A batch-wise LSTM-encoder decoder network for batch process monitoring

•Proposed a multi-layer recurrent neural network in the encoder–decoder structure and the corresponding monitoring method for batch process monitoring.•The proposed network can simultaneously capture the between and within batch dynamic features in the nonlinear batch process.•The proposed model out...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering research & design Vol. 164; pp. 102 - 112
Main Authors: Ren, Jiayang, Ni, Dong
Format: Journal Article
Language:English
Published: Rugby Elsevier B.V 01.12.2020
Elsevier Science Ltd
Subjects:
ISSN:0263-8762, 1744-3563
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Proposed a multi-layer recurrent neural network in the encoder–decoder structure and the corresponding monitoring method for batch process monitoring.•The proposed network can simultaneously capture the between and within batch dynamic features in the nonlinear batch process.•The proposed model outperforms the AutoEncoder and Sub-PCA model in fault detection. Process monitoring is essential to keep quality consistency and operation safety in the batch process. However, the existence of multiphase, nonlinearity and dynamic features in the batch process makes the batch process monitoring a complicated task. In this work, a multi-layer recurrent neural network in the encoder–decoder structure called batch-wise LSTM-encoder decoder network is proposed to solve the difficulties mentioned above in batch process monitoring. The LSTM-encoder extracts the nonlinear dynamic features in both between and within batch direction, then projects the high dimensional input space to a low dimensional hidden state space. The decoder part regenerates the samples from hidden states. Control statistics H2 and SPE are designed for process monitoring, and the corresponding control limits are estimated by kernel density estimation. A case study on an extensive reference penicillin fermentation dataset suggests that the proposed method can detect the fault samples more effectively than previous methods while keeping the same robustness in normal conditions.
AbstractList •Proposed a multi-layer recurrent neural network in the encoder–decoder structure and the corresponding monitoring method for batch process monitoring.•The proposed network can simultaneously capture the between and within batch dynamic features in the nonlinear batch process.•The proposed model outperforms the AutoEncoder and Sub-PCA model in fault detection. Process monitoring is essential to keep quality consistency and operation safety in the batch process. However, the existence of multiphase, nonlinearity and dynamic features in the batch process makes the batch process monitoring a complicated task. In this work, a multi-layer recurrent neural network in the encoder–decoder structure called batch-wise LSTM-encoder decoder network is proposed to solve the difficulties mentioned above in batch process monitoring. The LSTM-encoder extracts the nonlinear dynamic features in both between and within batch direction, then projects the high dimensional input space to a low dimensional hidden state space. The decoder part regenerates the samples from hidden states. Control statistics H2 and SPE are designed for process monitoring, and the corresponding control limits are estimated by kernel density estimation. A case study on an extensive reference penicillin fermentation dataset suggests that the proposed method can detect the fault samples more effectively than previous methods while keeping the same robustness in normal conditions.
Process monitoring is essential to keep quality consistency and operation safety in the batch process. However, the existence of multiphase, nonlinearity and dynamic features in the batch process makes the batch process monitoring a complicated task. In this work, a multi-layer recurrent neural network in the encoder–decoder structure called batch-wise LSTM-encoder decoder network is proposed to solve the difficulties mentioned above in batch process monitoring. The LSTM-encoder extracts the nonlinear dynamic features in both between and within batch direction, then projects the high dimensional input space to a low dimensional hidden state space. The decoder part regenerates the samples from hidden states. Control statistics H2 and SPE are designed for process monitoring, and the corresponding control limits are estimated by kernel density estimation. A case study on an extensive reference penicillin fermentation dataset suggests that the proposed method can detect the fault samples more effectively than previous methods while keeping the same robustness in normal conditions.
Author Ni, Dong
Ren, Jiayang
Author_xml – sequence: 1
  givenname: Jiayang
  surname: Ren
  fullname: Ren, Jiayang
– sequence: 2
  givenname: Dong
  orcidid: 0000-0002-2227-2555
  surname: Ni
  fullname: Ni, Dong
  email: dni@zju.edu.cn
BookMark eNqFkD1PwzAQhi1UJNrCL2CJxJzgr3wNDFVFAamIgTJbjn2hDm1cbJeKf49LmBjglhvufc7nZ4JGve0BoUuCM4JJcd1lag1OZxRTnOE6w6Q-QWNScp6yvGAjNMa0YGlVFvQMTbzvMMZxWo3RYpY0Mqh1ejAekuXz6jGFXlkNLtEw9B7Cwbq3pLVuyCY7ZxV4n2xtb4J1pn89R6et3Hi4-OlT9LK4Xc3v0-XT3cN8tkwVYySkTMu6aqWkXNJYVcNJ3jCiK1VhrVusZby2zqFpSw64kBVnutBtQ0uucog7puhq2BtPeN-DD6Kze9fHJwXlNeeUFLSKqXpIKWe9d9AKZYIMxvbBSbMRBIujNtGJb23iqE3gWkRtkWW_2J0zW-k-_6FuBgri5z8MOOGViSJBGwcqCG3Nn_wXo1SJpA
CitedBy_id crossref_primary_10_1016_j_dche_2022_100052
crossref_primary_10_1016_j_chemolab_2025_105401
crossref_primary_10_1016_j_cie_2024_110674
crossref_primary_10_1016_j_chemolab_2022_104711
crossref_primary_10_3390_pr12040682
crossref_primary_10_1016_j_arcontrol_2021_10_006
crossref_primary_10_1016_j_compchemeng_2025_109177
crossref_primary_10_1016_j_ijpharm_2024_124509
crossref_primary_10_1080_00207543_2022_2149874
crossref_primary_10_1007_s00170_024_13932_x
crossref_primary_10_1016_j_ces_2025_121943
crossref_primary_10_1016_j_cherd_2023_09_024
crossref_primary_10_3390_pr13010202
crossref_primary_10_1016_j_compchemeng_2022_107884
crossref_primary_10_1016_j_isatra_2024_03_003
crossref_primary_10_3390_pr12122824
crossref_primary_10_1002_cjce_24401
crossref_primary_10_1002_cjce_25636
crossref_primary_10_1016_j_compchemeng_2022_107964
crossref_primary_10_1002_apj_2968
crossref_primary_10_3390_pr11082435
crossref_primary_10_1016_j_engappai_2024_108051
crossref_primary_10_1002_cjce_24362
crossref_primary_10_1016_j_chemolab_2025_105499
crossref_primary_10_1016_j_coche_2024_101025
crossref_primary_10_1016_j_psep_2022_04_039
crossref_primary_10_1088_1361_6501_aceb82
crossref_primary_10_1002_cjce_70101
crossref_primary_10_1177_01423312231157118
crossref_primary_10_1016_j_chemolab_2022_104528
crossref_primary_10_1016_j_compchemeng_2023_108264
crossref_primary_10_1016_j_conengprac_2021_104811
crossref_primary_10_1109_ACCESS_2024_3444454
crossref_primary_10_1016_j_compchemeng_2022_107694
crossref_primary_10_1016_j_compchemeng_2022_108125
crossref_primary_10_1016_j_psep_2025_107704
crossref_primary_10_3390_min11101118
crossref_primary_10_1109_TIM_2025_3547514
crossref_primary_10_3390_pr12030513
crossref_primary_10_1016_j_psep_2024_08_023
Cites_doi 10.1016/j.cherd.2019.09.026
10.1016/j.jprocont.2017.05.011
10.1016/j.chemolab.2013.03.017
10.1016/j.arcontrol.2009.08.001
10.1002/aic.10024
10.1080/00401706.1995.10485888
10.1016/j.compchemeng.2020.106916
10.1016/j.arcontrol.2012.09.004
10.1016/S0098-1354(02)00127-8
10.1016/j.chemolab.2015.08.019
10.1016/j.chemolab.2010.02.004
10.1002/aic.690400809
10.1016/j.conengprac.2020.104330
10.1016/j.compchemeng.2004.02.036
10.3390/pr5030045
10.1016/j.jprocont.2012.06.009
10.1109/TII.2019.2952931
10.1016/j.chemolab.2016.08.007
10.1214/aoms/1177704472
10.1162/neco.1997.9.8.1735
10.1609/aaai.v33i01.33011409
10.1029/2010WR009945
ContentType Journal Article
Copyright 2020 Institution of Chemical Engineers
Copyright Elsevier Science Ltd. Dec 2020
Copyright_xml – notice: 2020 Institution of Chemical Engineers
– notice: Copyright Elsevier Science Ltd. Dec 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.cherd.2020.09.019
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1744-3563
EndPage 112
ExternalDocumentID 10_1016_j_cherd_2020_09_019
S0263876220304834
GroupedDBID --K
--M
-QF
-~X
.~1
0R~
1B1
1~.
1~5
29B
3EH
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDBF
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KOM
M41
ML-
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSR
SSZ
T5K
T9H
TUS
UNMZH
VH1
XFK
~02
~8M
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACUHS
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c331t-3da98faa24a22228b415b31d8c80ddf0da56395ebf74e06a843d6dfb274c5ec33
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593767200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8762
IngestDate Fri Jul 25 05:52:28 EDT 2025
Tue Nov 18 21:30:52 EST 2025
Sat Nov 29 07:21:32 EST 2025
Fri Feb 23 02:45:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Process monitoring
Nonlinear batch processes
Kernel density estimation
Encoder–decoder structure
Multi-layer LSTM
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-3da98faa24a22228b415b31d8c80ddf0da56395ebf74e06a843d6dfb274c5ec33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2227-2555
PQID 2494421628
PQPubID 2047566
PageCount 11
ParticipantIDs proquest_journals_2494421628
crossref_citationtrail_10_1016_j_cherd_2020_09_019
crossref_primary_10_1016_j_cherd_2020_09_019
elsevier_sciencedirect_doi_10_1016_j_cherd_2020_09_019
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Chemical engineering research & design
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Glorot, Bordes, Bengio (bib0025) 2011
Jiang, Yan, Yan, Yi, Gao (bib0040) 2020; 16
Zhang, Song, Chen, Feng, Lumezanu, Cheng, Ni, Zong, Chen, Chawla (bib0145) 2019
Bottou (bib0015) 2010
Nomikos, MacGregor (bib0085) 1995; 37
Wang, Rippon, Chen, Song, Gopaluni (bib0120) 2019
Lu, Gao, Wang (bib0065) 2004; 50
Yan, Guo, gong, Li (bib0125) 2016; 158
Yin, Ding, Haghani, Hao, Zhang (bib0135) 2012; 22
Loy-Benitez, Heo, Yoo (bib0060) 2020; 97
Yao, Gao (bib0130) 2009; 33
Hochreiter, Schmidhuber (bib0030) 1997; 9
Jia, Chu, Wang, Wang (bib0035) 2010; 101
Wang, Baldea, Edgar (bib0110) 2017; 5
Wang, Edgar, Baldea, Nixon, Wojsznis, Dunia (bib0115) 2018; 67
Mehta, Reddy (bib0070) 2015
Nomikos, MacGregor (bib0080) 1994; 40
Nielsen, Nazemzadeh, Sillesen, Andersson, Gernaey, Mansouri (bib0075) 2020
Zhao, Sun (bib0150) 2013; 125
Shahnazari (bib0100) 2020; 153
Kingma, Ba (bib0045) 2014
Yu, Zhao (bib0140) 2019
Birol, Undey, Cinar (bib0010) 2002; 26
Breuel (bib0020) 2015
Adamowski, Chan, Prasher, Ozga-Zielinski, Sliusarieva (bib0005) 2012; 48
Van Impe, Gins (bib0105) 2015; 148
Qin (bib0095) 2012; 36
Parzen (bib0090) 1962; 33
Lee, Yoo, Lee (bib0055) 2004; 28
Klambauer, Unterthiner, Mayr, Hochreiter (bib0050) 2017
Klambauer (10.1016/j.cherd.2020.09.019_bib0050) 2017
Yu (10.1016/j.cherd.2020.09.019_bib0140) 2019
Wang (10.1016/j.cherd.2020.09.019_bib0110) 2017; 5
Kingma (10.1016/j.cherd.2020.09.019_bib0045) 2014
Adamowski (10.1016/j.cherd.2020.09.019_bib0005) 2012; 48
Nomikos (10.1016/j.cherd.2020.09.019_bib0080) 1994; 40
Yan (10.1016/j.cherd.2020.09.019_bib0125) 2016; 158
Zhang (10.1016/j.cherd.2020.09.019_bib0145) 2019
Nomikos (10.1016/j.cherd.2020.09.019_bib0085) 1995; 37
Mehta (10.1016/j.cherd.2020.09.019_bib0070) 2015
Birol (10.1016/j.cherd.2020.09.019_bib0010) 2002; 26
Parzen (10.1016/j.cherd.2020.09.019_bib0090) 1962; 33
Lee (10.1016/j.cherd.2020.09.019_bib0055) 2004; 28
Bottou (10.1016/j.cherd.2020.09.019_bib0015) 2010
Hochreiter (10.1016/j.cherd.2020.09.019_bib0030) 1997; 9
Van Impe (10.1016/j.cherd.2020.09.019_bib0105) 2015; 148
Shahnazari (10.1016/j.cherd.2020.09.019_bib0100) 2020; 153
Jia (10.1016/j.cherd.2020.09.019_bib0035) 2010; 101
Glorot (10.1016/j.cherd.2020.09.019_bib0025) 2011
Jiang (10.1016/j.cherd.2020.09.019_bib0040) 2020; 16
Zhao (10.1016/j.cherd.2020.09.019_bib0150) 2013; 125
Nielsen (10.1016/j.cherd.2020.09.019_bib0075) 2020
Yao (10.1016/j.cherd.2020.09.019_bib0130) 2009; 33
Loy-Benitez (10.1016/j.cherd.2020.09.019_bib0060) 2020; 97
Wang (10.1016/j.cherd.2020.09.019_bib0115) 2018; 67
Yin (10.1016/j.cherd.2020.09.019_bib0135) 2012; 22
Breuel (10.1016/j.cherd.2020.09.019_bib0020) 2015
Lu (10.1016/j.cherd.2020.09.019_bib0065) 2004; 50
Qin (10.1016/j.cherd.2020.09.019_bib0095) 2012; 36
Wang (10.1016/j.cherd.2020.09.019_bib0120) 2019
References_xml – start-page: 1
  year: 2019
  end-page: 9
  ident: bib0140
  article-title: Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net
  publication-title: IEEE Trans. Control Syst. Technol.
– start-page: 106916
  year: 2020
  ident: bib0075
  article-title: Hybrid machine learning assisted modelling framework for particle processes
  publication-title: Comput. Chem. Eng.
– volume: 67
  start-page: 197
  year: 2018
  end-page: 205
  ident: bib0115
  article-title: A geometric method for batch data visualization, process monitoring and fault detection
  publication-title: J. Process Control
– volume: 28
  start-page: 1837
  year: 2004
  end-page: 1847
  ident: bib0055
  article-title: Fault detection of batch processes using multiway kernel principal component analysis
  publication-title: Comput. Chem. Eng.
– volume: 101
  start-page: 110
  year: 2010
  end-page: 122
  ident: bib0035
  article-title: On-line batch process monitoring using batch dynamic kernel principal component analysis
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 36
  start-page: 220
  year: 2012
  end-page: 234
  ident: bib0095
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
– start-page: 315
  year: 2011
  end-page: 323
  ident: bib0025
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– volume: 5
  start-page: 45
  year: 2017
  ident: bib0110
  article-title: Data visualization and visualization-based fault detection for chemical processes
  publication-title: Processes
– volume: 33
  start-page: 172
  year: 2009
  end-page: 183
  ident: bib0130
  article-title: A survey on multistage/multiphase statistical modeling methods for batch processes
  publication-title: Annu. Rev. Control
– start-page: 1409
  year: 2019
  end-page: 1416
  ident: bib0145
  article-title: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33
– year: 2019
  ident: bib0120
  article-title: Data-driven dynamic modeling and online monitoring for multiphase and multimode batch processes with uneven batch durations
  publication-title: Ind. Eng. Chem. Res.
– volume: 125
  start-page: 109
  year: 2013
  end-page: 120
  ident: bib0150
  article-title: Step-wise sequential phase partition (sspp) algorithm based statistical modeling and online process monitoring
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 158
  start-page: 31
  year: 2016
  end-page: 40
  ident: bib0125
  article-title: Nonlinear and robust statistical process monitoring based on variant autoencoders
  publication-title: Chemometr. Intell. Lab. Syst.
– year: 2014
  ident: bib0045
  article-title: Adam: A Method for Stochastic Optimization
– start-page: 459
  year: 2015
  end-page: 477
  ident: bib0070
  article-title: OPC Communications
– start-page: 177
  year: 2010
  end-page: 186
  ident: bib0015
  article-title: Large-Scale Machine Learning With Stochastic Gradient Descent
– year: 2015
  ident: bib0020
  article-title: Benchmarking of LSTM Networks
– volume: 16
  start-page: 2839
  year: 2020
  end-page: 2848
  ident: bib0040
  article-title: Data-driven two-dimensional deep correlated representation learning for nonlinear batch process monitoring
  publication-title: IEEE Trans. Ind. Informatics
– volume: 37
  start-page: 41
  year: 1995
  end-page: 59
  ident: bib0085
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
– volume: 50
  start-page: 255
  year: 2004
  end-page: 259
  ident: bib0065
  article-title: Sub-PCA modeling and on-line monitoring strategy for batch processes
  publication-title: AIChE J.
– volume: 97
  start-page: 104330
  year: 2020
  ident: bib0060
  article-title: Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders
  publication-title: Control Eng. Pract.
– volume: 26
  start-page: 1553
  year: 2002
  end-page: 1565
  ident: bib0010
  article-title: A modular simulation package for fed-batch fermentation: penicillin production
  publication-title: Comput. Chem. Eng.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib0030
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: bib0090
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
– volume: 22
  start-page: 1567
  year: 2012
  end-page: 1581
  ident: bib0135
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: J. Process Control
– start-page: 971
  year: 2017
  end-page: 980
  ident: bib0050
  article-title: Self-normalizing neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 153
  start-page: 233
  year: 2020
  end-page: 245
  ident: bib0100
  article-title: Fault diagnosis of nonlinear systems using recurrent neural networks
  publication-title: Chem. Eng. Res. Des.
– volume: 148
  start-page: 20
  year: 2015
  end-page: 31
  ident: bib0105
  article-title: An extensive reference dataset for fault detection and identification in batch processes
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 48
  year: 2012
  ident: bib0005
  article-title: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada
  publication-title: Water Resour. Res.
– volume: 40
  start-page: 1361
  year: 1994
  end-page: 1375
  ident: bib0080
  article-title: Monitoring batch processes using multiway principal component analysis
  publication-title: AIChE J.
– volume: 153
  start-page: 233
  year: 2020
  ident: 10.1016/j.cherd.2020.09.019_bib0100
  article-title: Fault diagnosis of nonlinear systems using recurrent neural networks
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2019.09.026
– volume: 67
  start-page: 197
  year: 2018
  ident: 10.1016/j.cherd.2020.09.019_bib0115
  article-title: A geometric method for batch data visualization, process monitoring and fault detection
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2017.05.011
– volume: 125
  start-page: 109
  year: 2013
  ident: 10.1016/j.cherd.2020.09.019_bib0150
  article-title: Step-wise sequential phase partition (sspp) algorithm based statistical modeling and online process monitoring
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2013.03.017
– volume: 33
  start-page: 172
  issue: 2
  year: 2009
  ident: 10.1016/j.cherd.2020.09.019_bib0130
  article-title: A survey on multistage/multiphase statistical modeling methods for batch processes
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2009.08.001
– volume: 50
  start-page: 255
  issue: 1
  year: 2004
  ident: 10.1016/j.cherd.2020.09.019_bib0065
  article-title: Sub-PCA modeling and on-line monitoring strategy for batch processes
  publication-title: AIChE J.
  doi: 10.1002/aic.10024
– start-page: 177
  year: 2010
  ident: 10.1016/j.cherd.2020.09.019_bib0015
– volume: 37
  start-page: 41
  issue: 1
  year: 1995
  ident: 10.1016/j.cherd.2020.09.019_bib0085
  article-title: Multivariate SPC charts for monitoring batch processes
  publication-title: Technometrics
  doi: 10.1080/00401706.1995.10485888
– start-page: 106916
  year: 2020
  ident: 10.1016/j.cherd.2020.09.019_bib0075
  article-title: Hybrid machine learning assisted modelling framework for particle processes
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106916
– volume: 36
  start-page: 220
  issue: 2
  year: 2012
  ident: 10.1016/j.cherd.2020.09.019_bib0095
  article-title: Survey on data-driven industrial process monitoring and diagnosis
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2012.09.004
– year: 2019
  ident: 10.1016/j.cherd.2020.09.019_bib0120
  article-title: Data-driven dynamic modeling and online monitoring for multiphase and multimode batch processes with uneven batch durations
  publication-title: Ind. Eng. Chem. Res.
– volume: 26
  start-page: 1553
  issue: 11
  year: 2002
  ident: 10.1016/j.cherd.2020.09.019_bib0010
  article-title: A modular simulation package for fed-batch fermentation: penicillin production
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00127-8
– volume: 148
  start-page: 20
  year: 2015
  ident: 10.1016/j.cherd.2020.09.019_bib0105
  article-title: An extensive reference dataset for fault detection and identification in batch processes
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.019
– start-page: 971
  year: 2017
  ident: 10.1016/j.cherd.2020.09.019_bib0050
  article-title: Self-normalizing neural networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 315
  year: 2011
  ident: 10.1016/j.cherd.2020.09.019_bib0025
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– start-page: 1
  year: 2019
  ident: 10.1016/j.cherd.2020.09.019_bib0140
  article-title: Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 101
  start-page: 110
  issue: 2
  year: 2010
  ident: 10.1016/j.cherd.2020.09.019_bib0035
  article-title: On-line batch process monitoring using batch dynamic kernel principal component analysis
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2010.02.004
– start-page: 459
  year: 2015
  ident: 10.1016/j.cherd.2020.09.019_bib0070
– volume: 40
  start-page: 1361
  issue: 8
  year: 1994
  ident: 10.1016/j.cherd.2020.09.019_bib0080
  article-title: Monitoring batch processes using multiway principal component analysis
  publication-title: AIChE J.
  doi: 10.1002/aic.690400809
– volume: 97
  start-page: 104330
  year: 2020
  ident: 10.1016/j.cherd.2020.09.019_bib0060
  article-title: Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104330
– volume: 28
  start-page: 1837
  issue: 9
  year: 2004
  ident: 10.1016/j.cherd.2020.09.019_bib0055
  article-title: Fault detection of batch processes using multiway kernel principal component analysis
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2004.02.036
– volume: 5
  start-page: 45
  issue: 3
  year: 2017
  ident: 10.1016/j.cherd.2020.09.019_bib0110
  article-title: Data visualization and visualization-based fault detection for chemical processes
  publication-title: Processes
  doi: 10.3390/pr5030045
– volume: 22
  start-page: 1567
  issue: 9
  year: 2012
  ident: 10.1016/j.cherd.2020.09.019_bib0135
  article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2012.06.009
– volume: 16
  start-page: 2839
  issue: 4
  year: 2020
  ident: 10.1016/j.cherd.2020.09.019_bib0040
  article-title: Data-driven two-dimensional deep correlated representation learning for nonlinear batch process monitoring
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2019.2952931
– volume: 158
  start-page: 31
  year: 2016
  ident: 10.1016/j.cherd.2020.09.019_bib0125
  article-title: Nonlinear and robust statistical process monitoring based on variant autoencoders
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.08.007
– volume: 33
  start-page: 1065
  issue: 3
  year: 1962
  ident: 10.1016/j.cherd.2020.09.019_bib0090
  article-title: On estimation of a probability density function and mode
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704472
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.cherd.2020.09.019_bib0030
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 1409
  year: 2019
  ident: 10.1016/j.cherd.2020.09.019_bib0145
  article-title: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33
  doi: 10.1609/aaai.v33i01.33011409
– year: 2014
  ident: 10.1016/j.cherd.2020.09.019_bib0045
– volume: 48
  issue: 1
  year: 2012
  ident: 10.1016/j.cherd.2020.09.019_bib0005
  article-title: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009945
– year: 2015
  ident: 10.1016/j.cherd.2020.09.019_bib0020
SSID ssj0001748
Score 2.4794874
Snippet •Proposed a multi-layer recurrent neural network in the encoder–decoder structure and the corresponding monitoring method for batch process monitoring.•The...
Process monitoring is essential to keep quality consistency and operation safety in the batch process. However, the existence of multiphase, nonlinearity and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 102
SubjectTerms Coders
Control limits
Density
Encoder–decoder structure
Feature extraction
Fermentation
Kernel density estimation
Monitoring
Monitoring systems
Multi-layer LSTM
Multilayers
Nonlinear batch processes
Nonlinear dynamics
Nonlinear systems
Nonlinearity
Occupational safety
Penicillin
Process monitoring
Recurrent neural networks
Statistical methods
Title A batch-wise LSTM-encoder decoder network for batch process monitoring
URI https://dx.doi.org/10.1016/j.cherd.2020.09.019
https://www.proquest.com/docview/2494421628
Volume 164
WOSCitedRecordID wos000593767200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1744-3563
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001748
  issn: 0263-8762
  databaseCode: AIEXJ
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjQd4QFzF2EB54C0EOY7r2I8V2sRlTAgK6pvlW7ROI1RtN8a_5_iSNltFxR54SSLLOUpzPp_zxT3-jNArIlzFa4sLWhNdUK_eqpglhdDAla3CwoR9yL4f1ycnfDIRnweDj91amMvzum351ZWY_VdXQxs42y-dvYW7V0ahAa7B6XAEt8Pxnxw_yjWE19Pi13Th8uOv40-F16q0YSfweG5j6Xes1PR981lcLpD_CCN83qWzTsGgExVwa_HCPKkEnQbs2Gt1IF_Sgo-p-q2SpfDPRyTsqSXNNJB-1UYMSIRVm9GT0V78KzHppdIyVkhvROk4YXD2xsPSq7USHLRmU-y8pol9I1etKgi74rQzGYxIb0RiIbGXgN0l9VBAiNsdvT-cfFglZvj44nHKLf6MToQqlPttPMvfiMqNlB14yPgBup8-ILJRdPxDNHDtI3SvJyv5GB2NsjUEsj4EsgSBLEEgAwjEvlmCQLaGwBP07ehw_PZdkfbLKExVlcuiskrwRilCFfETexrIma5Kyw3H1jbYqiHw0aHTTU0dZorTyjLbaFJTM3Rg4ynaaX-27hnKGo2Za6h2llTU1IpjDmxHYGaNMMAg9xDpXo40SUze72lyLrc4Zg-9Xt00i1oq27uz7q3LRAcjzZOAo-03HnQ-kmlgLiShglJSMsKf3-4x9tHd9WA4QDvL-YV7ge6Yy-V0MX-ZMPYH3_aKFw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+batch-wise+LSTM-encoder+decoder+network+for+batch+process+monitoring&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Ren%2C+Jiayang&rft.au=Ni%2C+Dong&rft.date=2020-12-01&rft.issn=0263-8762&rft.volume=164&rft.spage=102&rft.epage=112&rft_id=info:doi/10.1016%2Fj.cherd.2020.09.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cherd_2020_09_019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon