Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm

For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzzy system (ANFIS). Several benchmark methods for op...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water (Basel) Ročník 16; číslo 21; s. 3038
Hlavní autoři: Ikram, Misbah, Liu, Hongbo, Al-Janabi, Ahmed Mohammed Sami, Kisi, Ozgur, Mo, Wang, Ali, Muhammad, Adnan, Rana Muhammad
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2024
Témata:
ISSN:2073-4441, 2073-4441
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzzy system (ANFIS). Several benchmark methods for optimizing ANFIS parameters are compared, which include particle swarm optimization (PSO), gray wolf optimization (GWO), and gradient-based optimization (GBO). The prediction accuracy of the ANFIS-GBO model is evaluated against other models using four statistical measures: root-mean-squared error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE), and coefficient of determination (R2). Test results show that the suggested ANFIS-GBO outperforms the standalone ANFIS, hybrid ANFIS-PSO and ANFIS-GWO methods in daily influent total nitrogen prediction from the sewage treatment plant. The ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO models are evaluated using seven distinct input combinations to predict daily TNinf. The results from both the testing and training periods demonstrate that these models, namely ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO, exhibit the highest level of accuracy for the seventh input combination (Qw, pH, SS, TP, NH3-N, COD, and BOD5). ANFS-GBO-7 reduced the RMSE in the prediction of ANFIS-7, ANFIS-PSO-7, and ANFIS-GWO-7 by 21.77, 10.73, and 6.81%, respectively, in the test stage. Results from testing and training further demonstrate that increasing the number of parameters (NH3-N, COD, and BOD) as input improves the models’ ability to make predictions. The outcomes show that the ANFIS-GBO model can potentially be suggested for the daily prediction of influent total nitrogen (TNinf) in full-scale wastewater treatment plants.
AbstractList For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzzy system (ANFIS). Several benchmark methods for optimizing ANFIS parameters are compared, which include particle swarm optimization (PSO), gray wolf optimization (GWO), and gradient-based optimization (GBO). The prediction accuracy of the ANFIS-GBO model is evaluated against other models using four statistical measures: root-mean-squared error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE), and coefficient of determination (R2). Test results show that the suggested ANFIS-GBO outperforms the standalone ANFIS, hybrid ANFIS-PSO and ANFIS-GWO methods in daily influent total nitrogen prediction from the sewage treatment plant. The ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO models are evaluated using seven distinct input combinations to predict daily TNinf. The results from both the testing and training periods demonstrate that these models, namely ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO, exhibit the highest level of accuracy for the seventh input combination (Qw, pH, SS, TP, NH3-N, COD, and BOD5). ANFS-GBO-7 reduced the RMSE in the prediction of ANFIS-7, ANFIS-PSO-7, and ANFIS-GWO-7 by 21.77, 10.73, and 6.81%, respectively, in the test stage. Results from testing and training further demonstrate that increasing the number of parameters (NH3-N, COD, and BOD) as input improves the models’ ability to make predictions. The outcomes show that the ANFIS-GBO model can potentially be suggested for the daily prediction of influent total nitrogen (TNinf) in full-scale wastewater treatment plants.
For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzzy system (ANFIS). Several benchmark methods for optimizing ANFIS parameters are compared, which include particle swarm optimization (PSO), gray wolf optimization (GWO), and gradient-based optimization (GBO). The prediction accuracy of the ANFIS-GBO model is evaluated against other models using four statistical measures: root-mean-squared error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE), and coefficient of determination (R[sup.2] ). Test results show that the suggested ANFIS-GBO outperforms the standalone ANFIS, hybrid ANFIS-PSO and ANFIS-GWO methods in daily influent total nitrogen prediction from the sewage treatment plant. The ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO models are evaluated using seven distinct input combinations to predict daily TN[sub.inf] . The results from both the testing and training periods demonstrate that these models, namely ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO, exhibit the highest level of accuracy for the seventh input combination (Q[sub.w] , pH, SS, TP, NH[sub.3] -N, COD, and BOD5). ANFS-GBO-7 reduced the RMSE in the prediction of ANFIS-7, ANFIS-PSO-7, and ANFIS-GWO-7 by 21.77, 10.73, and 6.81%, respectively, in the test stage. Results from testing and training further demonstrate that increasing the number of parameters (NH[sub.3] -N, COD, and BOD) as input improves the models’ ability to make predictions. The outcomes show that the ANFIS-GBO model can potentially be suggested for the daily prediction of influent total nitrogen (TN[sub.inf] ) in full-scale wastewater treatment plants.
Audience Academic
Author Al-Janabi, Ahmed Mohammed Sami
Ali, Muhammad
Adnan, Rana Muhammad
Mo, Wang
Kisi, Ozgur
Ikram, Misbah
Liu, Hongbo
Author_xml – sequence: 1
  givenname: Misbah
  surname: Ikram
  fullname: Ikram, Misbah
– sequence: 2
  givenname: Hongbo
  surname: Liu
  fullname: Liu, Hongbo
– sequence: 3
  givenname: Ahmed Mohammed Sami
  orcidid: 0000-0003-2150-6396
  surname: Al-Janabi
  fullname: Al-Janabi, Ahmed Mohammed Sami
– sequence: 4
  givenname: Ozgur
  orcidid: 0000-0001-7847-5872
  surname: Kisi
  fullname: Kisi, Ozgur
– sequence: 5
  givenname: Wang
  orcidid: 0000-0001-8752-6256
  surname: Mo
  fullname: Mo, Wang
– sequence: 6
  givenname: Muhammad
  surname: Ali
  fullname: Ali, Muhammad
– sequence: 7
  givenname: Rana Muhammad
  orcidid: 0000-0002-2650-8123
  surname: Adnan
  fullname: Adnan, Rana Muhammad
BookMark eNptkc1q3DAUhUVJoWmaRd9A0FUXTmRJ9tjLacgfhCTQCV2aa-lqRsGWprLcMLPqO-QZ8mJ5ksiZUEqpBNJFnO_oSucj2XPeISGfc3YkRM2OH_KS54KJ6h3Z52wmMillvvdX_YEcDsM9S0PWVVWwffJ06lbglHVLGldIbwNqq6L1jnpDL53pRnSRLnyEjl7bGPwSHbWO_oAh4gNEDHQREGI_yW47SOvdMLnNNayj_YX0Gsfgs7Nxu91MhhjQKaTfN4nvn38_ngfQNsHZNxhQ05sE9XYLry3Mu6UPNq76T-S9gW7Aw7f9gNydnS5OLrKrm_PLk_lVpoTIY8ZRthprxerCGFlVEqTiqphByzWUFS9My6XShTZ1O-NV-gSAAnnR1qpkNSvEAfmy810H_3PEITb3fgwuXdmInJeslELKpDraqZbQYWOd8TGASlNjb1WKxNh0Pq_yQnJezibgeAeo4IchoGmUja9PTKDtmpw1U37Nn_wS8fUfYh1sD2HzH-0LWkCgCA
CitedBy_id crossref_primary_10_1016_j_wroa_2025_100327
crossref_primary_10_1016_j_psep_2025_107875
crossref_primary_10_3390_app15158360
crossref_primary_10_3390_en18081997
Cites_doi 10.1007/s00521-016-2404-7
10.1007/s00477-021-02111-z
10.5334/dsj-2019-016
10.1109/5.364486
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1016/j.autcon.2018.02.008
10.1007/s00449-017-1752-8
10.1016/j.jhydrol.2019.123962
10.1080/21622515.2021.1913242
10.1007/s10661-018-6878-x
10.3390/agronomy13010098
10.3390/w9020105
10.1007/s00500-016-2474-6
10.3390/w11102060
10.5004/dwt.2021.26903
10.1155/2019/2981282
10.1016/j.procbio.2005.01.012
10.2166/ws.2020.199
10.1016/j.scitotenv.2020.137878
10.1137/1037125
10.1109/21.256541
10.1016/j.jwpe.2020.101388
10.1016/j.jclepro.2018.01.139
10.1016/j.jics.2021.100039
10.1016/j.jwpe.2023.104247
10.1007/s00521-014-1806-7
10.1109/MHS.1995.494215
10.1007/s11269-022-03126-z
10.1007/s11269-020-02756-5
10.1016/j.coesh.2018.03.005
10.1002/ep.12908
10.1109/TSMC.1985.6313399
10.3390/jmse11061163
10.1007/s11053-019-09592-4
10.2166/wst.2021.067
10.1016/j.jhydrol.2019.124435
10.3390/s22020422
10.2166/wst.2017.273
10.1016/j.aej.2012.07.005
10.1016/j.chemosphere.2018.02.111
10.2166/wst.2018.477
10.1016/j.jenvman.2024.120972
10.1016/j.jwpe.2021.102033
10.18201/ijisae.65358
10.1007/s00366-019-00927-6
10.1016/j.psep.2019.11.014
10.1016/j.envsoft.2003.10.005
10.1016/j.envres.2022.113054
10.1016/j.ins.2020.06.037
10.1002/cpe.7017
10.1109/ACCESS.2020.3030820
10.1016/j.biortech.2015.08.017
10.1016/j.jclepro.2017.06.198
10.3808/jei.201200207
10.2166/ws.2021.432
10.1007/s11269-021-02913-4
10.3390/su12166348
10.1016/0165-0114(88)90113-3
10.3390/w14193147
10.1016/j.advengsoft.2013.12.007
10.1016/j.chemosphere.2022.135411
10.1016/j.apm.2011.01.019
10.2166/hydro.2011.114
10.1016/j.camwa.2008.02.006
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.3390/w16213038
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 2073-4441
ExternalDocumentID A815422674
10_3390_w16213038
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 2XV
5VS
7XC
8CJ
8FE
8FH
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BANNL
BCNDV
BENPR
CCPQU
CITATION
D1J
E3Z
ECGQY
EDH
ESTFP
GX1
IAO
ITC
KQ8
MODMG
M~E
OK1
OZF
PHGZM
PHGZT
PIMPY
PROAC
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c331t-2e4bde9c095ff4884a4c2c57ab2da6825fb24cd5df9b728049aa5e25b9c609053
IEDL.DBID BENPR
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001351985300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-4441
IngestDate Mon Jun 30 14:57:53 EDT 2025
Sat Nov 29 10:31:01 EST 2025
Tue Nov 18 22:34:13 EST 2025
Sat Nov 29 07:13:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c331t-2e4bde9c095ff4884a4c2c57ab2da6825fb24cd5df9b728049aa5e25b9c609053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7847-5872
0000-0002-2650-8123
0000-0003-2150-6396
0000-0001-8752-6256
OpenAccessLink https://www.proquest.com/docview/3126064344?pq-origsite=%requestingapplication%
PQID 3126064344
PQPubID 2032318
ParticipantIDs proquest_journals_3126064344
gale_infotracacademiconefile_A815422674
crossref_citationtrail_10_3390_w16213038
crossref_primary_10_3390_w16213038
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Water (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hamed (ref_19) 2004; 19
Bilgen (ref_35) 2015; 196
Mahadeva (ref_37) 2022; 22
Qiao (ref_33) 2023; 56
ref_14
Konakoglu (ref_42) 2022; 34
Wang (ref_7) 2022; 211
ref_57
ref_54
Wang (ref_60) 2019; 18
ref_52
ref_51
Hejabi (ref_24) 2021; 83
Ypma (ref_64) 1995; 37
Dehghani (ref_40) 2021; 35
Chen (ref_13) 2018; 89
Abba (ref_2) 2021; 215
Gao (ref_62) 2019; 2019
Bagherzadeh (ref_29) 2021; 41
Montalvo (ref_55) 2008; 56
Salgot (ref_9) 2018; 2
Pai (ref_32) 2011; 35
(ref_15) 2005; 40
ref_61
Araromi (ref_31) 2018; 190
Jang (ref_50) 1995; 83
Adnan (ref_44) 2022; 36
Ansari (ref_6) 2020; 722
Wang (ref_56) 2018; 22
ref_21
Ahmadi (ref_65) 2017; 76
Karunanidhi (ref_10) 2020; 29
Cheng (ref_26) 2020; 8
Malviya (ref_34) 2021; 10
Jang (ref_49) 1993; 23
ref_28
ref_27
Nourani (ref_46) 2012; 19
Nadiri (ref_25) 2018; 180
Tumer (ref_20) 2015; 3
Vilela (ref_8) 2022; 305
Kisi (ref_53) 2018; 44
Nourani (ref_30) 2018; 78
Saremi (ref_59) 2015; 26
Xia (ref_39) 2022; 36
Tikhamarine (ref_38) 2020; 582
Uslu (ref_1) 2018; 37
Nasr (ref_66) 2012; 51
Gao (ref_12) 2017; 40
Sugeno (ref_47) 1988; 28
Mirjalili (ref_58) 2014; 69
Elkiran (ref_17) 2019; 577
Nourani (ref_45) 2012; 14
Sarkar (ref_36) 2021; 98
Hameed (ref_11) 2017; 28
Mahmoud (ref_3) 2024; 359
Zhao (ref_18) 2020; 133
Himanshu (ref_63) 2021; 37
Fan (ref_16) 2018; 200
Caballero (ref_4) 2017; 164
Takagi (ref_48) 1985; 15
Yaqub (ref_23) 2020; 37
Kadkhodazadeh (ref_43) 2021; 35
Alsulaili (ref_22) 2021; 21
ref_5
Ahmadianfar (ref_41) 2020; 540
References_xml – volume: 28
  start-page: 893
  year: 2017
  ident: ref_11
  article-title: Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-016-2404-7
– volume: 36
  start-page: 999
  year: 2022
  ident: ref_44
  article-title: Development of new machine learning model for streamflow prediction: Case studies in Pakistan
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-021-02111-z
– volume: 18
  start-page: 16
  year: 2019
  ident: ref_60
  article-title: Time series prediction model of grey wolf optimized echo state network
  publication-title: Data Sci. J.
  doi: 10.5334/dsj-2019-016
– volume: 83
  start-page: 378
  year: 1995
  ident: ref_50
  article-title: Neuro-fuzzy modeling and control
  publication-title: Proc. IEEE
  doi: 10.1109/5.364486
– ident: ref_14
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– ident: ref_51
– volume: 89
  start-page: 307
  year: 2018
  ident: ref_13
  article-title: Water quality monitoring in smart city: A pilot project
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.02.008
– volume: 40
  start-page: 877
  year: 2017
  ident: ref_12
  article-title: Simulating a cyclic activated sludge system by employing a modified ASM3 model for wastewater treatment
  publication-title: Bioprocess Biosyst. Eng.
  doi: 10.1007/s00449-017-1752-8
– volume: 577
  start-page: 123962
  year: 2019
  ident: ref_17
  article-title: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123962
– volume: 10
  start-page: 177
  year: 2021
  ident: ref_34
  article-title: Artificial intelligence as an upcoming technology in wastewater treatment: A comprehensive review
  publication-title: Environ. Technol. Rev.
  doi: 10.1080/21622515.2021.1913242
– volume: 190
  start-page: 495
  year: 2018
  ident: ref_31
  article-title: Modeling of an activated sludge process for effluent prediction—A comparative study using ANFIS and GLM regression
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-018-6878-x
– ident: ref_61
  doi: 10.3390/agronomy13010098
– ident: ref_27
  doi: 10.3390/w9020105
– volume: 22
  start-page: 387
  year: 2018
  ident: ref_56
  article-title: Particle swarm optimization algorithm: An overview
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2474-6
– ident: ref_52
  doi: 10.3390/w11102060
– volume: 215
  start-page: 414
  year: 2021
  ident: ref_2
  article-title: Improving novel extreme learning machine using PCA algorithms for multi-parametric modeling of the municipal wastewater treatment plant
  publication-title: Desalin. Water Treat
  doi: 10.5004/dwt.2021.26903
– volume: 2019
  start-page: 2981282
  year: 2019
  ident: ref_62
  article-title: An improved grey wolf optimization algorithm with variable weights
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2019/2981282
– volume: 40
  start-page: 2980
  year: 2005
  ident: ref_15
  article-title: New tool for evaluation of performance of wastewater treatment plant: Artificial neural network
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2005.01.012
– volume: 21
  start-page: 1861
  year: 2021
  ident: ref_22
  article-title: Artificial neural network modeling approach for the prediction of five-day biological oxygen demand and wastewater treatment plant performance
  publication-title: Water Supply
  doi: 10.2166/ws.2020.199
– volume: 722
  start-page: 137878
  year: 2020
  ident: ref_6
  article-title: Optimized fuzzy inference system to enhance prediction accuracy for influent characteristics of a sewage treatment plant
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.137878
– volume: 37
  start-page: 531
  year: 1995
  ident: ref_64
  article-title: Historical development of the Newton–Raphson method
  publication-title: SIAM Rev.
  doi: 10.1137/1037125
– volume: 23
  start-page: 665
  year: 1993
  ident: ref_49
  article-title: ANFIS: Adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/21.256541
– volume: 37
  start-page: 101388
  year: 2020
  ident: ref_23
  article-title: Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2020.101388
– volume: 180
  start-page: 539
  year: 2018
  ident: ref_25
  article-title: Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2018.01.139
– volume: 98
  start-page: 100039
  year: 2021
  ident: ref_36
  article-title: Application of artificial neural network and particle swarm optimization for modelling and optimization of biosorption of lead (II) and nickel (II) from wastewater using dead cyanobacterial biomass
  publication-title: J. Indian Chem. Soc.
  doi: 10.1016/j.jics.2021.100039
– volume: 56
  start-page: 104247
  year: 2023
  ident: ref_33
  article-title: Exploring ANFIS application based on actual data from wastewater treatment plant for predicting effluent removal quality of selected major pollutants
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2023.104247
– volume: 26
  start-page: 1257
  year: 2015
  ident: ref_59
  article-title: Evolutionary population dynamics and grey wolf optimizer
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-014-1806-7
– ident: ref_54
  doi: 10.1109/MHS.1995.494215
– volume: 36
  start-page: 2045
  year: 2022
  ident: ref_39
  article-title: Environmental factors assisted the evaluation of entropy water quality indices with efficient machine learning technique
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-022-03126-z
– volume: 35
  start-page: 1149
  year: 2021
  ident: ref_40
  article-title: Short to long-term forecasting of river flows by heuristic optimization algorithms hybridized with ANFIS
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-020-02756-5
– volume: 2
  start-page: 64
  year: 2018
  ident: ref_9
  article-title: Wastewater treatment and water reuse
  publication-title: Curr. Opin. Environ. Sci. Health
  doi: 10.1016/j.coesh.2018.03.005
– volume: 37
  start-page: 1348
  year: 2018
  ident: ref_1
  article-title: Full scale subsurface flow constructed wetlands for domestic wastewater treatment: 3 years’ experience
  publication-title: Environ. Prog. Sustain. Energy
  doi: 10.1002/ep.12908
– volume: 15
  start-page: 116
  year: 1985
  ident: ref_48
  article-title: Fuzzy identification of systems and its applications to modeling and control
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1985.6313399
– ident: ref_57
  doi: 10.3390/jmse11061163
– volume: 29
  start-page: 2369
  year: 2020
  ident: ref_10
  article-title: Risk of fluoride-rich groundwater on human health: Remediation through managed aquifer recharge in a hard rock terrain, South India
  publication-title: Nat. Resour. Res.
  doi: 10.1007/s11053-019-09592-4
– volume: 83
  start-page: 1633
  year: 2021
  ident: ref_24
  article-title: Evaluation of the effluent quality parameters of wastewater treatment plant based on uncertainty analysis and post-processing approaches (case study)
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2021.067
– volume: 582
  start-page: 124435
  year: 2020
  ident: ref_38
  article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.124435
– ident: ref_5
  doi: 10.3390/s22020422
– volume: 44
  start-page: 303
  year: 2018
  ident: ref_53
  article-title: Three different adaptive neuro fuzzy computing techniques for forecasting long-period daily streamflow
  publication-title: Big Data Eng. Appl.
– volume: 76
  start-page: 909
  year: 2017
  ident: ref_65
  article-title: Multi-criteria analysis of site selection for groundwater recharge with treated municipal wastewater
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2017.273
– volume: 51
  start-page: 37
  year: 2012
  ident: ref_66
  article-title: Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2012.07.005
– volume: 200
  start-page: 330
  year: 2018
  ident: ref_16
  article-title: A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.02.111
– volume: 78
  start-page: 2064
  year: 2018
  ident: ref_30
  article-title: Wastewater treatment plant performance analysis using artificial intelligence—An ensemble approach
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2018.477
– volume: 359
  start-page: 120972
  year: 2024
  ident: ref_3
  article-title: Degradation of levofloxacin using electro coagulation residuals-alginate beads as a novel heterogeneous electro-fenton composite
  publication-title: J. Environ. Manag.
  doi: 10.1016/j.jenvman.2024.120972
– volume: 41
  start-page: 102033
  year: 2021
  ident: ref_29
  article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2021.102033
– volume: 3
  start-page: 131
  year: 2015
  ident: ref_20
  article-title: An artificial neural network model for wastewater treatment plant of Konya
  publication-title: Int. J. Intell. Syst. Appl. Eng.
  doi: 10.18201/ijisae.65358
– volume: 37
  start-page: 2059
  year: 2021
  ident: ref_63
  article-title: Grey wolf optimization approach for searching critical failure surface in soil slopes
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00927-6
– volume: 133
  start-page: 169
  year: 2020
  ident: ref_18
  article-title: Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2019.11.014
– volume: 19
  start-page: 919
  year: 2004
  ident: ref_19
  article-title: Prediction of wastewater treatment plant performance using artificial neural networks
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2003.10.005
– volume: 211
  start-page: 113054
  year: 2022
  ident: ref_7
  article-title: A full-view management method based on artificial neural networks for energy and material-savings in wastewater treatment plants
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2022.113054
– volume: 540
  start-page: 131
  year: 2020
  ident: ref_41
  article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.06.037
– volume: 34
  start-page: e7017
  year: 2022
  ident: ref_42
  article-title: Application of a metaheuristic gradient-based optimizer algorithm integrated into artificial neural network model in a local geoid modeling with global navigation satellite systems/leveling measurements
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.7017
– volume: 8
  start-page: 184475
  year: 2020
  ident: ref_26
  article-title: Forecasting of wastewater treatment plant key features using deep learning-based models: A case study
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030820
– volume: 196
  start-page: 566
  year: 2015
  ident: ref_35
  article-title: An integrated prediction and optimization model of biogas production system at a wastewater treatment facility
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.08.017
– volume: 164
  start-page: 315
  year: 2017
  ident: ref_4
  article-title: Assessing the efficiency of wastewater treatment plants: A double-bootstrap approach
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.06.198
– volume: 19
  start-page: 38
  year: 2012
  ident: ref_46
  article-title: Investigating the Ability of Artificial Neural Network (ANN) Models to Estimate Missing Rain-gauge Data
  publication-title: J. Environ. Inform.
  doi: 10.3808/jei.201200207
– volume: 22
  start-page: 2874
  year: 2022
  ident: ref_37
  article-title: An optimized PSO-ANN model for improved prediction of water treatment desalination plant performance
  publication-title: Water Supply
  doi: 10.2166/ws.2021.432
– volume: 35
  start-page: 3939
  year: 2021
  ident: ref_43
  article-title: A novel LSSVM model integrated with GBO algorithm to assessment of water quality parameters
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-021-02913-4
– ident: ref_21
  doi: 10.3390/su12166348
– volume: 28
  start-page: 15
  year: 1988
  ident: ref_47
  article-title: Structure identification of fuzzy model
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(88)90113-3
– ident: ref_28
  doi: 10.3390/w14193147
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_58
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 305
  start-page: 135411
  year: 2022
  ident: ref_8
  article-title: Dynamic calibration of process-wide partial-nitritation modeling with airlift granular for nitrogen removal in a full-scale wastewater treatment plant
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135411
– volume: 35
  start-page: 3674
  year: 2011
  ident: ref_32
  article-title: Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2011.01.019
– volume: 14
  start-page: 478
  year: 2012
  ident: ref_45
  article-title: Implementation of artificial neural network technique in the simulation of dam breach hydrograph
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2011.114
– volume: 56
  start-page: 769
  year: 2008
  ident: ref_55
  article-title: Particle swarm optimization applied to the design of water supply systems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.02.006
SSID ssj0000498850
Score 2.351985
Snippet For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3038
SubjectTerms Algorithms
Artificial intelligence
Chemical oxygen demand
Efficiency
Effluents
Energy consumption
Environment
Environmental aspects
Environmental impact
Fuzzy algorithms
Fuzzy logic
Fuzzy systems
Generalized linear models
Genetic algorithms
Neural networks
Nitrogen
Optimization algorithms
Pollutants
Public health
Purification
Sewage
Stream flow
Support vector machines
Water quality
Water treatment
Water treatment plants
Title Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm
URI https://www.proquest.com/docview/3126064344
Volume 16
WOSCitedRecordID wos001351985300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-4441
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000498850
  issn: 2073-4441
  databaseCode: PIMPY
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELag5QCq-CkgCgWNEBJcrGYTe5Oc0BbtQg8sEVpEOUX-S7tSm2yzKYieeAeegRfjSZiJvQtIFRcuySF24mjGM5_Hnm8Ye-ZcqlMjK47exXFUCslVliTcitSYoRtEeO2LTaTTaXZ4mBch4LYMxypXNrE31LYxFCPfSwaIvNF9CvFyccapahTtroYSGlfZJjGVoZ5v7o-nxft1lAXxb5bJyFMKJbi-3_syGMZkt7O_HNHl5rj3MZNb_zu62-xmQJcw8upwh11x9Ta78Qfn4Dbb8oE68PlHd9mPcX1MnBv1ESAWhKKlnRuSFjQVHPgSJh3MGgTpMJ13bYMaB_MaPqolxd1QLDBbHVYHKoHUQX8MAUZWLciWQs__wSfnFxdf6YU-vxA8VfrPb99ft_2ps47vo0O18A47nYbkUBidHOFfdsen99iHyXj26g0PtRu4SZJBx2MntHW5QQRXVWgkhBImNjJVOrZqiMvSSsfCWGmrXFOFLJErJV0sdW6GUY6W4T7bqJvaPWBg4simQuhESDQ3Wui8yhKnI5lZ7KnFDnuxEmRpArE51dc4KXGBQzIv1zLfYU_XTReezeOyRs9JG0qa4fgeo0KiAo6GuLLKUYawE1Fril_eXWlDGab-svytCg___fgRux4jQvKJjbtso2vP3WN2zXzu5sv2SdBkvBcHb4tPvwDb8gPE
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VKRIgxE8BUSgwQiC4rOqs17F9QChAQ6O2IYcg2pPx_riN1NrBcanaE-_AM3DloXgSZrx2AKni1gMXX7xrW-tv529n5mPsqbWhCnWQcdQuliMoAp5Gvs-NDLXu2a6H15psIhyNot3deLzEfrS1MJRW2crEWlCbQlOMfN3vouWN6lPKV7PPnFij6HS1pdBwsNiypyfoss1fDt_i_30mxGBj8maTN6wCXPt-t-LCSmVsrNG2yDKEr0ylFjoIUyVM2kOHKVNCahOYLFbE3STjNA2sCFSse17sEUsEivxlSWDvsOXxcGe8t4jq4OgoCjzXwsj3Y2_9pNsTpCeivxTf-eK_1mmDG__batxk1xvrGfoO7rfYks1X2NU_eiqusGsuEAmuvuo2-76RH1BPkXwf0NaFcUknU4RGKDIYOoqWCiYFOiEwmlZlgTsKpjl8TOcUV0TYwaRNxgeieKqgTrOAvklnpCug7m_CB8dnZ6f0QFc_Ca4V_M-v396VdVZdxV-jwWDgPU46aopfoX-4j6taHRzdYR8uZN3usk5e5PYeAy08E0qpfBmgOFVSxVnkW-UFkcGZSq6yFy1wEt00bif-kMMEHTjCWLLA2Cp7shg6c91Kzhv0nNCXkATD5-i0KcTAr6FeYEk_QrMarfIQ37zWoi9pRNs8-Q29-_--_Zhd3pzsbCfbw9HWA3ZFoDXoijjXWKcqj-1Ddkl_qabz8lGzi4B9umio_gJ7nGAN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VKUIgxE8BUSgwQiC4rOKs17F9QCjQBqJCyCGI9mS8P24jtXZwXKr2xDvwDLwEj8OTMOO1A0gVtx64-OJd21p_O_Pt7sx8jD22NlShDjKO3sVyBEXA08j3uZGh1n3b8_Bai02E43G0sxNPVtiPNheGwipbm1gbalNo2iPv-j1k3ug-pexmTVjEZHP4Yv6Zk4IUnbS2choOItv25BiXb4vno03810-EGG5NX73hjcIA177fq7iwUhkba-QZWYZQlqnUQgdhqoRJ-7h4ypSQ2gQmixXpOMk4TQMrAhXrvhd7pBiB5n8VKbkUHbY6Gb2b7C53eLB1FAWeK2fk-7HXPe71BfmM6C8neLYrqP3b8Nr_PDLX2dWGVcPATYMbbMXma-zyH7UW19gVt0EJLu_qJvu-le9TrZF8D5ADw6SkEytCKRQZjJx0SwXTAhcnMJ5VZYEzDWY5fEwXtN-IcIRpG6QPJP1UQR1-AQOTzsmHQF33hA-PTk9P6IEurxJcififX7-9Lutou4q_RCJh4D12OmySYmFwsIejWu0f3mIfzmXcbrNOXuT2DgMtPBNKqXwZoJlVUsVZ5FvlBZHBnkqus2ctiBLdFHQnXZGDBBd2hLdkibd19mjZdO6qmJzV6CkhMSHLhs_RaZOggV9DNcKSQYR0G9l6iG_eaJGYNCZvkfyG4d1_337ILiI-k7ej8fY9dkkgSXS5nRusU5VH9j67oL9Us0X5oJlQwD6dN1J_AVyxaM0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Prediction+of+Influent+Total+Nitrogen+in+Wastewater+Treatment+Plant+Using+Adaptive+Neuro-Fuzzy+Inference+System%E2%80%93Gradient-Based+Optimization+Algorithm&rft.jtitle=Water+%28Basel%29&rft.au=Ikram%2C+Misbah&rft.au=Liu%2C+Hongbo&rft.au=Al-Janabi%2C+Ahmed+Mohammed+Sami&rft.au=Kisi%2C+Ozgur&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=16&rft.issue=21&rft_id=info:doi/10.3390%2Fw16213038&rft.externalDocID=A815422674
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon