 339 Wu, Wu, Guo, Guo, Cheng, Cheng, Cheng, Cheng (b9) 2021; 14 Eriksson, Pearce, Gardner, Turner, Poloczek (b38) 2020 Immanuel Selvakumar (b30) 2013; 51 Črepinšek, Liu, Mernik (b33) 2012; 212 Fan, Huang, Shi, Li, Cai, Zhang (b24) 2023; 184 Chen (b22) 2009 Wang, Fang, Wen, Tan, Zhang, Liu (b7) 2023; 277 (b36) 2022 (b3) 2022 Daneshvar, Mohammadi-Ivatloo, Zare, Asadi (b11) 2020; 193 Zhao, Zhao, Yang (b6) 2014; 140 Schonlau (b39) 1997 Toubeau, Iassinovski, Jean, Parfait, Bottieau, De Grève, Vallée (b5) 2019; 13 Ak, Kentel, Savasaneril (b13) 2019; 139 Lai, Lai, Huang, Huang, Koo, Koo, Ahmed, Ahmed, El-Shafie, El-Shafie (b20) 2022 Toubeau, De Greve, Goderniaux, Vallee, Bruninx (b17) 2020; 11 Saab, Othman, Tan, Allawi, El-Shafie (b29) 2022; 12 Jamii, Jamii, Trabelsi, Trabelsi, Mansouri, Mansouri, Mimouni, Mimouni, Shatanawi, Shatanawi (b12) 2022; 14 Cheng, Su, Wang, Shen, Lu, Wu (b15) 2018; 163 Al-Aqeeli, Mahmood Agha (b26) 2020; 34 Schäffer, Helseth, Korp UŮas (b8) 2022; 194 Marti, Kall (b10) 2012 Gomes e Souza, Finardi, Brito, Takigawa (b18) 2022; 211 Alvarez (b16) 2020; 202 Toufani, Karakoyun, Nadar, Fosso, Kocaman (b14) 2023; 73 Lyu, Yang, Yan, Zhou, Zeng (b42) 2018; vol. 80 Gholami, Karimi, Rastgou (b32) 2022; 52 Briffoteaux (b47) 2021 Iweh, Akupan (b28) 2023; 10 Ginsbourger, Le Riche, Carraro (b41) 2010 Jin, Olhofer, Sendhoff (b37) 2000 Taghizad-Tavana, Kheljani, Hosseini, Tarafdar-Hagh, Daneshvar (b1) 2024; 108 Taghizad-Tavana, Tarafdar-Hagh, Nojavan, Yasinzadeh, Ghanbari-Ghalehjoughi (b2) 2024; 114 Mohseni, Brent, Burmester (b27) 2020; 259 Cheng (10.1016/j.est.2024.114096_b15) 2018; 163 Alvarez (10.1016/j.est.2024.114096_b16) 2020; 202 Gholami (10.1016/j.est.2024.114096_b32) 2022; 52 Schäffer (10.1016/j.est.2024.114096_b8) 2022; 194 Favaro (10.1016/j.est.2024.114096_b19) 2024; 289 Toubeau (10.1016/j.est.2024.114096_b17) 2020; 11 Mohseni (10.1016/j.est.2024.114096_b27) 2020; 259 Wu (10.1016/j.est.2024.114096_b9) 2021; 14 10.1016/j.est.2024.114096_b45 Holland (10.1016/j.est.2024.114096_b21) 1992 Immanuel Selvakumar (10.1016/j.est.2024.114096_b30) 2013; 51 Lyu (10.1016/j.est.2024.114096_b42) 2018; vol. 80 Shaw (10.1016/j.est.2024.114096_b34) 2017; 53 (10.1016/j.est.2024.114096_b3) 2022 Toufani (10.1016/j.est.2024.114096_b14) 2023; 73 Toubeau (10.1016/j.est.2024.114096_b5) 2019; 13 Yu (10.1016/j.est.2024.114096_b25) 2007; 48 Zhou (10.1016/j.est.2024.114096_b23) 2018; 228 Marti (10.1016/j.est.2024.114096_b10) 2012 Kushner (10.1016/j.est.2024.114096_b46) 1964; 86 Jin (10.1016/j.est.2024.114096_b37) 2000 (10.1016/j.est.2024.114096_b36) 2022 Taghizad-Tavana (10.1016/j.est.2024.114096_b2) 2024; 114 Saab (10.1016/j.est.2024.114096_b29) 2022; 12 Daneshvar (10.1016/j.est.2024.114096_b11) 2020; 193 Gobert (10.1016/j.est.2024.114096_b40) 2024; 137 Deb (10.1016/j.est.2024.114096_b43) 2002; 6 Pannatier (10.1016/j.est.2024.114096_b4) 2018 Taghizad-Tavana (10.1016/j.est.2024.114096_b1) 2024; 108 Eriksson (10.1016/j.est.2024.114096_b38) 2020 Chen (10.1016/j.est.2024.114096_b22) 2009 Al-Aqeeli (10.1016/j.est.2024.114096_b26) 2020; 34 Wang (10.1016/j.est.2024.114096_b7) 2023; 277 Iweh (10.1016/j.est.2024.114096_b28) 2023; 10 Močkus (10.1016/j.est.2024.114096_b44) 1975 Gomes e Souza (10.1016/j.est.2024.114096_b18) 2022; 211 Gobert (10.1016/j.est.2024.114096_b35) 2022; 15 Fan (10.1016/j.est.2024.114096_b24) 2023; 184 Ak (10.1016/j.est.2024.114096_b13) 2019; 139 Jamii (10.1016/j.est.2024.114096_b12) 2022; 14 Cheng (10.1016/j.est.2024.114096_b31) 2023; 339 Lai (10.1016/j.est.2024.114096_b20) 2022 Schonlau (10.1016/j.est.2024.114096_b39) 1997 Briffoteaux (10.1016/j.est.2024.114096_b47) 2021 Črepinšek (10.1016/j.est.2024.114096_b33) 2012; 212 Zhao (10.1016/j.est.2024.114096_b6) 2014; 140 Ginsbourger (10.1016/j.est.2024.114096_b41) 2010 |
| References_xml | – volume: 277 year: 2023 ident: b7 article-title: Coordinated operation of conventional hydropower plants as hybrid pumped storage hydropower with wind and photovoltaic plants publication-title: Energy Convers. Manage. – volume: 51 start-page: 178 year: 2013 end-page: 189 ident: b30 article-title: Civilized swarm optimization for multiobjective short-term hydrothermal scheduling publication-title: Int. J. Electr. Power Energy Syst. – volume: 86 start-page: 97 year: 1964 end-page: 106 ident: b46 article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise publication-title: J. Fluids Eng. – volume: 14 start-page: 625 year: 2021 ident: b9 article-title: Combined aggregated sampling stochastic dynamic programming and simulation-optimization to derive operation rules for large-scale hydropower system publication-title: Energies – volume: 15 year: 2022 ident: b35 article-title: Batch acquisition for parallel Bayesian optimization—Application to hydro-energy storage systems scheduling publication-title: Algorithms – year: 2020 ident: b38 article-title: Scalable global optimization via local Bayesian optimization – volume: 12 start-page: 73 year: 2022 ident: b29 article-title: Review on generating optimal operation for dam and reservoir water system: simulation models and optimization algorithms publication-title: Appl. Water Sci. – volume: 139 start-page: 739 year: 2019 end-page: 752 ident: b13 article-title: Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system publication-title: Renew. Energy – volume: 184 year: 2023 ident: b24 article-title: Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model publication-title: Renew. Sustain. Energy Rev. – volume: 211 year: 2022 ident: b18 article-title: Partitioning approach based on convex hull and multiple choice for solving hydro unit-commitment problems publication-title: Electr. Power Syst. Res. – volume: 114 year: 2024 ident: b2 article-title: Operation of smart distribution networks by considering the spatial–temporal flexibility of data centers and battery energy storage systems publication-title: Sustainable Cities Soc. – volume: 202 year: 2020 ident: b16 article-title: Operation of pumped storage hydropower plants through optimization for power systems publication-title: Energy – volume: 212 start-page: 79 year: 2012 end-page: 93 ident: b33 article-title: A note on teaching–learning-based optimization algorithm publication-title: Inform. Sci. – volume: 13 start-page: 4798 year: 2019 end-page: 4808 ident: b5 article-title: Non-linear hybrid approach for the scheduling of merchant underground pumped hydro energy storage publication-title: IET Gener. Trans. Distrib. – volume: 289 year: 2024 ident: b19 article-title: Neural network informed day-ahead scheduling of pumped hydro energy storage publication-title: Energy – volume: 10 start-page: 4253 year: 2023 end-page: 4270 ident: b28 article-title: Control and optimization of a hybrid solar PV – hydro power system for off-grid applications using particle swarm optimization (PSO) and differential evolution (DE) publication-title: Energy Rep. – volume: 53 start-page: 9444 year: 2017 end-page: 9461 ident: b34 article-title: Hydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality model publication-title: Water Resour. Res. – volume: 163 start-page: 722 year: 2018 end-page: 733 ident: b15 article-title: An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids publication-title: Energy – volume: 228 start-page: 1726 year: 2018 end-page: 1739 ident: b23 article-title: Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation publication-title: Appl. Energy – reference: N. Srinivas, A. Krause, S. Kakade, M. Seeger, Gaussian Process Optimization in the Bandit Setting: No Regret and Experimental Design, in: ICML 2010 - Proceedings, 27th International Conference on Machine Learning, 2010, pp. 1015–1022. – volume: vol. 80 start-page: 3306 year: 2018 end-page: 3314 ident: b42 article-title: Batch Bayesian optimization via multi-objective acquisition ensemble for automated analog circuit design publication-title: Proceedings of the 35th International Conference on Machine Learning – year: 2018 ident: b4 article-title: Optimisation Des Stratégies De Réglage D’une Installation De Pompage-Turbinage À Vitesse Variable - Infoscience – volume: 11 start-page: 1516 year: 2020 end-page: 1527 ident: b17 article-title: Chance-constrained scheduling of underground pumped hydro energy storage in presence of model uncertainties publication-title: IEEE Trans. Sustain. Energy – volume: 259 year: 2020 ident: b27 article-title: A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid publication-title: Appl. Energy – start-page: 786 year: 2000 end-page: 793 ident: b37 article-title: On evolutionary optimization with approximate fitness functions publication-title: Proceedings of the 2Nd Annual Conference on Genetic and Evolutionary Computation – start-page: 131 year: 2010 end-page: 162 ident: b41 article-title: Kriging is well-suited to parallelize optimization publication-title: Computational Intelligence in Expensive Optimization Problems – year: 2009 ident: b22 article-title: Particle swarm optimization for power dispatch with pumped hydro publication-title: Particle Swarm Optimization – volume: 140 start-page: 365 year: 2014 end-page: 374 ident: b6 article-title: Improved dynamic programming for hydropower reservoir operation publication-title: J. Water Resour. Plan. Manag. – volume: 194 start-page: 571 year: 2022 end-page: 581 ident: b8 article-title: A stochastic dynamic programming model for hydropower scheduling with state-dependent maximum discharge constraints publication-title: Renew. Energy – volume: 193 year: 2020 ident: b11 article-title: Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment publication-title: Energy – start-page: 400 year: 1975 end-page: 404 ident: b44 article-title: On bayesian methods for seeking the extremum publication-title: Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974 – year: 2021 ident: b47 article-title: Pysbo: Python framework for surrogate-based optimization – volume: 73 year: 2023 ident: b14 article-title: Optimization of pumped hydro energy storage systems under uncertainty: A review publication-title: J. Energy Storage – volume: 48 start-page: 1902 year: 2007 end-page: 1908 ident: b25 article-title: Short-term hydro-thermal scheduling using particle swarm optimization method publication-title: Energy Convers. Manage. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b43 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. – year: 1992 ident: b21 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence – volume: 137 year: 2024 ident: b40 article-title: Observations in applying Bayesian versus evolutionary approaches and their hybrids in parallel time-constrained optimization publication-title: Eng. Appl. Artif. Intell. – year: 2022 ident: b20 article-title: A review of reservoir operation optimisations: from traditional models to metaheuristic algorithms publication-title: Arch. Comput. Methods Eng. – year: 2012 ident: b10 article-title: Stochastic Programming Methods and Technical Applications: Proceedings of the 3rd GAMM/IFIP-Workshop on “Stochastic Optimization: Numerical Methods and Technical Applications” held at the Federal Armed Forces University Munich, Neubiberg/München, Germany, June 17–20, 1996 publication-title: Lecture Notes in Economics and Mathematical Systems – year: 2022 ident: b36 article-title: SMARTWATER – volume: 14 start-page: 11287 year: 2022 ident: b12 article-title: Non-linear programming-based energy management for a wind farm coupled with pumped hydro storage system publication-title: Sustainability – volume: 34 start-page: 3099 year: 2020 end-page: 3112 ident: b26 article-title: Optimal operation of multi-reservoir system for hydropower production using particle swarm optimization algorithm publication-title: Water Resour. Manag. – volume: 108 year: 2024 ident: b1 article-title: Multi-dimensional management of smart distribution networks: Comparative analysis of box and polyhedral methods for modeling uncertainties publication-title: Sustainable Cities Soc. – volume: 339 year: 2023 ident: b31 article-title: Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency publication-title: Appl. Energy – year: 2022 ident: b3 article-title: DOE global energy storage database - statistics – volume: 52 year: 2022 ident: b32 article-title: Fuzzy risk-based framework for scheduling of energy storage systems in photovoltaic-rich networks publication-title: J. Energy Storage – year: 1997 ident: b39 article-title: Computer Experiments and Global Optimization – volume: 139 start-page: 739 year: 2019 ident: 10.1016/j.est.2024.114096_b13 article-title: Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system publication-title: Renew. Energy doi: 10.1016/j.renene.2019.02.118 – volume: 34 start-page: 3099 issue: 10 year: 2020 ident: 10.1016/j.est.2024.114096_b26 article-title: Optimal operation of multi-reservoir system for hydropower production using particle swarm optimization algorithm publication-title: Water Resour. Manag. doi: 10.1007/s11269-020-02583-8 – start-page: 786 year: 2000 ident: 10.1016/j.est.2024.114096_b37 article-title: On evolutionary optimization with approximate fitness functions – year: 2009 ident: 10.1016/j.est.2024.114096_b22 article-title: Particle swarm optimization for power dispatch with pumped hydro – volume: 114 year: 2024 ident: 10.1016/j.est.2024.114096_b2 article-title: Operation of smart distribution networks by considering the spatial–temporal flexibility of data centers and battery energy storage systems publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2024.105746 – year: 1992 ident: 10.1016/j.est.2024.114096_b21 – volume: 259 year: 2020 ident: 10.1016/j.est.2024.114096_b27 article-title: A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.114224 – volume: 12 start-page: 73 year: 2022 ident: 10.1016/j.est.2024.114096_b29 article-title: Review on generating optimal operation for dam and reservoir water system: simulation models and optimization algorithms publication-title: Appl. Water Sci. doi: 10.1007/s13201-022-01593-8 – volume: 212 start-page: 79 year: 2012 ident: 10.1016/j.est.2024.114096_b33 article-title: A note on teaching–learning-based optimization algorithm publication-title: Inform. Sci. doi: 10.1016/j.ins.2012.05.009 – volume: 193 year: 2020 ident: 10.1016/j.est.2024.114096_b11 article-title: Two-stage stochastic programming model for optimal scheduling of the wind-thermal-hydropower-pumped storage system considering the flexibility assessment publication-title: Energy doi: 10.1016/j.energy.2019.116657 – volume: 339 year: 2023 ident: 10.1016/j.est.2024.114096_b31 article-title: Complementary operation with wind and photovoltaic power induces the decrease in hydropower efficiency publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121006 – volume: 53 start-page: 9444 issue: 11 year: 2017 ident: 10.1016/j.est.2024.114096_b34 article-title: Hydropower optimization using artificial neural network surrogate models of a high-fidelity hydrodynamics and water quality model publication-title: Water Resour. Res. doi: 10.1002/2017WR021039 – volume: 13 start-page: 4798 issue: 21 year: 2019 ident: 10.1016/j.est.2024.114096_b5 article-title: Non-linear hybrid approach for the scheduling of merchant underground pumped hydro energy storage publication-title: IET Gener. Trans. Distrib. doi: 10.1049/iet-gtd.2019.0204 – volume: 14 start-page: 625 issue: 3 year: 2021 ident: 10.1016/j.est.2024.114096_b9 article-title: Combined aggregated sampling stochastic dynamic programming and simulation-optimization to derive operation rules for large-scale hydropower system publication-title: Energies doi: 10.3390/en14030625 – volume: 51 start-page: 178 year: 2013 ident: 10.1016/j.est.2024.114096_b30 article-title: Civilized swarm optimization for multiobjective short-term hydrothermal scheduling publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.03.002 – volume: 194 start-page: 571 year: 2022 ident: 10.1016/j.est.2024.114096_b8 article-title: A stochastic dynamic programming model for hydropower scheduling with state-dependent maximum discharge constraints publication-title: Renew. Energy doi: 10.1016/j.renene.2022.05.106 – volume: 137 year: 2024 ident: 10.1016/j.est.2024.114096_b40 article-title: Observations in applying Bayesian versus evolutionary approaches and their hybrids in parallel time-constrained optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.109075 – ident: 10.1016/j.est.2024.114096_b45 – year: 1997 ident: 10.1016/j.est.2024.114096_b39 – volume: 86 start-page: 97 issue: 1 year: 1964 ident: 10.1016/j.est.2024.114096_b46 article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise publication-title: J. Fluids Eng. – year: 2021 ident: 10.1016/j.est.2024.114096_b47 – volume: 140 start-page: 365 issue: 3 year: 2014 ident: 10.1016/j.est.2024.114096_b6 article-title: Improved dynamic programming for hydropower reservoir operation publication-title: J. Water Resour. Plan. Manag. doi: 10.1061/(ASCE)WR.1943-5452.0000343 – year: 2022 ident: 10.1016/j.est.2024.114096_b3 – volume: 277 year: 2023 ident: 10.1016/j.est.2024.114096_b7 article-title: Coordinated operation of conventional hydropower plants as hybrid pumped storage hydropower with wind and photovoltaic plants publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2022.116654 – volume: 52 year: 2022 ident: 10.1016/j.est.2024.114096_b32 article-title: Fuzzy risk-based framework for scheduling of energy storage systems in photovoltaic-rich networks publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104902 – year: 2020 ident: 10.1016/j.est.2024.114096_b38 – volume: 163 start-page: 722 year: 2018 ident: 10.1016/j.est.2024.114096_b15 article-title: An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids publication-title: Energy doi: 10.1016/j.energy.2018.08.077 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.est.2024.114096_b43 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 202 year: 2020 ident: 10.1016/j.est.2024.114096_b16 article-title: Operation of pumped storage hydropower plants through optimization for power systems publication-title: Energy doi: 10.1016/j.energy.2020.117797 – volume: 15 issue: 12 year: 2022 ident: 10.1016/j.est.2024.114096_b35 article-title: Batch acquisition for parallel Bayesian optimization—Application to hydro-energy storage systems scheduling publication-title: Algorithms doi: 10.3390/a15120446 – start-page: 400 year: 1975 ident: 10.1016/j.est.2024.114096_b44 article-title: On bayesian methods for seeking the extremum – volume: 211 year: 2022 ident: 10.1016/j.est.2024.114096_b18 article-title: Partitioning approach based on convex hull and multiple choice for solving hydro unit-commitment problems publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2022.108285 – volume: 184 year: 2023 ident: 10.1016/j.est.2024.114096_b24 article-title: Complementary potential of wind-solar-hydro power in Chinese provinces: Based on a high temporal resolution multi-objective optimization model publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113566 – volume: 73 year: 2023 ident: 10.1016/j.est.2024.114096_b14 article-title: Optimization of pumped hydro energy storage systems under uncertainty: A review publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109306 – volume: 10 start-page: 4253 year: 2023 ident: 10.1016/j.est.2024.114096_b28 article-title: Control and optimization of a hybrid solar PV – hydro power system for off-grid applications using particle swarm optimization (PSO) and differential evolution (DE) publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.10.080 – year: 2018 ident: 10.1016/j.est.2024.114096_b4 – year: 2012 ident: 10.1016/j.est.2024.114096_b10 – volume: 14 start-page: 11287 issue: 18 year: 2022 ident: 10.1016/j.est.2024.114096_b12 article-title: Non-linear programming-based energy management for a wind farm coupled with pumped hydro storage system publication-title: Sustainability doi: 10.3390/su141811287 – volume: 48 start-page: 1902 issue: 7 year: 2007 ident: 10.1016/j.est.2024.114096_b25 article-title: Short-term hydro-thermal scheduling using particle swarm optimization method publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2007.01.034 – volume: vol. 80 start-page: 3306 year: 2018 ident: 10.1016/j.est.2024.114096_b42 article-title: Batch Bayesian optimization via multi-objective acquisition ensemble for automated analog circuit design – year: 2022 ident: 10.1016/j.est.2024.114096_b20 article-title: A review of reservoir operation optimisations: from traditional models to metaheuristic algorithms publication-title: Arch. Comput. Methods Eng. – volume: 11 start-page: 1516 issue: 3 year: 2020 ident: 10.1016/j.est.2024.114096_b17 article-title: Chance-constrained scheduling of underground pumped hydro energy storage in presence of model uncertainties publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2019.2929687 – year: 2022 ident: 10.1016/j.est.2024.114096_b36 – volume: 228 start-page: 1726 year: 2018 ident: 10.1016/j.est.2024.114096_b23 article-title: Boosting hydropower output of mega cascade reservoirs using an evolutionary algorithm with successive approximation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.07.078 – volume: 289 year: 2024 ident: 10.1016/j.est.2024.114096_b19 article-title: Neural network informed day-ahead scheduling of pumped hydro energy storage publication-title: Energy doi: 10.1016/j.energy.2023.129999 – start-page: 131 year: 2010 ident: 10.1016/j.est.2024.114096_b41 article-title: Kriging is well-suited to parallelize optimization – volume: 108 year: 2024 ident: 10.1016/j.est.2024.114096_b1 article-title: Multi-dimensional management of smart distribution networks: Comparative analysis of box and polyhedral methods for modeling uncertainties publication-title: Sustainable Cities Soc. doi: 10.1016/j.scs.2024.105488 |
| SSID | ssj0001651196 |
| Score | 2.3249261 |
| Snippet | Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 114096 |
| SubjectTerms | Computer Science Electricity markets Engineering Sciences Machine Learning Mixed-integer linear programming Multi-fidelity optimization Operations Research Pumped hydro energy storage Statistics Surrogate-based optimization algorithms |
| Title | Multi-fidelity optimization for the day-ahead scheduling of Pumped Hydro Energy Storage |
| URI | https://dx.doi.org/10.1016/j.est.2024.114096 https://hal.science/hal-04801851 |
| Volume | 103 |
| WOSCitedRecordID | wos001350578400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 2352-1538 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001651196 issn: 2352-152X databaseCode: AIEXJ dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdruoftYeyTdt2GGHtaUbFk2ZIfw8jIxiiBZsxvRv4QS2ntki_S_76nD9tJxso22IsJQj6Hux-nk3T3O4Q-5DqKRCE4CeNAEC6UInlENRFaU5YHRRFpbptNiPNzmabJxPdsXdh2AqKu5WaT3PxXU8MYGNuUzv6FuTuhMAC_wejwBLPD848Mb0tqiTb0VTbdAnzCtS-27HIKS3VLFLjh8hQ2t7DYXPnc5wkYFyLQ8W05b05HrizwAnblai9jqI9iKzdpsTXJUjuulSugmcyq5bzpsnxsHrerEdrMrrv502aVV2rl0m1UTUw4ba_wRTPbOZhgfC_Jo6uY6dOTwKkxCPgIxAzpjge2NAe_enN3sHB5BuvjmfmCITYOkj3mbLsWXxi5RqyhF4wlSw_QIRNRIgfocPhllH7tz91ic3Pqeg76v9Jedtu0v71v_S5cOfjZHrzbQGT6FD3xusdDZ_ln6EFVP0ePt3glX6AfuxjA2xjAgAEMGMAdBnCPAdxo7DCALQawwwD2GHiJvn8eTT-Nie-gQYowpEvCKS8gBC85y7mGrT7IZLClipWCOLRiRZmwqhI5VVQrKcKY0lzqKFBSK8qZ0OErNKibujpCOEm4CgOmAlHC4hopyXJa6ESzMsyZzOUxClpFZYWnlzddTq6yNo_wMgPdZka3mdPtMfrYvXLjuFXum8xb7Wc-OHRBXwZoue-192CpTrwhUx8Pv2VmzDInwYZjTV__m-wT9KjH_Rs0WM5X1Vv0sFgvZ4v5Ow-8OzB7lIU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-fidelity+optimization+for+the+day-ahead+scheduling+of+Pumped+Hydro+Energy+Storage&rft.jtitle=Journal+of+energy+storage&rft.au=Favaro%2C+Pietro&rft.au=Gobert%2C+Maxime&rft.au=Toubeau%2C+Jean-Fran%C3%A7ois&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.volume=103&rft_id=info:doi/10.1016%2Fj.est.2024.114096&rft.externalDocID=S2352152X2403682X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |