A batch-wise LSTM-encoder decoder network for batch process monitoring
•Proposed a multi-layer recurrent neural network in the encoder–decoder structure and the corresponding monitoring method for batch process monitoring.•The proposed network can simultaneously capture the between and within batch dynamic features in the nonlinear batch process.•The proposed model out...
Saved in:
| Published in: | Chemical engineering research & design Vol. 164; pp. 102 - 112 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Rugby
Elsevier B.V
01.12.2020
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0263-8762, 1744-3563 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Proposed a multi-layer recurrent neural network in the encoder–decoder structure and the corresponding monitoring method for batch process monitoring.•The proposed network can simultaneously capture the between and within batch dynamic features in the nonlinear batch process.•The proposed model outperforms the AutoEncoder and Sub-PCA model in fault detection.
Process monitoring is essential to keep quality consistency and operation safety in the batch process. However, the existence of multiphase, nonlinearity and dynamic features in the batch process makes the batch process monitoring a complicated task. In this work, a multi-layer recurrent neural network in the encoder–decoder structure called batch-wise LSTM-encoder decoder network is proposed to solve the difficulties mentioned above in batch process monitoring. The LSTM-encoder extracts the nonlinear dynamic features in both between and within batch direction, then projects the high dimensional input space to a low dimensional hidden state space. The decoder part regenerates the samples from hidden states. Control statistics H2 and SPE are designed for process monitoring, and the corresponding control limits are estimated by kernel density estimation. A case study on an extensive reference penicillin fermentation dataset suggests that the proposed method can detect the fault samples more effectively than previous methods while keeping the same robustness in normal conditions. |
|---|---|
| AbstractList | •Proposed a multi-layer recurrent neural network in the encoder–decoder structure and the corresponding monitoring method for batch process monitoring.•The proposed network can simultaneously capture the between and within batch dynamic features in the nonlinear batch process.•The proposed model outperforms the AutoEncoder and Sub-PCA model in fault detection.
Process monitoring is essential to keep quality consistency and operation safety in the batch process. However, the existence of multiphase, nonlinearity and dynamic features in the batch process makes the batch process monitoring a complicated task. In this work, a multi-layer recurrent neural network in the encoder–decoder structure called batch-wise LSTM-encoder decoder network is proposed to solve the difficulties mentioned above in batch process monitoring. The LSTM-encoder extracts the nonlinear dynamic features in both between and within batch direction, then projects the high dimensional input space to a low dimensional hidden state space. The decoder part regenerates the samples from hidden states. Control statistics H2 and SPE are designed for process monitoring, and the corresponding control limits are estimated by kernel density estimation. A case study on an extensive reference penicillin fermentation dataset suggests that the proposed method can detect the fault samples more effectively than previous methods while keeping the same robustness in normal conditions. Process monitoring is essential to keep quality consistency and operation safety in the batch process. However, the existence of multiphase, nonlinearity and dynamic features in the batch process makes the batch process monitoring a complicated task. In this work, a multi-layer recurrent neural network in the encoder–decoder structure called batch-wise LSTM-encoder decoder network is proposed to solve the difficulties mentioned above in batch process monitoring. The LSTM-encoder extracts the nonlinear dynamic features in both between and within batch direction, then projects the high dimensional input space to a low dimensional hidden state space. The decoder part regenerates the samples from hidden states. Control statistics H2 and SPE are designed for process monitoring, and the corresponding control limits are estimated by kernel density estimation. A case study on an extensive reference penicillin fermentation dataset suggests that the proposed method can detect the fault samples more effectively than previous methods while keeping the same robustness in normal conditions. |
| Author | Ni, Dong Ren, Jiayang |
| Author_xml | – sequence: 1 givenname: Jiayang surname: Ren fullname: Ren, Jiayang – sequence: 2 givenname: Dong orcidid: 0000-0002-2227-2555 surname: Ni fullname: Ni, Dong email: dni@zju.edu.cn |
| BookMark | eNqFkD1PwzAQhi1UJNrCL2CJxJzgr3wNDFVFAamIgTJbjn2hDm1cbJeKf49LmBjglhvufc7nZ4JGve0BoUuCM4JJcd1lag1OZxRTnOE6w6Q-QWNScp6yvGAjNMa0YGlVFvQMTbzvMMZxWo3RYpY0Mqh1ejAekuXz6jGFXlkNLtEw9B7Cwbq3pLVuyCY7ZxV4n2xtb4J1pn89R6et3Hi4-OlT9LK4Xc3v0-XT3cN8tkwVYySkTMu6aqWkXNJYVcNJ3jCiK1VhrVusZby2zqFpSw64kBVnutBtQ0uucog7puhq2BtPeN-DD6Kze9fHJwXlNeeUFLSKqXpIKWe9d9AKZYIMxvbBSbMRBIujNtGJb23iqE3gWkRtkWW_2J0zW-k-_6FuBgri5z8MOOGViSJBGwcqCG3Nn_wXo1SJpA |
| CitedBy_id | crossref_primary_10_1016_j_dche_2022_100052 crossref_primary_10_1016_j_chemolab_2025_105401 crossref_primary_10_1016_j_cie_2024_110674 crossref_primary_10_1016_j_chemolab_2022_104711 crossref_primary_10_3390_pr12040682 crossref_primary_10_1016_j_arcontrol_2021_10_006 crossref_primary_10_1016_j_compchemeng_2025_109177 crossref_primary_10_1016_j_ijpharm_2024_124509 crossref_primary_10_1080_00207543_2022_2149874 crossref_primary_10_1007_s00170_024_13932_x crossref_primary_10_1016_j_ces_2025_121943 crossref_primary_10_1016_j_cherd_2023_09_024 crossref_primary_10_3390_pr13010202 crossref_primary_10_1016_j_compchemeng_2022_107884 crossref_primary_10_1016_j_isatra_2024_03_003 crossref_primary_10_3390_pr12122824 crossref_primary_10_1002_cjce_24401 crossref_primary_10_1002_cjce_25636 crossref_primary_10_1016_j_compchemeng_2022_107964 crossref_primary_10_1002_apj_2968 crossref_primary_10_3390_pr11082435 crossref_primary_10_1016_j_engappai_2024_108051 crossref_primary_10_1002_cjce_24362 crossref_primary_10_1016_j_chemolab_2025_105499 crossref_primary_10_1016_j_coche_2024_101025 crossref_primary_10_1016_j_psep_2022_04_039 crossref_primary_10_1088_1361_6501_aceb82 crossref_primary_10_1002_cjce_70101 crossref_primary_10_1177_01423312231157118 crossref_primary_10_1016_j_chemolab_2022_104528 crossref_primary_10_1016_j_compchemeng_2023_108264 crossref_primary_10_1016_j_conengprac_2021_104811 crossref_primary_10_1109_ACCESS_2024_3444454 crossref_primary_10_1016_j_compchemeng_2022_107694 crossref_primary_10_1016_j_compchemeng_2022_108125 crossref_primary_10_1016_j_psep_2025_107704 crossref_primary_10_3390_min11101118 crossref_primary_10_1109_TIM_2025_3547514 crossref_primary_10_3390_pr12030513 crossref_primary_10_1016_j_psep_2024_08_023 |
| Cites_doi | 10.1016/j.cherd.2019.09.026 10.1016/j.jprocont.2017.05.011 10.1016/j.chemolab.2013.03.017 10.1016/j.arcontrol.2009.08.001 10.1002/aic.10024 10.1080/00401706.1995.10485888 10.1016/j.compchemeng.2020.106916 10.1016/j.arcontrol.2012.09.004 10.1016/S0098-1354(02)00127-8 10.1016/j.chemolab.2015.08.019 10.1016/j.chemolab.2010.02.004 10.1002/aic.690400809 10.1016/j.conengprac.2020.104330 10.1016/j.compchemeng.2004.02.036 10.3390/pr5030045 10.1016/j.jprocont.2012.06.009 10.1109/TII.2019.2952931 10.1016/j.chemolab.2016.08.007 10.1214/aoms/1177704472 10.1162/neco.1997.9.8.1735 10.1609/aaai.v33i01.33011409 10.1029/2010WR009945 |
| ContentType | Journal Article |
| Copyright | 2020 Institution of Chemical Engineers Copyright Elsevier Science Ltd. Dec 2020 |
| Copyright_xml | – notice: 2020 Institution of Chemical Engineers – notice: Copyright Elsevier Science Ltd. Dec 2020 |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1016/j.cherd.2020.09.019 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1744-3563 |
| EndPage | 112 |
| ExternalDocumentID | 10_1016_j_cherd_2020_09_019 S0263876220304834 |
| GroupedDBID | --K --M -QF -~X .~1 0R~ 1B1 1~. 1~5 29B 3EH 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABDBF ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHPOS AI. AIAGR AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 ESX FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KOM M41 ML- MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSR SSZ T5K T9H TUS UNMZH VH1 XFK ~02 ~8M ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACUHS ACVFH ADCNI ADMLS ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
| ID | FETCH-LOGICAL-c331t-3da98faa24a22228b415b31d8c80ddf0da56395ebf74e06a843d6dfb274c5ec33 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000593767200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8762 |
| IngestDate | Fri Jul 25 05:52:28 EDT 2025 Tue Nov 18 21:30:52 EST 2025 Sat Nov 29 07:21:32 EST 2025 Fri Feb 23 02:45:38 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Process monitoring Nonlinear batch processes Kernel density estimation Encoder–decoder structure Multi-layer LSTM |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-3da98faa24a22228b415b31d8c80ddf0da56395ebf74e06a843d6dfb274c5ec33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2227-2555 |
| PQID | 2494421628 |
| PQPubID | 2047566 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2494421628 crossref_citationtrail_10_1016_j_cherd_2020_09_019 crossref_primary_10_1016_j_cherd_2020_09_019 elsevier_sciencedirect_doi_10_1016_j_cherd_2020_09_019 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Rugby |
| PublicationPlace_xml | – name: Rugby |
| PublicationTitle | Chemical engineering research & design |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Glorot, Bordes, Bengio (bib0025) 2011 Jiang, Yan, Yan, Yi, Gao (bib0040) 2020; 16 Zhang, Song, Chen, Feng, Lumezanu, Cheng, Ni, Zong, Chen, Chawla (bib0145) 2019 Bottou (bib0015) 2010 Nomikos, MacGregor (bib0085) 1995; 37 Wang, Rippon, Chen, Song, Gopaluni (bib0120) 2019 Lu, Gao, Wang (bib0065) 2004; 50 Yan, Guo, gong, Li (bib0125) 2016; 158 Yin, Ding, Haghani, Hao, Zhang (bib0135) 2012; 22 Loy-Benitez, Heo, Yoo (bib0060) 2020; 97 Yao, Gao (bib0130) 2009; 33 Hochreiter, Schmidhuber (bib0030) 1997; 9 Jia, Chu, Wang, Wang (bib0035) 2010; 101 Wang, Baldea, Edgar (bib0110) 2017; 5 Wang, Edgar, Baldea, Nixon, Wojsznis, Dunia (bib0115) 2018; 67 Mehta, Reddy (bib0070) 2015 Nomikos, MacGregor (bib0080) 1994; 40 Nielsen, Nazemzadeh, Sillesen, Andersson, Gernaey, Mansouri (bib0075) 2020 Zhao, Sun (bib0150) 2013; 125 Shahnazari (bib0100) 2020; 153 Kingma, Ba (bib0045) 2014 Yu, Zhao (bib0140) 2019 Birol, Undey, Cinar (bib0010) 2002; 26 Breuel (bib0020) 2015 Adamowski, Chan, Prasher, Ozga-Zielinski, Sliusarieva (bib0005) 2012; 48 Van Impe, Gins (bib0105) 2015; 148 Qin (bib0095) 2012; 36 Parzen (bib0090) 1962; 33 Lee, Yoo, Lee (bib0055) 2004; 28 Klambauer, Unterthiner, Mayr, Hochreiter (bib0050) 2017 Klambauer (10.1016/j.cherd.2020.09.019_bib0050) 2017 Yu (10.1016/j.cherd.2020.09.019_bib0140) 2019 Wang (10.1016/j.cherd.2020.09.019_bib0110) 2017; 5 Kingma (10.1016/j.cherd.2020.09.019_bib0045) 2014 Adamowski (10.1016/j.cherd.2020.09.019_bib0005) 2012; 48 Nomikos (10.1016/j.cherd.2020.09.019_bib0080) 1994; 40 Yan (10.1016/j.cherd.2020.09.019_bib0125) 2016; 158 Zhang (10.1016/j.cherd.2020.09.019_bib0145) 2019 Nomikos (10.1016/j.cherd.2020.09.019_bib0085) 1995; 37 Mehta (10.1016/j.cherd.2020.09.019_bib0070) 2015 Birol (10.1016/j.cherd.2020.09.019_bib0010) 2002; 26 Parzen (10.1016/j.cherd.2020.09.019_bib0090) 1962; 33 Lee (10.1016/j.cherd.2020.09.019_bib0055) 2004; 28 Bottou (10.1016/j.cherd.2020.09.019_bib0015) 2010 Hochreiter (10.1016/j.cherd.2020.09.019_bib0030) 1997; 9 Van Impe (10.1016/j.cherd.2020.09.019_bib0105) 2015; 148 Shahnazari (10.1016/j.cherd.2020.09.019_bib0100) 2020; 153 Jia (10.1016/j.cherd.2020.09.019_bib0035) 2010; 101 Glorot (10.1016/j.cherd.2020.09.019_bib0025) 2011 Jiang (10.1016/j.cherd.2020.09.019_bib0040) 2020; 16 Zhao (10.1016/j.cherd.2020.09.019_bib0150) 2013; 125 Nielsen (10.1016/j.cherd.2020.09.019_bib0075) 2020 Yao (10.1016/j.cherd.2020.09.019_bib0130) 2009; 33 Loy-Benitez (10.1016/j.cherd.2020.09.019_bib0060) 2020; 97 Wang (10.1016/j.cherd.2020.09.019_bib0115) 2018; 67 Yin (10.1016/j.cherd.2020.09.019_bib0135) 2012; 22 Breuel (10.1016/j.cherd.2020.09.019_bib0020) 2015 Lu (10.1016/j.cherd.2020.09.019_bib0065) 2004; 50 Qin (10.1016/j.cherd.2020.09.019_bib0095) 2012; 36 Wang (10.1016/j.cherd.2020.09.019_bib0120) 2019 |
| References_xml | – start-page: 1 year: 2019 end-page: 9 ident: bib0140 article-title: Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net publication-title: IEEE Trans. Control Syst. Technol. – start-page: 106916 year: 2020 ident: bib0075 article-title: Hybrid machine learning assisted modelling framework for particle processes publication-title: Comput. Chem. Eng. – volume: 67 start-page: 197 year: 2018 end-page: 205 ident: bib0115 article-title: A geometric method for batch data visualization, process monitoring and fault detection publication-title: J. Process Control – volume: 28 start-page: 1837 year: 2004 end-page: 1847 ident: bib0055 article-title: Fault detection of batch processes using multiway kernel principal component analysis publication-title: Comput. Chem. Eng. – volume: 101 start-page: 110 year: 2010 end-page: 122 ident: bib0035 article-title: On-line batch process monitoring using batch dynamic kernel principal component analysis publication-title: Chemometr. Intell. Lab. Syst. – volume: 36 start-page: 220 year: 2012 end-page: 234 ident: bib0095 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu. Rev. Control – start-page: 315 year: 2011 end-page: 323 ident: bib0025 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – volume: 5 start-page: 45 year: 2017 ident: bib0110 article-title: Data visualization and visualization-based fault detection for chemical processes publication-title: Processes – volume: 33 start-page: 172 year: 2009 end-page: 183 ident: bib0130 article-title: A survey on multistage/multiphase statistical modeling methods for batch processes publication-title: Annu. Rev. Control – start-page: 1409 year: 2019 end-page: 1416 ident: bib0145 article-title: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33 – year: 2019 ident: bib0120 article-title: Data-driven dynamic modeling and online monitoring for multiphase and multimode batch processes with uneven batch durations publication-title: Ind. Eng. Chem. Res. – volume: 125 start-page: 109 year: 2013 end-page: 120 ident: bib0150 article-title: Step-wise sequential phase partition (sspp) algorithm based statistical modeling and online process monitoring publication-title: Chemometr. Intell. Lab. Syst. – volume: 158 start-page: 31 year: 2016 end-page: 40 ident: bib0125 article-title: Nonlinear and robust statistical process monitoring based on variant autoencoders publication-title: Chemometr. Intell. Lab. Syst. – year: 2014 ident: bib0045 article-title: Adam: A Method for Stochastic Optimization – start-page: 459 year: 2015 end-page: 477 ident: bib0070 article-title: OPC Communications – start-page: 177 year: 2010 end-page: 186 ident: bib0015 article-title: Large-Scale Machine Learning With Stochastic Gradient Descent – year: 2015 ident: bib0020 article-title: Benchmarking of LSTM Networks – volume: 16 start-page: 2839 year: 2020 end-page: 2848 ident: bib0040 article-title: Data-driven two-dimensional deep correlated representation learning for nonlinear batch process monitoring publication-title: IEEE Trans. Ind. Informatics – volume: 37 start-page: 41 year: 1995 end-page: 59 ident: bib0085 article-title: Multivariate SPC charts for monitoring batch processes publication-title: Technometrics – volume: 50 start-page: 255 year: 2004 end-page: 259 ident: bib0065 article-title: Sub-PCA modeling and on-line monitoring strategy for batch processes publication-title: AIChE J. – volume: 97 start-page: 104330 year: 2020 ident: bib0060 article-title: Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders publication-title: Control Eng. Pract. – volume: 26 start-page: 1553 year: 2002 end-page: 1565 ident: bib0010 article-title: A modular simulation package for fed-batch fermentation: penicillin production publication-title: Comput. Chem. Eng. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0030 article-title: Long short-term memory publication-title: Neural Comput. – volume: 33 start-page: 1065 year: 1962 end-page: 1076 ident: bib0090 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. – volume: 22 start-page: 1567 year: 2012 end-page: 1581 ident: bib0135 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: J. Process Control – start-page: 971 year: 2017 end-page: 980 ident: bib0050 article-title: Self-normalizing neural networks publication-title: Advances in Neural Information Processing Systems – volume: 153 start-page: 233 year: 2020 end-page: 245 ident: bib0100 article-title: Fault diagnosis of nonlinear systems using recurrent neural networks publication-title: Chem. Eng. Res. Des. – volume: 148 start-page: 20 year: 2015 end-page: 31 ident: bib0105 article-title: An extensive reference dataset for fault detection and identification in batch processes publication-title: Chemometr. Intell. Lab. Syst. – volume: 48 year: 2012 ident: bib0005 article-title: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada publication-title: Water Resour. Res. – volume: 40 start-page: 1361 year: 1994 end-page: 1375 ident: bib0080 article-title: Monitoring batch processes using multiway principal component analysis publication-title: AIChE J. – volume: 153 start-page: 233 year: 2020 ident: 10.1016/j.cherd.2020.09.019_bib0100 article-title: Fault diagnosis of nonlinear systems using recurrent neural networks publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2019.09.026 – volume: 67 start-page: 197 year: 2018 ident: 10.1016/j.cherd.2020.09.019_bib0115 article-title: A geometric method for batch data visualization, process monitoring and fault detection publication-title: J. Process Control doi: 10.1016/j.jprocont.2017.05.011 – volume: 125 start-page: 109 year: 2013 ident: 10.1016/j.cherd.2020.09.019_bib0150 article-title: Step-wise sequential phase partition (sspp) algorithm based statistical modeling and online process monitoring publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2013.03.017 – volume: 33 start-page: 172 issue: 2 year: 2009 ident: 10.1016/j.cherd.2020.09.019_bib0130 article-title: A survey on multistage/multiphase statistical modeling methods for batch processes publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2009.08.001 – volume: 50 start-page: 255 issue: 1 year: 2004 ident: 10.1016/j.cherd.2020.09.019_bib0065 article-title: Sub-PCA modeling and on-line monitoring strategy for batch processes publication-title: AIChE J. doi: 10.1002/aic.10024 – start-page: 177 year: 2010 ident: 10.1016/j.cherd.2020.09.019_bib0015 – volume: 37 start-page: 41 issue: 1 year: 1995 ident: 10.1016/j.cherd.2020.09.019_bib0085 article-title: Multivariate SPC charts for monitoring batch processes publication-title: Technometrics doi: 10.1080/00401706.1995.10485888 – start-page: 106916 year: 2020 ident: 10.1016/j.cherd.2020.09.019_bib0075 article-title: Hybrid machine learning assisted modelling framework for particle processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2020.106916 – volume: 36 start-page: 220 issue: 2 year: 2012 ident: 10.1016/j.cherd.2020.09.019_bib0095 article-title: Survey on data-driven industrial process monitoring and diagnosis publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2012.09.004 – year: 2019 ident: 10.1016/j.cherd.2020.09.019_bib0120 article-title: Data-driven dynamic modeling and online monitoring for multiphase and multimode batch processes with uneven batch durations publication-title: Ind. Eng. Chem. Res. – volume: 26 start-page: 1553 issue: 11 year: 2002 ident: 10.1016/j.cherd.2020.09.019_bib0010 article-title: A modular simulation package for fed-batch fermentation: penicillin production publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00127-8 – volume: 148 start-page: 20 year: 2015 ident: 10.1016/j.cherd.2020.09.019_bib0105 article-title: An extensive reference dataset for fault detection and identification in batch processes publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.019 – start-page: 971 year: 2017 ident: 10.1016/j.cherd.2020.09.019_bib0050 article-title: Self-normalizing neural networks publication-title: Advances in Neural Information Processing Systems – start-page: 315 year: 2011 ident: 10.1016/j.cherd.2020.09.019_bib0025 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – start-page: 1 year: 2019 ident: 10.1016/j.cherd.2020.09.019_bib0140 article-title: Robust monitoring and fault isolation of nonlinear industrial processes using denoising autoencoder and elastic net publication-title: IEEE Trans. Control Syst. Technol. – volume: 101 start-page: 110 issue: 2 year: 2010 ident: 10.1016/j.cherd.2020.09.019_bib0035 article-title: On-line batch process monitoring using batch dynamic kernel principal component analysis publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2010.02.004 – start-page: 459 year: 2015 ident: 10.1016/j.cherd.2020.09.019_bib0070 – volume: 40 start-page: 1361 issue: 8 year: 1994 ident: 10.1016/j.cherd.2020.09.019_bib0080 article-title: Monitoring batch processes using multiway principal component analysis publication-title: AIChE J. doi: 10.1002/aic.690400809 – volume: 97 start-page: 104330 year: 2020 ident: 10.1016/j.cherd.2020.09.019_bib0060 article-title: Soft sensor validation for monitoring and resilient control of sequential subway indoor air quality through memory-gated recurrent neural networks-based autoencoders publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2020.104330 – volume: 28 start-page: 1837 issue: 9 year: 2004 ident: 10.1016/j.cherd.2020.09.019_bib0055 article-title: Fault detection of batch processes using multiway kernel principal component analysis publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2004.02.036 – volume: 5 start-page: 45 issue: 3 year: 2017 ident: 10.1016/j.cherd.2020.09.019_bib0110 article-title: Data visualization and visualization-based fault detection for chemical processes publication-title: Processes doi: 10.3390/pr5030045 – volume: 22 start-page: 1567 issue: 9 year: 2012 ident: 10.1016/j.cherd.2020.09.019_bib0135 article-title: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process publication-title: J. Process Control doi: 10.1016/j.jprocont.2012.06.009 – volume: 16 start-page: 2839 issue: 4 year: 2020 ident: 10.1016/j.cherd.2020.09.019_bib0040 article-title: Data-driven two-dimensional deep correlated representation learning for nonlinear batch process monitoring publication-title: IEEE Trans. Ind. Informatics doi: 10.1109/TII.2019.2952931 – volume: 158 start-page: 31 year: 2016 ident: 10.1016/j.cherd.2020.09.019_bib0125 article-title: Nonlinear and robust statistical process monitoring based on variant autoencoders publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2016.08.007 – volume: 33 start-page: 1065 issue: 3 year: 1962 ident: 10.1016/j.cherd.2020.09.019_bib0090 article-title: On estimation of a probability density function and mode publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704472 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.cherd.2020.09.019_bib0030 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – start-page: 1409 year: 2019 ident: 10.1016/j.cherd.2020.09.019_bib0145 article-title: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data publication-title: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33 doi: 10.1609/aaai.v33i01.33011409 – year: 2014 ident: 10.1016/j.cherd.2020.09.019_bib0045 – volume: 48 issue: 1 year: 2012 ident: 10.1016/j.cherd.2020.09.019_bib0005 article-title: Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada publication-title: Water Resour. Res. doi: 10.1029/2010WR009945 – year: 2015 ident: 10.1016/j.cherd.2020.09.019_bib0020 |
| SSID | ssj0001748 |
| Score | 2.4794874 |
| Snippet | •Proposed a multi-layer recurrent neural network in the encoder–decoder structure and the corresponding monitoring method for batch process monitoring.•The... Process monitoring is essential to keep quality consistency and operation safety in the batch process. However, the existence of multiphase, nonlinearity and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 102 |
| SubjectTerms | Coders Control limits Density Encoder–decoder structure Feature extraction Fermentation Kernel density estimation Monitoring Monitoring systems Multi-layer LSTM Multilayers Nonlinear batch processes Nonlinear dynamics Nonlinear systems Nonlinearity Occupational safety Penicillin Process monitoring Recurrent neural networks Statistical methods |
| Title | A batch-wise LSTM-encoder decoder network for batch process monitoring |
| URI | https://dx.doi.org/10.1016/j.cherd.2020.09.019 https://www.proquest.com/docview/2494421628 |
| Volume | 164 |
| WOSCitedRecordID | wos000593767200009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1744-3563 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001748 issn: 0263-8762 databaseCode: AIEXJ dateStart: 19961101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqjQd4QFzF2EB54C0EOY7r2I8V2sRlTAgK6pvlW7ROI1RtN8a_5_iSNltFxR54SSLLOUpzPp_zxT3-jNArIlzFa4sLWhNdUK_eqpglhdDAla3CwoR9yL4f1ycnfDIRnweDj91amMvzum351ZWY_VdXQxs42y-dvYW7V0ahAa7B6XAEt8Pxnxw_yjWE19Pi13Th8uOv40-F16q0YSfweG5j6Xes1PR981lcLpD_CCN83qWzTsGgExVwa_HCPKkEnQbs2Gt1IF_Sgo-p-q2SpfDPRyTsqSXNNJB-1UYMSIRVm9GT0V78KzHppdIyVkhvROk4YXD2xsPSq7USHLRmU-y8pol9I1etKgi74rQzGYxIb0RiIbGXgN0l9VBAiNsdvT-cfFglZvj44nHKLf6MToQqlPttPMvfiMqNlB14yPgBup8-ILJRdPxDNHDtI3SvJyv5GB2NsjUEsj4EsgSBLEEgAwjEvlmCQLaGwBP07ehw_PZdkfbLKExVlcuiskrwRilCFfETexrIma5Kyw3H1jbYqiHw0aHTTU0dZorTyjLbaFJTM3Rg4ynaaX-27hnKGo2Za6h2llTU1IpjDmxHYGaNMMAg9xDpXo40SUze72lyLrc4Zg-9Xt00i1oq27uz7q3LRAcjzZOAo-03HnQ-kmlgLiShglJSMsKf3-4x9tHd9WA4QDvL-YV7ge6Yy-V0MX-ZMPYH3_aKFw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+batch-wise+LSTM-encoder+decoder+network+for+batch+process+monitoring&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Ren%2C+Jiayang&rft.au=Ni%2C+Dong&rft.date=2020-12-01&rft.issn=0263-8762&rft.volume=164&rft.spage=102&rft.epage=112&rft_id=info:doi/10.1016%2Fj.cherd.2020.09.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cherd_2020_09_019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon |