Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and Algorithm Validation

Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate. Develop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States. We deve...

Full description

Saved in:
Bibliographic Details
Published in:American journal of respiratory and critical care medicine Vol. 192; no. 10; pp. 1200 - 1207
Main Authors: Esposito, Daina B., Lanes, Stephan, Donneyong, Macarius, Holick, Crystal N., Lasky, Joseph A., Lederer, David, Nathan, Steven D., O’Quinn, Sean, Parker, Joseph, Tran, Trung N.
Format: Journal Article
Language:English
Published: United States American Thoracic Society 15.11.2015
Subjects:
ISSN:1073-449X, 1535-4970, 1535-4970
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate. Develop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States. We developed three algorithms to identify IPF cases in the HealthCore Integrated Research Database. Sensitive and specific algorithms were developed based on literature review and consultation with clinical experts. PPVs were assessed using medical records. A third algorithm used logistic regression modeling to generate an IPF score and was validated using a separate set of medical records. We estimated incidence and prevalence of IPF using the sensitive algorithm corrected for the PPV. We identified 4,598 patients using the sensitive algorithm and 2,052 patients using the specific algorithm. After medical record review, the PPVs of these algorithms using the treating clinician's diagnosis were 44.4 and 61.7%, respectively. For the IPF score, the PPV was 76.2%. Using the clinical adjudicator's diagnosis, the PPVs were 54 and 57.6%, respectively, and for the IPF score, the PPV was 83.3%. The incidence and period prevalences of IPF, corrected for the PPV, were 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively. Sensitive algorithms without correction for false positive errors overestimated incidence and prevalence of IPF. An IPF score offered the greatest PPV, but it requires further validation.
AbstractList Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate. Develop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States. We developed three algorithms to identify IPF cases in the HealthCore Integrated Research Database. Sensitive and specific algorithms were developed based on literature review and consultation with clinical experts. PPVs were assessed using medical records. A third algorithm used logistic regression modeling to generate an IPF score and was validated using a separate set of medical records. We estimated incidence and prevalence of IPF using the sensitive algorithm corrected for the PPV. We identified 4,598 patients using the sensitive algorithm and 2,052 patients using the specific algorithm. After medical record review, the PPVs of these algorithms using the treating clinician's diagnosis were 44.4 and 61.7%, respectively. For the IPF score, the PPV was 76.2%. Using the clinical adjudicator's diagnosis, the PPVs were 54 and 57.6%, respectively, and for the IPF score, the PPV was 83.3%. The incidence and period prevalences of IPF, corrected for the PPV, were 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively. Sensitive algorithms without correction for false positive errors overestimated incidence and prevalence of IPF. An IPF score offered the greatest PPV, but it requires further validation.
Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate.RATIONALEEstimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate.Develop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States.OBJECTIVESDevelop claims algorithms to identify IPF and assess their positive predictive value (PPV) to estimate incidence and prevalence in the United States.We developed three algorithms to identify IPF cases in the HealthCore Integrated Research Database. Sensitive and specific algorithms were developed based on literature review and consultation with clinical experts. PPVs were assessed using medical records. A third algorithm used logistic regression modeling to generate an IPF score and was validated using a separate set of medical records. We estimated incidence and prevalence of IPF using the sensitive algorithm corrected for the PPV.METHODSWe developed three algorithms to identify IPF cases in the HealthCore Integrated Research Database. Sensitive and specific algorithms were developed based on literature review and consultation with clinical experts. PPVs were assessed using medical records. A third algorithm used logistic regression modeling to generate an IPF score and was validated using a separate set of medical records. We estimated incidence and prevalence of IPF using the sensitive algorithm corrected for the PPV.We identified 4,598 patients using the sensitive algorithm and 2,052 patients using the specific algorithm. After medical record review, the PPVs of these algorithms using the treating clinician's diagnosis were 44.4 and 61.7%, respectively. For the IPF score, the PPV was 76.2%. Using the clinical adjudicator's diagnosis, the PPVs were 54 and 57.6%, respectively, and for the IPF score, the PPV was 83.3%. The incidence and period prevalences of IPF, corrected for the PPV, were 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively.MEASUREMENTS AND MAIN RESULTSWe identified 4,598 patients using the sensitive algorithm and 2,052 patients using the specific algorithm. After medical record review, the PPVs of these algorithms using the treating clinician's diagnosis were 44.4 and 61.7%, respectively. For the IPF score, the PPV was 76.2%. Using the clinical adjudicator's diagnosis, the PPVs were 54 and 57.6%, respectively, and for the IPF score, the PPV was 83.3%. The incidence and period prevalences of IPF, corrected for the PPV, were 14.6 per 100,000 person-years and 58.7 per 100,000 persons, respectively.Sensitive algorithms without correction for false positive errors overestimated incidence and prevalence of IPF. An IPF score offered the greatest PPV, but it requires further validation.CONCLUSIONSSensitive algorithms without correction for false positive errors overestimated incidence and prevalence of IPF. An IPF score offered the greatest PPV, but it requires further validation.
Author Lanes, Stephan
Tran, Trung N.
Esposito, Daina B.
Lederer, David
Parker, Joseph
Donneyong, Macarius
Nathan, Steven D.
Lasky, Joseph A.
Holick, Crystal N.
O’Quinn, Sean
Author_xml – sequence: 1
  givenname: Daina B.
  surname: Esposito
  fullname: Esposito, Daina B.
  organization: Safety and Epidemiology, HealthCore, Inc, Andover, Massachusetts
– sequence: 2
  givenname: Stephan
  surname: Lanes
  fullname: Lanes, Stephan
  organization: Safety and Epidemiology, HealthCore, Inc, Andover, Massachusetts
– sequence: 3
  givenname: Macarius
  surname: Donneyong
  fullname: Donneyong, Macarius
  organization: Safety and Epidemiology, HealthCore, Inc, Andover, Massachusetts
– sequence: 4
  givenname: Crystal N.
  surname: Holick
  fullname: Holick, Crystal N.
  organization: Safety and Epidemiology, HealthCore, Inc, Andover, Massachusetts
– sequence: 5
  givenname: Joseph A.
  surname: Lasky
  fullname: Lasky, Joseph A.
  organization: Pulmonary and Critical Care, Tulane University School of Medicine, New Orleans, Louisiana
– sequence: 6
  givenname: David
  surname: Lederer
  fullname: Lederer, David
  organization: Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, New York
– sequence: 7
  givenname: Steven D.
  surname: Nathan
  fullname: Nathan, Steven D.
  organization: Lung Transplant and Advanced Lung Disease Programs, Inova Fairfax Hospital, Falls Church, Virginia
– sequence: 8
  givenname: Sean
  surname: O’Quinn
  fullname: O’Quinn, Sean
  organization: Patient-Reported Outcomes and
– sequence: 9
  givenname: Joseph
  surname: Parker
  fullname: Parker, Joseph
  organization: Clinical Development, MedImmune, Gaithersburg, Maryland
– sequence: 10
  givenname: Trung N.
  surname: Tran
  fullname: Tran, Trung N.
  organization: Observational Research Center, AstraZeneca, Gaithersburg, Maryland; and
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26241562$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rFTEUxYNU7If-Ay4k4MaF88z3JMvHw-qDQgtacTfcySQ2ZSZ5JpmC_73znOqiC1f3cPmdy-Wcc3QSU3QIvaZkQ6kSH7K104YRKoloiKb6evcMnVHJZSNMS04WTVreCGG-n6LzUu4JoUxT8gKdMsUElYqdocN-COkA9S5YfDOPU4qQf-HL0OdUQsEh4tsYqhvwlwrVFbyda5rguNiNEKaywftow-Cide_xTXYPMK4a4oC344-UQ72b8DcYwwA1pPgSPfcwFvfqcV6g28uPX3efm6vrT_vd9qqxnNPacOCUa2Cu1Vq2WnnolYSWeANeuUFyGITpTS8ZVd4bI7wnljhwnkk7eOAX6N1695DTz9mV2k2hWDeOEF2aS0dbzg0nRqoFffsEvU9zjst3R0ooprUhC_XmkZr7yQ3dIYdpyar7m-UCsBWwS3YlO_8PoaQ7FtYdC-vWwrq1sMWkn5hsqH-CqhnC-D_rbxQVnFw
CitedBy_id crossref_primary_10_1513_AnnalsATS_201807_481OC
crossref_primary_10_1186_s12931_022_02143_1
crossref_primary_10_1183_13993003_00907_2016
crossref_primary_10_1016_j_intimp_2024_112048
crossref_primary_10_1097_MOG_0000000000000841
crossref_primary_10_1164_rccm_201508_1636ED
crossref_primary_10_1164_rccm_202112_2724OC
crossref_primary_10_1016_j_ccm_2019_05_003
crossref_primary_10_3390_life14010156
crossref_primary_10_1016_j_vaccine_2018_10_052
crossref_primary_10_1186_s12890_023_02340_8
crossref_primary_10_1080_20018525_2021_1994178
crossref_primary_10_1164_rccm_202112_2824OC
crossref_primary_10_1183_13993003_02355_2022
crossref_primary_10_1513_AnnalsATS_201704_288OC
crossref_primary_10_3389_fgene_2022_821029
crossref_primary_10_1183_13993003_00103_2019
crossref_primary_10_5334_aogh_2414
crossref_primary_10_7759_cureus_78319
crossref_primary_10_1186_s12906_022_03637_7
crossref_primary_10_1186_s12931_018_0845_5
crossref_primary_10_1080_20009666_2019_1593779
crossref_primary_10_1038_nrdp_2017_74
crossref_primary_10_1097_MCP_0000000000000370
crossref_primary_10_3390_molecules24152792
crossref_primary_10_1007_s11739_021_02651_w
crossref_primary_10_1016_j_semarthrit_2020_04_006
crossref_primary_10_3389_fmed_2022_858339
crossref_primary_10_3892_ijmm_2016_2813
crossref_primary_10_25259_JPATS_27_2022
crossref_primary_10_1007_s41030_019_00108_2
crossref_primary_10_1002_acr_24043
crossref_primary_10_1111_jcmm_70402
crossref_primary_10_1016_j_trsl_2019_04_008
crossref_primary_10_3389_fphar_2022_981604
crossref_primary_10_3904_kjim_2018_449
crossref_primary_10_1186_s12890_025_03836_1
crossref_primary_10_1007_s41030_019_0087_9
crossref_primary_10_1038_s41591_022_02010_y
crossref_primary_10_1164_rccm_202211_2092LE
crossref_primary_10_1371_journal_pone_0166462
crossref_primary_10_1016_j_gene_2024_148840
crossref_primary_10_1186_s12890_018_0660_2
crossref_primary_10_1111_jsr_12465
crossref_primary_10_1164_rccm_201807_1209PP
crossref_primary_10_1159_000504630
crossref_primary_10_3390_jcm10163474
crossref_primary_10_1513_AnnalsATS_202103_295OC
crossref_primary_10_1016_j_rmed_2019_04_009
crossref_primary_10_1097_MD_0000000000015779
crossref_primary_10_1016_j_lpm_2020_104023
crossref_primary_10_1016_j_radonc_2020_11_020
crossref_primary_10_1038_s41392_022_01070_3
crossref_primary_10_1186_s12890_017_0426_2
crossref_primary_10_1016_j_apsb_2021_07_023
crossref_primary_10_1007_s00408_019_00270_z
crossref_primary_10_1513_AnnalsATS_201703_234ED
crossref_primary_10_1186_s12931_021_01791_z
crossref_primary_10_1056_NEJMra1705751
crossref_primary_10_1016_j_chest_2020_07_035
crossref_primary_10_1183_13993003_01653_2015
crossref_primary_10_1186_s12931_018_0769_0
crossref_primary_10_1007_s00408_024_00712_3
crossref_primary_10_1016_j_chest_2022_10_011
crossref_primary_10_1177_0897190019841731
crossref_primary_10_1183_16000617_0077_2018
crossref_primary_10_1183_13993003_00957_2022
crossref_primary_10_1183_13993003_02384_2016
crossref_primary_10_1016_j_disamonth_2022_101484
crossref_primary_10_1186_s12931_024_02989_7
crossref_primary_10_1097_MCP_0000000000000509
crossref_primary_10_1016_j_rgmx_2025_03_008
crossref_primary_10_1186_s12967_025_06398_2
crossref_primary_10_1038_s41598_025_98569_w
crossref_primary_10_1002_pds_4681
crossref_primary_10_1016_j_autrev_2017_05_008
crossref_primary_10_3390_jcm11236893
crossref_primary_10_1513_AnnalsATS_201808_510OC
crossref_primary_10_3390_microorganisms11082038
crossref_primary_10_1016_j_ejrad_2019_108719
crossref_primary_10_1513_AnnalsATS_201610_764OC
crossref_primary_10_1186_s12916_015_0495_0
Cites_doi 10.1097/MAJ.0b013e3181ad5984
10.1136/thx.2006.062836
10.1016/j.rmed.2009.03.001
10.1513/AnnalsATS.201404-145OC
10.1016/S2213-2600(14)70101-8
10.1007/s12016-010-8211-5
10.1136/thorax.57.4.338
10.1164/rccm.200602-163OC
10.1016/j.rmed.2013.09.002
10.1378/chest.09-1002
10.1053/rmed.2002.1466
10.1016/j.rmed.2012.01.002
10.1186/1471-2466-13-53
10.1179/acb.2001.026
10.1111/j.1440-1843.2008.01349.x
10.1016/j.rmed.2012.07.012
10.1164/rccm.200402-147OC
10.1164/rccm.2009-040GL
10.1164/rccm.200701-044OC
10.1164/rccm.200606-833OC
10.1373/clinchem.2007.096529
10.1111/j.1600-6143.2006.01480.x
10.1136/thx.2010.148031
10.1183/09059180.00002512
10.1183/09031936.00005209
ContentType Journal Article
Copyright Copyright American Thoracic Society Nov 15, 2015
Copyright_xml – notice: Copyright American Thoracic Society Nov 15, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AO
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
7X8
DOI 10.1164/rccm.201504-0818OC
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
ProQuest Central
ProQuest One
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7RV
  name: Nursing & Allied Health Database
  url: https://search.proquest.com/nahs
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1535-4970
EndPage 1207
ExternalDocumentID 3871603891
26241562
10_1164_rccm_201504_0818OC
Genre Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
General Information
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-~X
.55
0R~
23M
2WC
34G
39C
53G
5GY
5RE
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8FW
8R4
8R5
AAWTL
AAYXX
ABJNI
ABOCM
ABPMR
ABUWG
ACGFO
ACGFS
ADBBV
AENEX
AFCHL
AFFHD
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AN0
BAWUL
BENPR
BKEYQ
BNQBC
BPHCQ
BVXVI
C45
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EJD
EMOBN
EX3
F5P
FRP
FYUFA
GX1
H13
HMCUK
HZ~
IH2
J5H
KQ8
L7B
M1P
M5~
NAPCQ
O9-
OBH
OFXIZ
OGEVE
OK1
OVD
OVIDX
P2P
PCD
PHGZM
PHGZT
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
Q2X
RWL
SJN
TAE
TEORI
THO
TR2
UKHRP
W8F
WH7
WOQ
WOW
X7M
XRW
YJK
ZXP
~02
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
7X8
PUEGO
ID FETCH-LOGICAL-c331t-3a3138a2e7885786fab65a70f9af6ed53ad49b9b5216ff994ff0c0eaef25cdfa3
IEDL.DBID BENPR
ISICitedReferencesCount 94
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365142900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1073-449X
1535-4970
IngestDate Thu Oct 02 06:35:44 EDT 2025
Mon Oct 06 18:29:09 EDT 2025
Mon Jul 21 05:38:31 EDT 2025
Sat Nov 29 03:20:38 EST 2025
Tue Nov 18 20:54:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords epidemiology
idiopathic pulmonary fibrosis
interstitial lung disease
validation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-3a3138a2e7885786fab65a70f9af6ed53ad49b9b5216ff994ff0c0eaef25cdfa3
Notes SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 26241562
PQID 1734628890
PQPubID 40575
PageCount 8
ParticipantIDs proquest_miscellaneous_1733930956
proquest_journals_1734628890
pubmed_primary_26241562
crossref_primary_10_1164_rccm_201504_0818OC
crossref_citationtrail_10_1164_rccm_201504_0818OC
PublicationCentury 2000
PublicationDate 2015-11-15
2015-Nov-15
20151115
PublicationDateYYYYMMDD 2015-11-15
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle American journal of respiratory and critical care medicine
PublicationTitleAlternate Am J Respir Crit Care Med
PublicationYear 2015
Publisher American Thoracic Society
Publisher_xml – name: American Thoracic Society
References bib14
bib15
bib12
bib13
bib10
Macansch S (bib8) 2013; 187
bib30
bib29
bib27
bib28
Xaubet A (bib11) 2004; 21
bib25
bib26
bib23
bib24
bib21
bib22
bib20
bib9
bib7
bib5
bib18
bib19
bib3
bib16
bib4
bib17
bib1
bib2
Tinelli C (bib6) 2005; 22
26568236 - Am J Respir Crit Care Med. 2015 Nov 15;192(10):1147-8
References_xml – ident: bib4
  doi: 10.1097/MAJ.0b013e3181ad5984
– ident: bib13
  doi: 10.1136/thx.2006.062836
– ident: bib12
  doi: 10.1016/j.rmed.2009.03.001
– ident: bib23
  doi: 10.1513/AnnalsATS.201404-145OC
– ident: bib16
  doi: 10.1016/S2213-2600(14)70101-8
– ident: bib1
  doi: 10.1007/s12016-010-8211-5
– ident: bib17
  doi: 10.1136/thorax.57.4.338
– ident: bib15
  doi: 10.1164/rccm.200602-163OC
– ident: bib21
  doi: 10.1016/j.rmed.2013.09.002
– volume: 22
  start-page: S4
  year: 2005
  ident: bib6
  publication-title: Sarcoidosis Vasc Diffuse Lung Dis
– ident: bib10
  doi: 10.1378/chest.09-1002
– ident: bib26
– ident: bib18
  doi: 10.1053/rmed.2002.1466
– ident: bib28
  doi: 10.1016/j.rmed.2012.01.002
– ident: bib5
  doi: 10.1186/1471-2466-13-53
– ident: bib7
  doi: 10.1179/acb.2001.026
– volume: 187
  start-page: A1457
  year: 2013
  ident: bib8
  publication-title: Am J Respir Crit Care Med
– ident: bib20
  doi: 10.1111/j.1440-1843.2008.01349.x
– ident: bib14
  doi: 10.1016/j.rmed.2012.07.012
– ident: bib24
  doi: 10.1164/rccm.200402-147OC
– ident: bib2
  doi: 10.1164/rccm.2009-040GL
– ident: bib19
  doi: 10.1164/rccm.200701-044OC
– ident: bib30
  doi: 10.1164/rccm.200606-833OC
– ident: bib27
  doi: 10.1373/clinchem.2007.096529
– ident: bib29
  doi: 10.1111/j.1600-6143.2006.01480.x
– ident: bib25
– ident: bib9
  doi: 10.1136/thx.2010.148031
– volume: 21
  start-page: 64
  year: 2004
  ident: bib11
  publication-title: Sarcoidosis Vasc Diffuse Lung Dis
– ident: bib22
  doi: 10.1183/09059180.00002512
– ident: bib3
  doi: 10.1183/09031936.00005209
– reference: 26568236 - Am J Respir Crit Care Med. 2015 Nov 15;192(10):1147-8
SSID ssj0012810
Score 2.490895
Snippet Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be inaccurate. Develop claims...
Estimates of idiopathic pulmonary fibrosis (IPF) incidence and prevalence from electronic databases without case validation may be...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1200
SubjectTerms Age Distribution
Aged
Aged, 80 and over
Algorithms
Comorbidity
Databases, Factual
Female
Humans
Idiopathic Pulmonary Fibrosis - epidemiology
Incidence
Insurance Claim Review
Logistic Models
Male
Medical Records - statistics & numerical data
Middle Aged
Predictive Value of Tests
Prevalence
Reproducibility of Results
Retrospective Studies
Sex Distribution
United States - epidemiology
Title Idiopathic Pulmonary Fibrosis in United States Automated Claims. Incidence, Prevalence, and Algorithm Validation
URI https://www.ncbi.nlm.nih.gov/pubmed/26241562
https://www.proquest.com/docview/1734628890
https://www.proquest.com/docview/1733930956
Volume 192
WOSCitedRecordID wos000365142900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1535-4970
  dateEnd: 20190915
  omitProxy: false
  ssIdentifier: ssj0012810
  issn: 1073-449X
  databaseCode: 7X7
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Nursing & Allied Health Database
  customDbUrl:
  eissn: 1535-4970
  dateEnd: 20190915
  omitProxy: false
  ssIdentifier: ssj0012810
  issn: 1073-449X
  databaseCode: 7RV
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/nahs
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1535-4970
  dateEnd: 20190915
  omitProxy: false
  ssIdentifier: ssj0012810
  issn: 1073-449X
  databaseCode: BENPR
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1535-4970
  dateEnd: 20190915
  omitProxy: false
  ssIdentifier: ssj0012810
  issn: 1073-449X
  databaseCode: 8C1
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLfYhhCXja9BYUxG4gbRkthxbC6oq1aBBKWaoOotcvwBkbKkNOkk_nv8YrcTh-3CxYoSO7b0nu3f8_N7P4TeAnkVdzgAbk_lEWVwCUBLHWktmChzTchw4Lb4ks9mfLkU83Dg1oVrlds1cViodavgjPwsyQmEUXIRf1z9joA1CryrgUJjDx1ApjKn5wfnF7P55c6PkPKQjyAnEaViuQ2bYfRsrRREojtARCPI6_Zt8u_WdAveHPad6dH_jvgROgyIE4-9ijxG90zzBD34GnzqT9Hqs67agZhY4fmmdq3k-g-eOjO67aoOVw32uBR7XIrHm751MNe9mNSyuuo-YLfGeGrS9xgyQsnaP8tG43H90w2p_3WFFw7we_6mZ-jH9OL75FMUeBgiRUjSR0SShHCZGmcuuwnOrCxZJvPYCmmZ0RmRmopSlA4JMGuFoNbGKjbS2DRT2kpyjPabtjEvEM7ABHUoQ4LdR0vLJVOJ5ImJLVNGpyOUbEVQqJCkHLgy6mIwVhgtQGyFF1vhxTZC73ZtVj5Fx521T7bSKsJ07YobUY3Qm91nN9HAeyIb026GOkQQyNs4Qs-9Ruy6S9lgCKcv7_75K_QQxgKhjEl2gvb79ca8RvfVdV9161O0l18uoFzmQ8ldySfJadDpv7DZ-jg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoAL78dCASPBiUZN4qwTIyG0Wlh11e3SQ6n2Fhw_2khpsmyyoP4pfiOeOFnEgd564BYljuPYn8cz9sx8AG-QvCqxegB6T8VexNAJQAnlKcUZz2JFabvhdjKL5_NkseBHW_Crj4VBt8peJraCWlUS98j3gphiGGXC_Y_L7x6yRuHpak-h4WBxoC9-WpOt_jD9ZMf3bRhOPh-P972OVcCTlAaNRwUNaCJCbY0_C1dmRMaGIvYNF4ZpNaRCRTzjmV3XmDGcR8b40tdCm3AolRHU1nsNrls5HiNVRLzYGHh4KOWyH8TUiyK-6IN0WLS3khLj3q36FXmYRe7L-O-F8B_abbvKTe7-b_1zD-50-jQZuQlwH7Z0-QBuHnYeAw9hOVV51dIuS3K0LmwrxeqCTPLMdkpek7wkTusmTusmo3VTWSXe3hgXIj-v3xMrQR3x6i7BfFeicNeiVGRUnNouaM7OyYk1Zxw71SP4eiX_-xi2y6rUT4EM0cC2OpRAqzbKTCKYDEQSaN8wqVU4gKAf8lR2KdiRCaRIW1OMRSnCJHUwSR1MBvBu887SJSC5tPROj460E0Z1-gcaA3i9eWzFCJ4NiVJX67YM5RSzUg7giUPg5nMha8388Nnllb-CW_vHh7N0Np0fPIfb2C4M2gyGO7DdrNb6BdyQP5q8Xr1sZw2Bb1cNw9-rCFTh
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgiouvKELBYwEJ4g2ibNOjITQasuKVcuyB6j2ljp-0EhpsmyyoP41fh2eOFnEgd564BYljuPYn8cz9sx8AC-RvCqxegB6T8VexNAJQAnlKcUZz2JFabvhdnIcz-fJcskXO_Crj4VBt8peJraCWlUS98iHQUwxjDLh_tB0bhGLw-n71XcPGaTwpLWn03AQOdIXP635Vr-bHdqxfhWG0w9fJh-9jmHAk5QGjUcFDWgiQm0NQQtdZkTGRiL2DReGaTWiQkU845ld45gxnEfG-NLXQptwJJUR1NZ7Da5jSkEUCvFya-zhAZXLhBBTL4r4sg_YYdFwLSXGwFtVLPIwo9znyd-L4j803XbFm97-n_vqDtzq9GwydhPjLuzo8h7sfeo8Ce7DaqbyqqVjlmSxKWwrxfqCTPPMdlBek7wkThsnThsn401TWeXe3pgUIj-v3xIrWR0h6xuCebBE4a5Fqci4-Ga7oDk7JyfWzHGsVQ_g65X870PYLatS7wMZoeFtdSuB1m6UmUQwGYgk0L5hUqtwAEE__KnsUrMjQ0iRtiYai1KETOogkzrIDOD19p2VS0xyaemDHilpJ6Tq9A9MBvBi-9iKFzwzEqWuNm0ZyilmqxzAI4fG7edC1pr_4ePLK38OexZ96fFsfvQEbmKzMJYzGB3AbrPe6KdwQ_5o8nr9rJ1ABE6vGoW_AbJ2XZ0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Idiopathic+Pulmonary+Fibrosis+in+United+States+Automated+Claims.+Incidence%2C+Prevalence%2C+and+Algorithm+Validation&rft.jtitle=American+journal+of+respiratory+and+critical+care+medicine&rft.au=Esposito%2C+Daina+B&rft.au=Lanes%2C+Stephan&rft.au=Donneyong%2C+Macarius&rft.au=Holick%2C+Crystal+N&rft.date=2015-11-15&rft.eissn=1535-4970&rft.volume=192&rft.issue=10&rft.spage=1200&rft_id=info:doi/10.1164%2Frccm.201504-0818OC&rft_id=info%3Apmid%2F26241562&rft.externalDocID=26241562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1073-449X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1073-449X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1073-449X&client=summon