Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and Algorithm Validation
Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate. Develop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States. We deve...
Saved in:
| Published in: | American journal of respiratory and critical care medicine Vol. 192; no. 10; pp. 1200 - 1207 |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
American Thoracic Society
15.11.2015
|
| Subjects: | |
| ISSN: | 1073-449X, 1535-4970, 1535-4970 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate.
Develop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States.
We developed three algorithms to identify IPF cases in the HealthCore Integrated Research Database. Sensitive and specific algorithms were developed based on literature review and consultation with clinical experts. PPVs were assessed using medical records. A third algorithm used logistic regression modeling to generate an IPF score and was validated using a separate set of medical records. We estimated incidence and prevalence of IPF using the sensitive algorithm corrected for the PPV.
We identified 4,598 patients using the sensitive algorithm and 2,052 patients using the specific algorithm. After medical record review, the PPVs of these algorithms using the treating clinician's diagnosis were 44.4 and 61.7%, respectively. For the IPF score, the PPV was 76.2%. Using the clinical adjudicator's diagnosis, the PPVs were 54 and 57.6%, respectively, and for the IPF score, the PPV was 83.3%. The incidence and period prevalences of IPF, corrected for the PPV, were 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively.
Sensitive algorithms without correction for false positive errors overestimated incidence and prevalence of IPF. An IPF score offered the greatest PPV, but it requires further validation. |
|---|---|
| AbstractList | Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate.
Develop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States.
We developed three algorithms to identify IPF cases in the HealthCore Integrated Research Database. Sensitive and specific algorithms were developed based on literature review and consultation with clinical experts. PPVs were assessed using medical records. A third algorithm used logistic regression modeling to generate an IPF score and was validated using a separate set of medical records. We estimated incidence and prevalence of IPF using the sensitive algorithm corrected for the PPV.
We identified 4,598 patients using the sensitive algorithm and 2,052 patients using the specific algorithm. After medical record review, the PPVs of these algorithms using the treating clinician's diagnosis were 44.4 and 61.7%, respectively. For the IPF score, the PPV was 76.2%. Using the clinical adjudicator's diagnosis, the PPVs were 54 and 57.6%, respectively, and for the IPF score, the PPV was 83.3%. The incidence and period prevalences of IPF, corrected for the PPV, were 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively.
Sensitive algorithms without correction for false positive errors overestimated incidence and prevalence of IPF. An IPF score offered the greatest PPV, but it requires further validation. Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate.RATIONALEEstimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate.Develop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States.OBJECTIVESDevelop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States.We developed three algorithms to identify IPF cases in the HealthCore Integrated Research Database. Sensitive and specific algorithms were developed based on literature review and consultation with clinical experts. PPVs were assessed using medical records. A third algorithm used logistic regression modeling to generate an IPF score and was validated using a separate set of medical records. We estimated incidence and prevalence of IPF using the sensitive algorithm corrected for the PPV.METHODSWe developed three algorithms to identify IPF cases in the HealthCore Integrated Research Database. Sensitive and specific algorithms were developed based on literature review and consultation with clinical experts. PPVs were assessed using medical records. A third algorithm used logistic regression modeling to generate an IPF score and was validated using a separate set of medical records. We estimated incidence and prevalence of IPF using the sensitive algorithm corrected for the PPV.We identified 4,598 patients using the sensitive algorithm and 2,052 patients using the specific algorithm. After medical record review, the PPVs of these algorithms using the treating clinician's diagnosis were 44.4 and 61.7%, respectively. For the IPF score, the PPV was 76.2%. Using the clinical adjudicator's diagnosis, the PPVs were 54 and 57.6%, respectively, and for the IPF score, the PPV was 83.3%. The incidence and period prevalences of IPF, corrected for the PPV, were 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively.MEASUREMENTS AND MAIN RESULTSWe identified 4,598 patients using the sensitive algorithm and 2,052 patients using the specific algorithm. After medical record review, the PPVs of these algorithms using the treating clinician's diagnosis were 44.4 and 61.7%, respectively. For the IPF score, the PPV was 76.2%. Using the clinical adjudicator's diagnosis, the PPVs were 54 and 57.6%, respectively, and for the IPF score, the PPV was 83.3%. The incidence and period prevalences of IPF, corrected for the PPV, were 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively.Sensitive algorithms without correction for false positive errors overestimated incidence and prevalence of IPF. An IPF score offered the greatest PPV, but it requires further validation.CONCLUSIONSSensitive algorithms without correction for false positive errors overestimated incidence and prevalence of IPF. An IPF score offered the greatest PPV, but it requires further validation. |
| Author | Lanes, Stephan Tran, Trung N. Esposito, Daina B. Lederer, David Parker, Joseph Donneyong, Macarius Nathan, Steven D. Lasky, Joseph A. Holick, Crystal N. O’Quinn, Sean |
| Author_xml | – sequence: 1 givenname: Daina B. surname: Esposito fullname: Esposito, Daina B. organization: Safety and Epidemiology, HealthCore, Inc, Andover, Massachusetts – sequence: 2 givenname: Stephan surname: Lanes fullname: Lanes, Stephan organization: Safety and Epidemiology, HealthCore, Inc, Andover, Massachusetts – sequence: 3 givenname: Macarius surname: Donneyong fullname: Donneyong, Macarius organization: Safety and Epidemiology, HealthCore, Inc, Andover, Massachusetts – sequence: 4 givenname: Crystal N. surname: Holick fullname: Holick, Crystal N. organization: Safety and Epidemiology, HealthCore, Inc, Andover, Massachusetts – sequence: 5 givenname: Joseph A. surname: Lasky fullname: Lasky, Joseph A. organization: Pulmonary and Critical Care, Tulane University School of Medicine, New Orleans, Louisiana – sequence: 6 givenname: David surname: Lederer fullname: Lederer, David organization: Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, New York – sequence: 7 givenname: Steven D. surname: Nathan fullname: Nathan, Steven D. organization: Lung Transplant and Advanced Lung Disease Programs, Inova Fairfax Hospital, Falls Church, Virginia – sequence: 8 givenname: Sean surname: O’Quinn fullname: O’Quinn, Sean organization: Patient-Reported Outcomes and – sequence: 9 givenname: Joseph surname: Parker fullname: Parker, Joseph organization: Clinical Development, MedImmune, Gaithersburg, Maryland – sequence: 10 givenname: Trung N. surname: Tran fullname: Tran, Trung N. organization: Observational Research Center, AstraZeneca, Gaithersburg, Maryland; and |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26241562$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1rFTEUxYNU7If-Ay4k4MaF88z3JMvHw-qDQgtacTfcySQ2ZSZ5JpmC_73znOqiC1f3cPmdy-Wcc3QSU3QIvaZkQ6kSH7K104YRKoloiKb6evcMnVHJZSNMS04WTVreCGG-n6LzUu4JoUxT8gKdMsUElYqdocN-COkA9S5YfDOPU4qQf-HL0OdUQsEh4tsYqhvwlwrVFbyda5rguNiNEKaywftow-Cide_xTXYPMK4a4oC344-UQ72b8DcYwwA1pPgSPfcwFvfqcV6g28uPX3efm6vrT_vd9qqxnNPacOCUa2Cu1Vq2WnnolYSWeANeuUFyGITpTS8ZVd4bI7wnljhwnkk7eOAX6N1695DTz9mV2k2hWDeOEF2aS0dbzg0nRqoFffsEvU9zjst3R0ooprUhC_XmkZr7yQ3dIYdpyar7m-UCsBWwS3YlO_8PoaQ7FtYdC-vWwrq1sMWkn5hsqH-CqhnC-D_rbxQVnFw |
| CitedBy_id | crossref_primary_10_1513_AnnalsATS_201807_481OC crossref_primary_10_1186_s12931_022_02143_1 crossref_primary_10_1183_13993003_00907_2016 crossref_primary_10_1016_j_intimp_2024_112048 crossref_primary_10_1097_MOG_0000000000000841 crossref_primary_10_1164_rccm_201508_1636ED crossref_primary_10_1164_rccm_202112_2724OC crossref_primary_10_1016_j_ccm_2019_05_003 crossref_primary_10_3390_life14010156 crossref_primary_10_1016_j_vaccine_2018_10_052 crossref_primary_10_1186_s12890_023_02340_8 crossref_primary_10_1080_20018525_2021_1994178 crossref_primary_10_1164_rccm_202112_2824OC crossref_primary_10_1183_13993003_02355_2022 crossref_primary_10_1513_AnnalsATS_201704_288OC crossref_primary_10_3389_fgene_2022_821029 crossref_primary_10_1183_13993003_00103_2019 crossref_primary_10_5334_aogh_2414 crossref_primary_10_7759_cureus_78319 crossref_primary_10_1186_s12906_022_03637_7 crossref_primary_10_1186_s12931_018_0845_5 crossref_primary_10_1080_20009666_2019_1593779 crossref_primary_10_1038_nrdp_2017_74 crossref_primary_10_1097_MCP_0000000000000370 crossref_primary_10_3390_molecules24152792 crossref_primary_10_1007_s11739_021_02651_w crossref_primary_10_1016_j_semarthrit_2020_04_006 crossref_primary_10_3389_fmed_2022_858339 crossref_primary_10_3892_ijmm_2016_2813 crossref_primary_10_25259_JPATS_27_2022 crossref_primary_10_1007_s41030_019_00108_2 crossref_primary_10_1002_acr_24043 crossref_primary_10_1111_jcmm_70402 crossref_primary_10_1016_j_trsl_2019_04_008 crossref_primary_10_3389_fphar_2022_981604 crossref_primary_10_3904_kjim_2018_449 crossref_primary_10_1186_s12890_025_03836_1 crossref_primary_10_1007_s41030_019_0087_9 crossref_primary_10_1038_s41591_022_02010_y crossref_primary_10_1164_rccm_202211_2092LE crossref_primary_10_1371_journal_pone_0166462 crossref_primary_10_1016_j_gene_2024_148840 crossref_primary_10_1186_s12890_018_0660_2 crossref_primary_10_1111_jsr_12465 crossref_primary_10_1164_rccm_201807_1209PP crossref_primary_10_1159_000504630 crossref_primary_10_3390_jcm10163474 crossref_primary_10_1513_AnnalsATS_202103_295OC crossref_primary_10_1016_j_rmed_2019_04_009 crossref_primary_10_1097_MD_0000000000015779 crossref_primary_10_1016_j_lpm_2020_104023 crossref_primary_10_1016_j_radonc_2020_11_020 crossref_primary_10_1038_s41392_022_01070_3 crossref_primary_10_1186_s12890_017_0426_2 crossref_primary_10_1016_j_apsb_2021_07_023 crossref_primary_10_1007_s00408_019_00270_z crossref_primary_10_1513_AnnalsATS_201703_234ED crossref_primary_10_1186_s12931_021_01791_z crossref_primary_10_1056_NEJMra1705751 crossref_primary_10_1016_j_chest_2020_07_035 crossref_primary_10_1183_13993003_01653_2015 crossref_primary_10_1186_s12931_018_0769_0 crossref_primary_10_1007_s00408_024_00712_3 crossref_primary_10_1016_j_chest_2022_10_011 crossref_primary_10_1177_0897190019841731 crossref_primary_10_1183_16000617_0077_2018 crossref_primary_10_1183_13993003_00957_2022 crossref_primary_10_1183_13993003_02384_2016 crossref_primary_10_1016_j_disamonth_2022_101484 crossref_primary_10_1186_s12931_024_02989_7 crossref_primary_10_1097_MCP_0000000000000509 crossref_primary_10_1016_j_rgmx_2025_03_008 crossref_primary_10_1186_s12967_025_06398_2 crossref_primary_10_1038_s41598_025_98569_w crossref_primary_10_1002_pds_4681 crossref_primary_10_1016_j_autrev_2017_05_008 crossref_primary_10_3390_jcm11236893 crossref_primary_10_1513_AnnalsATS_201808_510OC crossref_primary_10_3390_microorganisms11082038 crossref_primary_10_1016_j_ejrad_2019_108719 crossref_primary_10_1513_AnnalsATS_201610_764OC crossref_primary_10_1186_s12916_015_0495_0 |
| Cites_doi | 10.1097/MAJ.0b013e3181ad5984 10.1136/thx.2006.062836 10.1016/j.rmed.2009.03.001 10.1513/AnnalsATS.201404-145OC 10.1016/S2213-2600(14)70101-8 10.1007/s12016-010-8211-5 10.1136/thorax.57.4.338 10.1164/rccm.200602-163OC 10.1016/j.rmed.2013.09.002 10.1378/chest.09-1002 10.1053/rmed.2002.1466 10.1016/j.rmed.2012.01.002 10.1186/1471-2466-13-53 10.1179/acb.2001.026 10.1111/j.1440-1843.2008.01349.x 10.1016/j.rmed.2012.07.012 10.1164/rccm.200402-147OC 10.1164/rccm.2009-040GL 10.1164/rccm.200701-044OC 10.1164/rccm.200606-833OC 10.1373/clinchem.2007.096529 10.1111/j.1600-6143.2006.01480.x 10.1136/thx.2010.148031 10.1183/09059180.00002512 10.1183/09031936.00005209 |
| ContentType | Journal Article |
| Copyright | Copyright American Thoracic Society Nov 15, 2015 |
| Copyright_xml | – notice: Copyright American Thoracic Society Nov 15, 2015 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AO 8C1 8FI 8FJ 8FK ABUWG AFKRA AN0 BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI 7X8 |
| DOI | 10.1164/rccm.201504-0818OC |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest - Health & Medical Complete保健、医学与药学数据库 ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database ProQuest Central ProQuest One Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest One Academic Eastern Edition British Nursing Index with Full Text ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7RV name: Nursing & Allied Health Database url: https://search.proquest.com/nahs sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1535-4970 |
| EndPage | 1207 |
| ExternalDocumentID | 3871603891 26241562 10_1164_rccm_201504_0818OC |
| Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article General Information |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | --- -~X .55 0R~ 23M 2WC 34G 39C 53G 5GY 5RE 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8FW 8R4 8R5 AAWTL AAYXX ABJNI ABOCM ABPMR ABUWG ACGFO ACGFS ADBBV AENEX AFCHL AFFHD AFKRA AHMBA ALMA_UNASSIGNED_HOLDINGS AN0 BAWUL BENPR BKEYQ BNQBC BPHCQ BVXVI C45 CCPQU CITATION CS3 DIK E3Z EBS EJD EMOBN EX3 F5P FRP FYUFA GX1 H13 HMCUK HZ~ IH2 J5H KQ8 L7B M1P M5~ NAPCQ O9- OBH OFXIZ OGEVE OK1 OVD OVIDX P2P PCD PHGZM PHGZT PJZUB PPXIY PQQKQ PROAC PSQYO Q2X RWL SJN TAE TEORI THO TR2 UKHRP W8F WH7 WOQ WOW X7M XRW YJK ZXP ~02 ALIPV CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK K9. PKEHL PQEST PQUKI 7X8 PUEGO |
| ID | FETCH-LOGICAL-c331t-3a3138a2e7885786fab65a70f9af6ed53ad49b9b5216ff994ff0c0eaef25cdfa3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 94 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365142900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1073-449X 1535-4970 |
| IngestDate | Thu Oct 02 06:35:44 EDT 2025 Mon Oct 06 18:29:09 EDT 2025 Mon Jul 21 05:38:31 EDT 2025 Sat Nov 29 03:20:38 EST 2025 Tue Nov 18 20:54:57 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | epidemiology idiopathic pulmonary fibrosis interstitial lung disease validation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-3a3138a2e7885786fab65a70f9af6ed53ad49b9b5216ff994ff0c0eaef25cdfa3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-General Information-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| PMID | 26241562 |
| PQID | 1734628890 |
| PQPubID | 40575 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_1733930956 proquest_journals_1734628890 pubmed_primary_26241562 crossref_primary_10_1164_rccm_201504_0818OC crossref_citationtrail_10_1164_rccm_201504_0818OC |
| PublicationCentury | 2000 |
| PublicationDate | 2015-11-15 2015-Nov-15 20151115 |
| PublicationDateYYYYMMDD | 2015-11-15 |
| PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | American journal of respiratory and critical care medicine |
| PublicationTitleAlternate | Am J Respir Crit Care Med |
| PublicationYear | 2015 |
| Publisher | American Thoracic Society |
| Publisher_xml | – name: American Thoracic Society |
| References | bib14 bib15 bib12 bib13 bib10 Macansch S (bib8) 2013; 187 bib30 bib29 bib27 bib28 Xaubet A (bib11) 2004; 21 bib25 bib26 bib23 bib24 bib21 bib22 bib20 bib9 bib7 bib5 bib18 bib19 bib3 bib16 bib4 bib17 bib1 bib2 Tinelli C (bib6) 2005; 22 26568236 - Am J Respir Crit Care Med. 2015 Nov 15;192(10):1147-8 |
| References_xml | – ident: bib4 doi: 10.1097/MAJ.0b013e3181ad5984 – ident: bib13 doi: 10.1136/thx.2006.062836 – ident: bib12 doi: 10.1016/j.rmed.2009.03.001 – ident: bib23 doi: 10.1513/AnnalsATS.201404-145OC – ident: bib16 doi: 10.1016/S2213-2600(14)70101-8 – ident: bib1 doi: 10.1007/s12016-010-8211-5 – ident: bib17 doi: 10.1136/thorax.57.4.338 – ident: bib15 doi: 10.1164/rccm.200602-163OC – ident: bib21 doi: 10.1016/j.rmed.2013.09.002 – volume: 22 start-page: S4 year: 2005 ident: bib6 publication-title: Sarcoidosis Vasc Diffuse Lung Dis – ident: bib10 doi: 10.1378/chest.09-1002 – ident: bib26 – ident: bib18 doi: 10.1053/rmed.2002.1466 – ident: bib28 doi: 10.1016/j.rmed.2012.01.002 – ident: bib5 doi: 10.1186/1471-2466-13-53 – ident: bib7 doi: 10.1179/acb.2001.026 – volume: 187 start-page: A1457 year: 2013 ident: bib8 publication-title: Am J Respir Crit Care Med – ident: bib20 doi: 10.1111/j.1440-1843.2008.01349.x – ident: bib14 doi: 10.1016/j.rmed.2012.07.012 – ident: bib24 doi: 10.1164/rccm.200402-147OC – ident: bib2 doi: 10.1164/rccm.2009-040GL – ident: bib19 doi: 10.1164/rccm.200701-044OC – ident: bib30 doi: 10.1164/rccm.200606-833OC – ident: bib27 doi: 10.1373/clinchem.2007.096529 – ident: bib29 doi: 10.1111/j.1600-6143.2006.01480.x – ident: bib25 – ident: bib9 doi: 10.1136/thx.2010.148031 – volume: 21 start-page: 64 year: 2004 ident: bib11 publication-title: Sarcoidosis Vasc Diffuse Lung Dis – ident: bib22 doi: 10.1183/09059180.00002512 – ident: bib3 doi: 10.1183/09031936.00005209 – reference: 26568236 - Am J Respir Crit Care Med. 2015 Nov 15;192(10):1147-8 |
| SSID | ssj0012810 |
| Score | 2.490895 |
| Snippet | Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate.
Develop claims... Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be... |
| SourceID | proquest pubmed crossref |
| SourceType | Aggregation Database Index Database Enrichment Source |
| StartPage | 1200 |
| SubjectTerms | Age Distribution Aged Aged, 80 and over Algorithms Comorbidity Databases, Factual Female Humans Idiopathic Pulmonary Fibrosis - epidemiology Incidence Insurance Claim Review Logistic Models Male Medical Records - statistics & numerical data Middle Aged Predictive Value of Tests Prevalence Reproducibility of Results Retrospective Studies Sex Distribution United States - epidemiology |
| Title | Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and Algorithm Validation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/26241562 https://www.proquest.com/docview/1734628890 https://www.proquest.com/docview/1733930956 |
| Volume | 192 |
| WOSCitedRecordID | wos000365142900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1535-4970 dateEnd: 20190915 omitProxy: false ssIdentifier: ssj0012810 issn: 1073-449X databaseCode: 7X7 dateStart: 20030201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Nursing & Allied Health Database customDbUrl: eissn: 1535-4970 dateEnd: 20190915 omitProxy: false ssIdentifier: ssj0012810 issn: 1073-449X databaseCode: 7RV dateStart: 20030201 isFulltext: true titleUrlDefault: https://search.proquest.com/nahs providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1535-4970 dateEnd: 20190915 omitProxy: false ssIdentifier: ssj0012810 issn: 1073-449X databaseCode: BENPR dateStart: 20030201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1535-4970 dateEnd: 20190915 omitProxy: false ssIdentifier: ssj0012810 issn: 1073-449X databaseCode: 8C1 dateStart: 20030201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYhhCXja9BYUxG4gbRkthxbC6oq1aBBKWaoOotcvwBkbKkNOkk_nv8YrcTh-3CxYoSO7b0nu3f8_N7P4TeAnkVdzgAbk_lEWVwCUBLHWktmChzTchw4Lb4ks9mfLkU83Dg1oVrlds1cViodavgjPwsyQmEUXIRf1z9joA1CryrgUJjDx1ApjKn5wfnF7P55c6PkPKQjyAnEaViuQ2bYfRsrRREojtARCPI6_Zt8u_WdAveHPad6dH_jvgROgyIE4-9ijxG90zzBD34GnzqT9Hqs67agZhY4fmmdq3k-g-eOjO67aoOVw32uBR7XIrHm751MNe9mNSyuuo-YLfGeGrS9xgyQsnaP8tG43H90w2p_3WFFw7we_6mZ-jH9OL75FMUeBgiRUjSR0SShHCZGmcuuwnOrCxZJvPYCmmZ0RmRmopSlA4JMGuFoNbGKjbS2DRT2kpyjPabtjEvEM7ABHUoQ4LdR0vLJVOJ5ImJLVNGpyOUbEVQqJCkHLgy6mIwVhgtQGyFF1vhxTZC73ZtVj5Fx521T7bSKsJ07YobUY3Qm91nN9HAeyIb026GOkQQyNs4Qs-9Ruy6S9lgCKcv7_75K_QQxgKhjEl2gvb79ca8RvfVdV9161O0l18uoFzmQ8ldySfJadDpv7DZ-jg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBiUZN4qwTIyG0Wlh11e3SQ6n2Fhw_2khpsmyyoP4pfiOeOFnEgd564BYljuPYn8cz9sx8AG-QvCqxegB6T8VexNAJQAnlKcUZz2JFabvhdjKL5_NkseBHW_Crj4VBt8peJraCWlUS98j3gphiGGXC_Y_L7x6yRuHpak-h4WBxoC9-WpOt_jD9ZMf3bRhOPh-P972OVcCTlAaNRwUNaCJCbY0_C1dmRMaGIvYNF4ZpNaRCRTzjmV3XmDGcR8b40tdCm3AolRHU1nsNrls5HiNVRLzYGHh4KOWyH8TUiyK-6IN0WLS3khLj3q36FXmYRe7L-O-F8B_abbvKTe7-b_1zD-50-jQZuQlwH7Z0-QBuHnYeAw9hOVV51dIuS3K0LmwrxeqCTPLMdkpek7wkTusmTusmo3VTWSXe3hgXIj-v3xMrQR3x6i7BfFeicNeiVGRUnNouaM7OyYk1Zxw71SP4eiX_-xi2y6rUT4EM0cC2OpRAqzbKTCKYDEQSaN8wqVU4gKAf8lR2KdiRCaRIW1OMRSnCJHUwSR1MBvBu887SJSC5tPROj460E0Z1-gcaA3i9eWzFCJ4NiVJX67YM5RSzUg7giUPg5nMha8388Nnllb-CW_vHh7N0Np0fPIfb2C4M2gyGO7DdrNb6BdyQP5q8Xr1sZw2Bb1cNw9-rCFTh |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvKELBYwEJ4g2ibNOjITQasuKVcuyB6j2ljp-0EhpsmyyoP41fh2eOFnEgd564BYljuPYn8cz9sx8AC-RvCqxegB6T8VexNAJQAnlKcUZz2JFabvhdnIcz-fJcskXO_Crj4VBt8peJraCWlUS98iHQUwxjDLh_tB0bhGLw-n71XcPGaTwpLWn03AQOdIXP635Vr-bHdqxfhWG0w9fJh-9jmHAk5QGjUcFDWgiQm0NQQtdZkTGRiL2DReGaTWiQkU845ld45gxnEfG-NLXQptwJJUR1NZ7Da5jSkEUCvFya-zhAZXLhBBTL4r4sg_YYdFwLSXGwFtVLPIwo9znyd-L4j803XbFm97-n_vqDtzq9GwydhPjLuzo8h7sfeo8Ce7DaqbyqqVjlmSxKWwrxfqCTPPMdlBek7wkThsnThsn401TWeXe3pgUIj-v3xIrWR0h6xuCebBE4a5Fqci4-Ga7oDk7JyfWzHGsVQ_g65X870PYLatS7wMZoeFtdSuB1m6UmUQwGYgk0L5hUqtwAEE__KnsUrMjQ0iRtiYai1KETOogkzrIDOD19p2VS0xyaemDHilpJ6Tq9A9MBvBi-9iKFzwzEqWuNm0ZyilmqxzAI4fG7edC1pr_4ePLK38OexZ96fFsfvQEbmKzMJYzGB3AbrPe6KdwQ_5o8nr9rJ1ABE6vGoW_AbJ2XZ0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Idiopathic+Pulmonary+Fibrosis+in+United+States+Automated+Claims.+Incidence%2C+Prevalence%2C+and+Algorithm+Validation&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Esposito%2C+Daina+B&rft.au=Lanes%2C+Stephan&rft.au=Donneyong%2C+Macarius&rft.au=Holick%2C+Crystal+N&rft.date=2015-11-15&rft.eissn=1535-4970&rft.volume=192&rft.issue=10&rft.spage=1200&rft_id=info:doi/10.1164%2Frccm.201504-0818OC&rft_id=info%3Apmid%2F26241562&rft.externalDocID=26241562 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon |