Investigating data preprocessing methods for circuit complexity models

Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (B...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 36; číslo 1; s. 519 - 526
Hlavní autori: Chandana Prasad, P.W., Beg, Azam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 2009
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (BFC). We compare NNs’ predictive capabilities with (1) no preprocessing (2) scaling the values in different curves based on every curve’s own peak and then normalizing to [0, 1] range (3) applying z-score to values in all curves and then normalizing to [0, 1] range, and (4) logarithmically scaling all curves and then normalizing to [0, 1] range. The efficiency of these methods was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic preprocessing method resulted in the best prediction statistics as compared to other techniques.
AbstractList Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (BFC). We compare NNs’ predictive capabilities with (1) no preprocessing (2) scaling the values in different curves based on every curve’s own peak and then normalizing to [0, 1] range (3) applying z-score to values in all curves and then normalizing to [0, 1] range, and (4) logarithmically scaling all curves and then normalizing to [0, 1] range. The efficiency of these methods was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic preprocessing method resulted in the best prediction statistics as compared to other techniques.
Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the prediction performance of the model. This paper compares different data processing strategies for NNs for prediction of Boolean function complexity (BFC). We compare NNs' predictive capabilities with (1) no preprocessing (2) scaling the values in different curves based on every curve's own peak and then normalizing to [0, 1] range (3) applying z-score to values in all curves and then normalizing to [0, 1] range, and (4) logarithmically scaling all curves and then normalizing to [0, 1] range. The efficiency of these methods was measured by comparing RMS errors in NN-made BFC predictions for numerous ISCAS benchmark circuits. Logarithmic preprocessing method resulted in the best prediction statistics as compared to other techniques.
Author Chandana Prasad, P.W.
Beg, Azam
Author_xml – sequence: 1
  givenname: P.W.
  surname: Chandana Prasad
  fullname: Chandana Prasad, P.W.
  email: m2160062@mmu.edu.my
  organization: Faculty of Information Systems and Technology, Multimedia University, Malaysia
– sequence: 2
  givenname: Azam
  surname: Beg
  fullname: Beg, Azam
  email: abeg@uaeu.ac.ae
  organization: College of Information Technology, United Arab Emirates University, United Arab Emirates
BookMark eNp9kE1LxDAQhoOs4PrxBzz15K01adKmAS8irgqCFz2H7GSqWdpmTbJ-_HtT1pMHTwPD-wzvPMdkMfkJCTlntGKUtZebCuOnqWpKZUVVRZv6gCxZJ3nZSsUXZElVI0vBpDgixzFuKGUyZ5dk9TB9YEzu1SQ3vRbWJFNsA26DB4xxXo2Y3ryNRe9DAS7AzqUC_Lgd8Mul72L0Fod4Sg57M0Q8-50n5GV1-3xzXz4-3T3cXD-WwDlLJQfeYmeFXFtBGVqAjteNEGulJAJgLUzHTSvWvZIKeyssIPJeNK2oewOGn5CL_d1c8H2Xi-vRRcBhMBP6XdS8UYp2TOZgtw9C8DEG7DW4lH_0UwrGDZpRPYvTGz2L07M4TZXO4jJa_0G3wY0mfP8PXe2hLAM_HAYdweEEaF1ASNp69x_-A2KajCU
CitedBy_id crossref_primary_10_1016_j_chemolab_2020_103978
crossref_primary_10_1016_j_eswa_2010_01_002
crossref_primary_10_1016_j_jretconser_2020_102312
crossref_primary_10_1080_0951192X_2011_645381
crossref_primary_10_1016_j_sandf_2014_02_013
crossref_primary_10_1002_cae_20243
crossref_primary_10_1007_s11356_014_2842_7
Cites_doi 10.1109/6.576011
10.1109/ICCD.2002.1106793
10.1007/11494669_1
10.1016/j.eswa.2007.04.010
10.1109/ANNES.1993.323086
10.1016/S0893-6080(05)80093-0
10.1109/IJCNN.2004.1380065
10.1007/978-3-540-30227-8_30
10.1109/12.73590
10.1016/j.vlsi.2005.06.002
10.1109/TC.1978.1675141
10.1016/j.neucom.2006.01.025
10.1109/54.785838
10.1145/1057661.1057689
10.1109/LPE.1996.547534
ContentType Journal Article
Copyright 2007 Elsevier Ltd
Copyright_xml – notice: 2007 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2007.09.052
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 526
ExternalDocumentID 10_1016_j_eswa_2007_09_052
S0957417407004691
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-3c36e8d47bd401edcc832544b997ecce24a83a64bf979efd4dcee3f45642faca3
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000264182800053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sun Nov 09 10:46:13 EST 2025
Tue Nov 18 19:52:40 EST 2025
Sat Nov 29 04:44:07 EST 2025
Fri Feb 23 02:27:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feed-forward neural network
Pattern recognition
Computer-aided design
Data preprocessing
Boolean function complexity
Machine learning
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-3c36e8d47bd401edcc832544b997ecce24a83a64bf979efd4dcee3f45642faca3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 35990817
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_35990817
crossref_citationtrail_10_1016_j_eswa_2007_09_052
crossref_primary_10_1016_j_eswa_2007_09_052
elsevier_sciencedirect_doi_10_1016_j_eswa_2007_09_052
PublicationCentury 2000
PublicationDate 2009
2009-1-00
20090101
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationTitle Expert systems with applications
PublicationYear 2009
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hossain, A., Pease, D. J., Burns, J. S., & Parveen, N. (2002). Trace cache performance parameters. In
Jeff. (2007). What’s a
Brglez, F., & Fujiwara, H. (1985). A Neutral netlist of 10 combinational circuits and a target translator in fortran. In
Akers (bib1) 1978; 27
(7th ed.). California Scientific Software Press.
Wegener (bib29) 1987
Franco, L. (2005). Role of function complexity and network size in the generalization ability of feedforward networks. Lecture notes in computer science. computational intelligence and bioinspired systems. In
(pp. 584–589).
Shawe-Taylor, Anthony, Kern (bib25) 1992; 5
(pp. 112–115).
Nemani, M., & Najm, F. N. (1996). High-level power estimation and the area complexity of Boolean functions. In
Assi, Prasad, Mills, El-Chouemi (bib2) 2005; 2
Tuck, D. L. (1993). Practical polynomial expansion of input data can improve neurocomputing results. In Proceedings of the artificial neural networks and expert systems (pp. 42–45).
(pp. 329–334).
Beg, A., Prasad, P. W. C., & Beg, A. (in press). Applicability of feed-forward and recurrent neural networks to boolean function complexity modeling.
Dunne, P. E., & van der Hoeke, W. (2004). Representation and complexity in Boolean games. In
Drechsler, Sieling (bib9) 2001
Prasad, Assi, Beg (bib21) 2006; 2
Triola (bib27) 1994
Franco, L., & Anthony, M. (2004). On a generalization complexity measure for Boolean functions. In
Masters (bib17) 1994
Beiu, V., Peperstraete, J. A., Vandewalle, J., & Lauwereins, R. (1994). Placing feedforward neural networks among several circuit complexity classes. In
Bryant (bib7) 1991; 40
Caudill (bib8) 1990
Priyank, K. (1997). VLSI logic test, validation and verification, properties & applications of binary decision diagrams. Lecture Notes-department of Electrical and Computer Engineering University of Utah, Salt Lake City. UT 84112.
Parberry (bib19) 1994
Hansen, Yalcin, Hayes (bib14) 1999; 16
Franco (bib12) 2006; 70
.
(pp. 1–8).
Technical Report. Microelectronic Center of North Carolina Research Triangle Park.
(pp. 663–6985).
Yang, S. (1991).
(pp. 347–35).
Somenzi, F. (2003). CUDD: CU decision diagram package.
1
score and why use it in usability testing?
(pp. 973–978).
Prasad, Assi, Beg (bib20) 2006; 5
BrainMaker. (1998).
Raseen, Prasad, Assi (bib24) 2005; 39
Yale (bib30) 1997; 34
Ramalingam, N., & Bhanja, S. (2005). Causal probabilistic input dependency learning for switching model in VLSI circuits. In
(pp. 348–355).
Akers (10.1016/j.eswa.2007.09.052_bib1) 1978; 27
Drechsler (10.1016/j.eswa.2007.09.052_bib9) 2001
Triola (10.1016/j.eswa.2007.09.052_bib27) 1994
Wegener (10.1016/j.eswa.2007.09.052_bib29) 1987
10.1016/j.eswa.2007.09.052_bib28
Masters (10.1016/j.eswa.2007.09.052_bib17) 1994
10.1016/j.eswa.2007.09.052_bib23
10.1016/j.eswa.2007.09.052_bib26
Shawe-Taylor (10.1016/j.eswa.2007.09.052_bib25) 1992; 5
Yale (10.1016/j.eswa.2007.09.052_bib30) 1997; 34
10.1016/j.eswa.2007.09.052_bib22
Prasad (10.1016/j.eswa.2007.09.052_bib21) 2006; 2
Caudill (10.1016/j.eswa.2007.09.052_bib8) 1990
10.1016/j.eswa.2007.09.052_bib4
10.1016/j.eswa.2007.09.052_bib3
10.1016/j.eswa.2007.09.052_bib6
10.1016/j.eswa.2007.09.052_bib5
Hansen (10.1016/j.eswa.2007.09.052_bib14) 1999; 16
Assi (10.1016/j.eswa.2007.09.052_bib2) 2005; 2
10.1016/j.eswa.2007.09.052_bib16
10.1016/j.eswa.2007.09.052_bib18
Bryant (10.1016/j.eswa.2007.09.052_bib7) 1991; 40
10.1016/j.eswa.2007.09.052_bib13
Raseen (10.1016/j.eswa.2007.09.052_bib24) 2005; 39
10.1016/j.eswa.2007.09.052_bib15
10.1016/j.eswa.2007.09.052_bib31
Prasad (10.1016/j.eswa.2007.09.052_bib20) 2006; 5
10.1016/j.eswa.2007.09.052_bib11
Franco (10.1016/j.eswa.2007.09.052_bib12) 2006; 70
Parberry (10.1016/j.eswa.2007.09.052_bib19) 1994
10.1016/j.eswa.2007.09.052_bib10
References_xml – volume: 2
  start-page: 141
  year: 2006
  end-page: 147
  ident: bib21
  article-title: Binary decision diagrams and neural networks
  publication-title: Journal of Supercomputing
– reference: (pp. 663–6985).
– year: 1987
  ident: bib29
  article-title: The complexity of Boolean functions
– reference: Yang, S. (1991).
– year: 1994
  ident: bib19
  article-title: Circuit complexity and neural networks
– year: 1994
  ident: bib27
  article-title: Elementary Stastictics
– volume: 27
  start-page: 509
  year: 1978
  end-page: 516
  ident: bib1
  article-title: Binary decision diagram
  publication-title: IEEE Transaction on Computers
– reference: (pp. 1–8).
– reference: (pp. 584–589).
– reference: Nemani, M., & Najm, F. N. (1996). High-level power estimation and the area complexity of Boolean functions. In
– reference: Franco, L. (2005). Role of function complexity and network size in the generalization ability of feedforward networks. Lecture notes in computer science. computational intelligence and bioinspired systems. In
– reference: . Technical Report. Microelectronic Center of North Carolina Research Triangle Park.
– reference: Franco, L., & Anthony, M. (2004). On a generalization complexity measure for Boolean functions. In
– reference: Priyank, K. (1997). VLSI logic test, validation and verification, properties & applications of binary decision diagrams. Lecture Notes-department of Electrical and Computer Engineering University of Utah, Salt Lake City. UT 84112.
– reference: Ramalingam, N., & Bhanja, S. (2005). Causal probabilistic input dependency learning for switching model in VLSI circuits. In
– reference: (1),
– year: 2001
  ident: bib9
  article-title: Binary decision diagrams in theory and practice
– reference: (pp. 347–35).
– reference: (pp. 329–334).
– reference: BrainMaker. (1998).
– reference: Brglez, F., & Fujiwara, H. (1985). A Neutral netlist of 10 combinational circuits and a target translator in fortran. In
– reference: (pp. 973–978).
– volume: 39
  start-page: 211
  year: 2005
  end-page: 228
  ident: bib24
  article-title: An efficient estimation of the ROBDD’s complexity
  publication-title: Integration – VLSI Journal
– reference: Beiu, V., Peperstraete, J. A., Vandewalle, J., & Lauwereins, R. (1994). Placing feedforward neural networks among several circuit complexity classes. In
– reference: (7th ed.). California Scientific Software Press.
– reference: Dunne, P. E., & van der Hoeke, W. (2004). Representation and complexity in Boolean games. In
– volume: 34
  start-page: 64
  year: 1997
  end-page: 66
  ident: bib30
  article-title: Preparing the right data for training neural networks
  publication-title: IEEE Spectrum
– volume: 2
  start-page: 236
  year: 2005
  end-page: 244
  ident: bib2
  article-title: Empirical analysis and mathematical representation of the path length complexity in binary decision diagrams
  publication-title: Journal of Computer Science
– reference: (pp. 112–115).
– reference: Tuck, D. L. (1993). Practical polynomial expansion of input data can improve neurocomputing results. In Proceedings of the artificial neural networks and expert systems (pp. 42–45).
– reference: Beg, A., Prasad, P. W. C., & Beg, A. (in press). Applicability of feed-forward and recurrent neural networks to boolean function complexity modeling.
– reference: (pp. 348–355).
– volume: 70
  start-page: 351
  year: 2006
  end-page: 361
  ident: bib12
  article-title: Generalization ability of Boolean functions implemented in feedforward neural networks
  publication-title: Neurocomputing
– volume: 16
  start-page: 72
  year: 1999
  end-page: 80
  ident: bib14
  article-title: Unveiling the ISCAS-85 Benchmarks: A case study in reverse engineering
  publication-title: IEEE Transaction on Design and Test
– reference: Hossain, A., Pease, D. J., Burns, J. S., & Parveen, N. (2002). Trace cache performance parameters. In
– volume: 5
  start-page: 971
  year: 1992
  end-page: 977
  ident: bib25
  article-title: Classes of feedforward neural networks and their circuit complexity
  publication-title: Neural Networks
– reference: Somenzi, F. (2003). CUDD: CU decision diagram package.
– reference: Jeff. (2007). What’s a
– volume: 5
  start-page: 813
  year: 2006
  end-page: 820
  ident: bib20
  article-title: Modeling the complexity of digital circuits using neural networks
  publication-title: WSEAS Transaction on Circuits and Systems
– volume: 40
  start-page: 203
  year: 1991
  end-page: 213
  ident: bib7
  article-title: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication
  publication-title: IEEE Transactions on Computers
– year: 1990
  ident: bib8
  article-title: AI expert: Neural network primer
– reference: -score and why use it in usability testing?
– year: 1994
  ident: bib17
  article-title: Signal and image processing with neural networks
– reference: .
– ident: 10.1016/j.eswa.2007.09.052_bib16
– volume: 34
  start-page: 64
  issue: 3
  year: 1997
  ident: 10.1016/j.eswa.2007.09.052_bib30
  article-title: Preparing the right data for training neural networks
  publication-title: IEEE Spectrum
  doi: 10.1109/6.576011
– ident: 10.1016/j.eswa.2007.09.052_bib15
  doi: 10.1109/ICCD.2002.1106793
– ident: 10.1016/j.eswa.2007.09.052_bib6
– year: 1994
  ident: 10.1016/j.eswa.2007.09.052_bib19
– year: 1994
  ident: 10.1016/j.eswa.2007.09.052_bib27
– ident: 10.1016/j.eswa.2007.09.052_bib31
– volume: 2
  start-page: 236
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2007.09.052_bib2
  article-title: Empirical analysis and mathematical representation of the path length complexity in binary decision diagrams
  publication-title: Journal of Computer Science
– ident: 10.1016/j.eswa.2007.09.052_bib11
  doi: 10.1007/11494669_1
– ident: 10.1016/j.eswa.2007.09.052_bib3
  doi: 10.1016/j.eswa.2007.04.010
– ident: 10.1016/j.eswa.2007.09.052_bib4
– year: 2001
  ident: 10.1016/j.eswa.2007.09.052_bib9
– ident: 10.1016/j.eswa.2007.09.052_bib28
  doi: 10.1109/ANNES.1993.323086
– volume: 5
  start-page: 971
  year: 1992
  ident: 10.1016/j.eswa.2007.09.052_bib25
  article-title: Classes of feedforward neural networks and their circuit complexity
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80093-0
– year: 1990
  ident: 10.1016/j.eswa.2007.09.052_bib8
– ident: 10.1016/j.eswa.2007.09.052_bib13
  doi: 10.1109/IJCNN.2004.1380065
– ident: 10.1016/j.eswa.2007.09.052_bib10
  doi: 10.1007/978-3-540-30227-8_30
– year: 1987
  ident: 10.1016/j.eswa.2007.09.052_bib29
– ident: 10.1016/j.eswa.2007.09.052_bib26
– volume: 40
  start-page: 203
  year: 1991
  ident: 10.1016/j.eswa.2007.09.052_bib7
  article-title: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/12.73590
– ident: 10.1016/j.eswa.2007.09.052_bib5
– volume: 39
  start-page: 211
  issue: 3
  year: 2005
  ident: 10.1016/j.eswa.2007.09.052_bib24
  article-title: An efficient estimation of the ROBDD’s complexity
  publication-title: Integration – VLSI Journal
  doi: 10.1016/j.vlsi.2005.06.002
– year: 1994
  ident: 10.1016/j.eswa.2007.09.052_bib17
– ident: 10.1016/j.eswa.2007.09.052_bib22
– volume: 27
  start-page: 509
  year: 1978
  ident: 10.1016/j.eswa.2007.09.052_bib1
  article-title: Binary decision diagram
  publication-title: IEEE Transaction on Computers
  doi: 10.1109/TC.1978.1675141
– volume: 70
  start-page: 351
  year: 2006
  ident: 10.1016/j.eswa.2007.09.052_bib12
  article-title: Generalization ability of Boolean functions implemented in feedforward neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.01.025
– volume: 16
  start-page: 72
  year: 1999
  ident: 10.1016/j.eswa.2007.09.052_bib14
  article-title: Unveiling the ISCAS-85 Benchmarks: A case study in reverse engineering
  publication-title: IEEE Transaction on Design and Test
  doi: 10.1109/54.785838
– volume: 5
  start-page: 813
  issue: 6
  year: 2006
  ident: 10.1016/j.eswa.2007.09.052_bib20
  article-title: Modeling the complexity of digital circuits using neural networks
  publication-title: WSEAS Transaction on Circuits and Systems
– volume: 2
  start-page: 141
  issue: 2
  year: 2006
  ident: 10.1016/j.eswa.2007.09.052_bib21
  article-title: Binary decision diagrams and neural networks
  publication-title: Journal of Supercomputing
– ident: 10.1016/j.eswa.2007.09.052_bib23
  doi: 10.1145/1057661.1057689
– ident: 10.1016/j.eswa.2007.09.052_bib18
  doi: 10.1109/LPE.1996.547534
SSID ssj0017007
Score 1.9655144
Snippet Preprocessing the data is an important step while creating neural network (NN) applications because this step usually has a significant effect on the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 519
SubjectTerms Boolean function complexity
Computer-aided design
Data preprocessing
Feed-forward neural network
Machine learning
Pattern recognition
Title Investigating data preprocessing methods for circuit complexity models
URI https://dx.doi.org/10.1016/j.eswa.2007.09.052
https://www.proquest.com/docview/35990817
Volume 36
WOSCitedRecordID wos000264182800053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZQx4ELMH6I8WP4wK1K5MZJbR8rtGnjME1iiN4sx3FQJ8iqJh0Vfz3PeU7aFDEBEpeocps09fv68p793vcR8i5JXCFs7uv8uIhSmU8jY8EgziaMl6IsmGGt2IS4uJDzuboMRex1KycgqkpuNmr5X00NY2Bs3zr7F-buLwoD8BqMDkcwOxz_yPA7zBnVl7GvAPVEAEtsCPBDKBrd8jCM7WJl14sGK8vdxofkrTZOPVix93TITSB97trhdja-d0oEIMGvjCdBqhE6l_HnuM_4XetWZj_Mt8Faw9aX9e0v21ojXEME-05QZid26EGl4NFUoOxh52KR42QAJfSXWfCX-OjNsHn-F6-OCwzXsau_m8A6qWKGzLd7bNkf_T35W2KiTf0hMT5IRKbkiBzMzk_mH_otJnhfIBEj_obQUYXFf_vf9LuoZe_53QYlV4_Jw5BN0Bmi4JDcc9UT8qhT6qDBcT8lpwNQUA8KOgAFDaCgAAoaQEG3oKAIimfk0-nJ1fuzKChoRJbzSRNxy6dOFqnIC8ijXWEtOPAsTXOlBPx3XZIayc00zUsllCuLtICYiZeeYigpjTX8ORlVN5V7QagtIBYvIfi00qZMSWUSZjOpmON5Vjp3RCbdDGkb6OW9yslX3dURXms_q173VGimNMzqERn35yyRXOXOT2fdxOsQHmLYpwEnd573trOSBt_pN8RM5W7WteYZxGJyIl7-45VfkQe4uehX5F6TUbNauzfkvr1tFvXqOADuJ-NHmdg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+data+preprocessing+methods+for+circuit+complexity+models&rft.jtitle=Expert+systems+with+applications&rft.au=Chandana+Prasad%2C+P.W.&rft.au=Beg%2C+Azam&rft.date=2009&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=36&rft.issue=1&rft.spage=519&rft.epage=526&rft_id=info:doi/10.1016%2Fj.eswa.2007.09.052&rft.externalDocID=S0957417407004691
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon