Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm
For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzzy system (ANFIS). Several benchmark methods for op...
Gespeichert in:
| Veröffentlicht in: | Water (Basel) Jg. 16; H. 21; S. 3038 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.11.2024
|
| Schlagworte: | |
| ISSN: | 2073-4441, 2073-4441 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzzy system (ANFIS). Several benchmark methods for optimizing ANFIS parameters are compared, which include particle swarm optimization (PSO), gray wolf optimization (GWO), and gradient-based optimization (GBO). The prediction accuracy of the ANFIS-GBO model is evaluated against other models using four statistical measures: root-mean-squared error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE), and coefficient of determination (R2). Test results show that the suggested ANFIS-GBO outperforms the standalone ANFIS, hybrid ANFIS-PSO and ANFIS-GWO methods in daily influent total nitrogen prediction from the sewage treatment plant. The ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO models are evaluated using seven distinct input combinations to predict daily TNinf. The results from both the testing and training periods demonstrate that these models, namely ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO, exhibit the highest level of accuracy for the seventh input combination (Qw, pH, SS, TP, NH3-N, COD, and BOD5). ANFS-GBO-7 reduced the RMSE in the prediction of ANFIS-7, ANFIS-PSO-7, and ANFIS-GWO-7 by 21.77, 10.73, and 6.81%, respectively, in the test stage. Results from testing and training further demonstrate that increasing the number of parameters (NH3-N, COD, and BOD) as input improves the models’ ability to make predictions. The outcomes show that the ANFIS-GBO model can potentially be suggested for the daily prediction of influent total nitrogen (TNinf) in full-scale wastewater treatment plants. |
|---|---|
| AbstractList | For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzzy system (ANFIS). Several benchmark methods for optimizing ANFIS parameters are compared, which include particle swarm optimization (PSO), gray wolf optimization (GWO), and gradient-based optimization (GBO). The prediction accuracy of the ANFIS-GBO model is evaluated against other models using four statistical measures: root-mean-squared error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE), and coefficient of determination (R2). Test results show that the suggested ANFIS-GBO outperforms the standalone ANFIS, hybrid ANFIS-PSO and ANFIS-GWO methods in daily influent total nitrogen prediction from the sewage treatment plant. The ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO models are evaluated using seven distinct input combinations to predict daily TNinf. The results from both the testing and training periods demonstrate that these models, namely ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO, exhibit the highest level of accuracy for the seventh input combination (Qw, pH, SS, TP, NH3-N, COD, and BOD5). ANFS-GBO-7 reduced the RMSE in the prediction of ANFIS-7, ANFIS-PSO-7, and ANFIS-GWO-7 by 21.77, 10.73, and 6.81%, respectively, in the test stage. Results from testing and training further demonstrate that increasing the number of parameters (NH3-N, COD, and BOD) as input improves the models’ ability to make predictions. The outcomes show that the ANFIS-GBO model can potentially be suggested for the daily prediction of influent total nitrogen (TNinf) in full-scale wastewater treatment plants. For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based optimization (GBO) algorithm is employed to adjust the hyper-parameters of an adaptive neuro-fuzzy system (ANFIS). Several benchmark methods for optimizing ANFIS parameters are compared, which include particle swarm optimization (PSO), gray wolf optimization (GWO), and gradient-based optimization (GBO). The prediction accuracy of the ANFIS-GBO model is evaluated against other models using four statistical measures: root-mean-squared error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe efficiency (NSE), and coefficient of determination (R[sup.2] ). Test results show that the suggested ANFIS-GBO outperforms the standalone ANFIS, hybrid ANFIS-PSO and ANFIS-GWO methods in daily influent total nitrogen prediction from the sewage treatment plant. The ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO models are evaluated using seven distinct input combinations to predict daily TN[sub.inf] . The results from both the testing and training periods demonstrate that these models, namely ANFIS, ANFIS-PSO, ANFIS-GWO, and ANFIS-GBO, exhibit the highest level of accuracy for the seventh input combination (Q[sub.w] , pH, SS, TP, NH[sub.3] -N, COD, and BOD5). ANFS-GBO-7 reduced the RMSE in the prediction of ANFIS-7, ANFIS-PSO-7, and ANFIS-GWO-7 by 21.77, 10.73, and 6.81%, respectively, in the test stage. Results from testing and training further demonstrate that increasing the number of parameters (NH[sub.3] -N, COD, and BOD) as input improves the models’ ability to make predictions. The outcomes show that the ANFIS-GBO model can potentially be suggested for the daily prediction of influent total nitrogen (TN[sub.inf] ) in full-scale wastewater treatment plants. |
| Audience | Academic |
| Author | Al-Janabi, Ahmed Mohammed Sami Ali, Muhammad Adnan, Rana Muhammad Mo, Wang Kisi, Ozgur Ikram, Misbah Liu, Hongbo |
| Author_xml | – sequence: 1 givenname: Misbah surname: Ikram fullname: Ikram, Misbah – sequence: 2 givenname: Hongbo surname: Liu fullname: Liu, Hongbo – sequence: 3 givenname: Ahmed Mohammed Sami orcidid: 0000-0003-2150-6396 surname: Al-Janabi fullname: Al-Janabi, Ahmed Mohammed Sami – sequence: 4 givenname: Ozgur orcidid: 0000-0001-7847-5872 surname: Kisi fullname: Kisi, Ozgur – sequence: 5 givenname: Wang orcidid: 0000-0001-8752-6256 surname: Mo fullname: Mo, Wang – sequence: 6 givenname: Muhammad surname: Ali fullname: Ali, Muhammad – sequence: 7 givenname: Rana Muhammad orcidid: 0000-0002-2650-8123 surname: Adnan fullname: Adnan, Rana Muhammad |
| BookMark | eNptkc1q3DAUhUVJoWmaRd9A0FUXTmRJ9tjLacgfhCTQCV2aa-lqRsGWprLcMLPqO-QZ8mJ5ksiZUEqpBNJFnO_oSucj2XPeISGfc3YkRM2OH_KS54KJ6h3Z52wmMillvvdX_YEcDsM9S0PWVVWwffJ06lbglHVLGldIbwNqq6L1jnpDL53pRnSRLnyEjl7bGPwSHbWO_oAh4gNEDHQREGI_yW47SOvdMLnNNayj_YX0Gsfgs7Nxu91MhhjQKaTfN4nvn38_ngfQNsHZNxhQ05sE9XYLry3Mu6UPNq76T-S9gW7Aw7f9gNydnS5OLrKrm_PLk_lVpoTIY8ZRthprxerCGFlVEqTiqphByzWUFS9My6XShTZ1O-NV-gSAAnnR1qpkNSvEAfmy810H_3PEITb3fgwuXdmInJeslELKpDraqZbQYWOd8TGASlNjb1WKxNh0Pq_yQnJezibgeAeo4IchoGmUja9PTKDtmpw1U37Nn_wS8fUfYh1sD2HzH-0LWkCgCA |
| CitedBy_id | crossref_primary_10_1016_j_wroa_2025_100327 crossref_primary_10_1016_j_psep_2025_107875 crossref_primary_10_3390_app15158360 crossref_primary_10_3390_en18081997 |
| Cites_doi | 10.1007/s00521-016-2404-7 10.1007/s00477-021-02111-z 10.5334/dsj-2019-016 10.1109/5.364486 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1016/j.autcon.2018.02.008 10.1007/s00449-017-1752-8 10.1016/j.jhydrol.2019.123962 10.1080/21622515.2021.1913242 10.1007/s10661-018-6878-x 10.3390/agronomy13010098 10.3390/w9020105 10.1007/s00500-016-2474-6 10.3390/w11102060 10.5004/dwt.2021.26903 10.1155/2019/2981282 10.1016/j.procbio.2005.01.012 10.2166/ws.2020.199 10.1016/j.scitotenv.2020.137878 10.1137/1037125 10.1109/21.256541 10.1016/j.jwpe.2020.101388 10.1016/j.jclepro.2018.01.139 10.1016/j.jics.2021.100039 10.1016/j.jwpe.2023.104247 10.1007/s00521-014-1806-7 10.1109/MHS.1995.494215 10.1007/s11269-022-03126-z 10.1007/s11269-020-02756-5 10.1016/j.coesh.2018.03.005 10.1002/ep.12908 10.1109/TSMC.1985.6313399 10.3390/jmse11061163 10.1007/s11053-019-09592-4 10.2166/wst.2021.067 10.1016/j.jhydrol.2019.124435 10.3390/s22020422 10.2166/wst.2017.273 10.1016/j.aej.2012.07.005 10.1016/j.chemosphere.2018.02.111 10.2166/wst.2018.477 10.1016/j.jenvman.2024.120972 10.1016/j.jwpe.2021.102033 10.18201/ijisae.65358 10.1007/s00366-019-00927-6 10.1016/j.psep.2019.11.014 10.1016/j.envsoft.2003.10.005 10.1016/j.envres.2022.113054 10.1016/j.ins.2020.06.037 10.1002/cpe.7017 10.1109/ACCESS.2020.3030820 10.1016/j.biortech.2015.08.017 10.1016/j.jclepro.2017.06.198 10.3808/jei.201200207 10.2166/ws.2021.432 10.1007/s11269-021-02913-4 10.3390/su12166348 10.1016/0165-0114(88)90113-3 10.3390/w14193147 10.1016/j.advengsoft.2013.12.007 10.1016/j.chemosphere.2022.135411 10.1016/j.apm.2011.01.019 10.2166/hydro.2011.114 10.1016/j.camwa.2008.02.006 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.3390/w16213038 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Public Health |
| EISSN | 2073-4441 |
| ExternalDocumentID | A815422674 10_3390_w16213038 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 2XV 5VS 7XC 8CJ 8FE 8FH A8Z AADQD AAFWJ AAHBH AAYXX ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BANNL BCNDV BENPR CCPQU CITATION D1J E3Z ECGQY EDH ESTFP GX1 IAO ITC KQ8 MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c331t-2e4bde9c095ff4884a4c2c57ab2da6825fb24cd5df9b728049aa5e25b9c609053 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001351985300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-4441 |
| IngestDate | Mon Jun 30 14:57:53 EDT 2025 Sat Nov 29 10:31:01 EST 2025 Tue Nov 18 22:34:13 EST 2025 Sat Nov 29 07:13:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c331t-2e4bde9c095ff4884a4c2c57ab2da6825fb24cd5df9b728049aa5e25b9c609053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7847-5872 0000-0002-2650-8123 0000-0003-2150-6396 0000-0001-8752-6256 |
| OpenAccessLink | https://www.proquest.com/docview/3126064344?pq-origsite=%requestingapplication% |
| PQID | 3126064344 |
| PQPubID | 2032318 |
| ParticipantIDs | proquest_journals_3126064344 gale_infotracacademiconefile_A815422674 crossref_citationtrail_10_3390_w16213038 crossref_primary_10_3390_w16213038 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Water (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Hamed (ref_19) 2004; 19 Bilgen (ref_35) 2015; 196 Mahadeva (ref_37) 2022; 22 Qiao (ref_33) 2023; 56 ref_14 Konakoglu (ref_42) 2022; 34 Wang (ref_7) 2022; 211 ref_57 ref_54 Wang (ref_60) 2019; 18 ref_52 ref_51 Hejabi (ref_24) 2021; 83 Ypma (ref_64) 1995; 37 Dehghani (ref_40) 2021; 35 Chen (ref_13) 2018; 89 Abba (ref_2) 2021; 215 Gao (ref_62) 2019; 2019 Bagherzadeh (ref_29) 2021; 41 Montalvo (ref_55) 2008; 56 Salgot (ref_9) 2018; 2 Pai (ref_32) 2011; 35 (ref_15) 2005; 40 ref_61 Araromi (ref_31) 2018; 190 Jang (ref_50) 1995; 83 Adnan (ref_44) 2022; 36 Ansari (ref_6) 2020; 722 Wang (ref_56) 2018; 22 ref_21 Ahmadi (ref_65) 2017; 76 Karunanidhi (ref_10) 2020; 29 Cheng (ref_26) 2020; 8 Malviya (ref_34) 2021; 10 Jang (ref_49) 1993; 23 ref_28 ref_27 Nourani (ref_46) 2012; 19 Nadiri (ref_25) 2018; 180 Tumer (ref_20) 2015; 3 Vilela (ref_8) 2022; 305 Kisi (ref_53) 2018; 44 Nourani (ref_30) 2018; 78 Saremi (ref_59) 2015; 26 Xia (ref_39) 2022; 36 Tikhamarine (ref_38) 2020; 582 Uslu (ref_1) 2018; 37 Nasr (ref_66) 2012; 51 Gao (ref_12) 2017; 40 Sugeno (ref_47) 1988; 28 Mirjalili (ref_58) 2014; 69 Elkiran (ref_17) 2019; 577 Nourani (ref_45) 2012; 14 Sarkar (ref_36) 2021; 98 Hameed (ref_11) 2017; 28 Mahmoud (ref_3) 2024; 359 Zhao (ref_18) 2020; 133 Himanshu (ref_63) 2021; 37 Fan (ref_16) 2018; 200 Caballero (ref_4) 2017; 164 Takagi (ref_48) 1985; 15 Yaqub (ref_23) 2020; 37 Kadkhodazadeh (ref_43) 2021; 35 Alsulaili (ref_22) 2021; 21 ref_5 Ahmadianfar (ref_41) 2020; 540 |
| References_xml | – volume: 28 start-page: 893 year: 2017 ident: ref_11 article-title: Application of artificial intelligence (AI) techniques in water quality index prediction: A case study in tropical region, Malaysia publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2404-7 – volume: 36 start-page: 999 year: 2022 ident: ref_44 article-title: Development of new machine learning model for streamflow prediction: Case studies in Pakistan publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-021-02111-z – volume: 18 start-page: 16 year: 2019 ident: ref_60 article-title: Time series prediction model of grey wolf optimized echo state network publication-title: Data Sci. J. doi: 10.5334/dsj-2019-016 – volume: 83 start-page: 378 year: 1995 ident: ref_50 article-title: Neuro-fuzzy modeling and control publication-title: Proc. IEEE doi: 10.1109/5.364486 – ident: ref_14 doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – ident: ref_51 – volume: 89 start-page: 307 year: 2018 ident: ref_13 article-title: Water quality monitoring in smart city: A pilot project publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.02.008 – volume: 40 start-page: 877 year: 2017 ident: ref_12 article-title: Simulating a cyclic activated sludge system by employing a modified ASM3 model for wastewater treatment publication-title: Bioprocess Biosyst. Eng. doi: 10.1007/s00449-017-1752-8 – volume: 577 start-page: 123962 year: 2019 ident: ref_17 article-title: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.123962 – volume: 10 start-page: 177 year: 2021 ident: ref_34 article-title: Artificial intelligence as an upcoming technology in wastewater treatment: A comprehensive review publication-title: Environ. Technol. Rev. doi: 10.1080/21622515.2021.1913242 – volume: 190 start-page: 495 year: 2018 ident: ref_31 article-title: Modeling of an activated sludge process for effluent prediction—A comparative study using ANFIS and GLM regression publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6878-x – ident: ref_61 doi: 10.3390/agronomy13010098 – ident: ref_27 doi: 10.3390/w9020105 – volume: 22 start-page: 387 year: 2018 ident: ref_56 article-title: Particle swarm optimization algorithm: An overview publication-title: Soft Comput. doi: 10.1007/s00500-016-2474-6 – ident: ref_52 doi: 10.3390/w11102060 – volume: 215 start-page: 414 year: 2021 ident: ref_2 article-title: Improving novel extreme learning machine using PCA algorithms for multi-parametric modeling of the municipal wastewater treatment plant publication-title: Desalin. Water Treat doi: 10.5004/dwt.2021.26903 – volume: 2019 start-page: 2981282 year: 2019 ident: ref_62 article-title: An improved grey wolf optimization algorithm with variable weights publication-title: Comput. Intell. Neurosci. doi: 10.1155/2019/2981282 – volume: 40 start-page: 2980 year: 2005 ident: ref_15 article-title: New tool for evaluation of performance of wastewater treatment plant: Artificial neural network publication-title: Process Biochem. doi: 10.1016/j.procbio.2005.01.012 – volume: 21 start-page: 1861 year: 2021 ident: ref_22 article-title: Artificial neural network modeling approach for the prediction of five-day biological oxygen demand and wastewater treatment plant performance publication-title: Water Supply doi: 10.2166/ws.2020.199 – volume: 722 start-page: 137878 year: 2020 ident: ref_6 article-title: Optimized fuzzy inference system to enhance prediction accuracy for influent characteristics of a sewage treatment plant publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.137878 – volume: 37 start-page: 531 year: 1995 ident: ref_64 article-title: Historical development of the Newton–Raphson method publication-title: SIAM Rev. doi: 10.1137/1037125 – volume: 23 start-page: 665 year: 1993 ident: ref_49 article-title: ANFIS: Adaptive-network-based fuzzy inference system publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/21.256541 – volume: 37 start-page: 101388 year: 2020 ident: ref_23 article-title: Modeling of a full-scale sewage treatment plant to predict the nutrient removal efficiency using a long short-term memory (LSTM) neural network publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2020.101388 – volume: 180 start-page: 539 year: 2018 ident: ref_25 article-title: Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2018.01.139 – volume: 98 start-page: 100039 year: 2021 ident: ref_36 article-title: Application of artificial neural network and particle swarm optimization for modelling and optimization of biosorption of lead (II) and nickel (II) from wastewater using dead cyanobacterial biomass publication-title: J. Indian Chem. Soc. doi: 10.1016/j.jics.2021.100039 – volume: 56 start-page: 104247 year: 2023 ident: ref_33 article-title: Exploring ANFIS application based on actual data from wastewater treatment plant for predicting effluent removal quality of selected major pollutants publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2023.104247 – volume: 26 start-page: 1257 year: 2015 ident: ref_59 article-title: Evolutionary population dynamics and grey wolf optimizer publication-title: Neural Comput. Appl. doi: 10.1007/s00521-014-1806-7 – ident: ref_54 doi: 10.1109/MHS.1995.494215 – volume: 36 start-page: 2045 year: 2022 ident: ref_39 article-title: Environmental factors assisted the evaluation of entropy water quality indices with efficient machine learning technique publication-title: Water Resour. Manag. doi: 10.1007/s11269-022-03126-z – volume: 35 start-page: 1149 year: 2021 ident: ref_40 article-title: Short to long-term forecasting of river flows by heuristic optimization algorithms hybridized with ANFIS publication-title: Water Resour. Manag. doi: 10.1007/s11269-020-02756-5 – volume: 2 start-page: 64 year: 2018 ident: ref_9 article-title: Wastewater treatment and water reuse publication-title: Curr. Opin. Environ. Sci. Health doi: 10.1016/j.coesh.2018.03.005 – volume: 37 start-page: 1348 year: 2018 ident: ref_1 article-title: Full scale subsurface flow constructed wetlands for domestic wastewater treatment: 3 years’ experience publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.12908 – volume: 15 start-page: 116 year: 1985 ident: ref_48 article-title: Fuzzy identification of systems and its applications to modeling and control publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1985.6313399 – ident: ref_57 doi: 10.3390/jmse11061163 – volume: 29 start-page: 2369 year: 2020 ident: ref_10 article-title: Risk of fluoride-rich groundwater on human health: Remediation through managed aquifer recharge in a hard rock terrain, South India publication-title: Nat. Resour. Res. doi: 10.1007/s11053-019-09592-4 – volume: 83 start-page: 1633 year: 2021 ident: ref_24 article-title: Evaluation of the effluent quality parameters of wastewater treatment plant based on uncertainty analysis and post-processing approaches (case study) publication-title: Water Sci. Technol. doi: 10.2166/wst.2021.067 – volume: 582 start-page: 124435 year: 2020 ident: ref_38 article-title: Improving artificial intelligence models accuracy for monthly streamflow forecasting using grey Wolf optimization (GWO) algorithm publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2019.124435 – ident: ref_5 doi: 10.3390/s22020422 – volume: 44 start-page: 303 year: 2018 ident: ref_53 article-title: Three different adaptive neuro fuzzy computing techniques for forecasting long-period daily streamflow publication-title: Big Data Eng. Appl. – volume: 76 start-page: 909 year: 2017 ident: ref_65 article-title: Multi-criteria analysis of site selection for groundwater recharge with treated municipal wastewater publication-title: Water Sci. Technol. doi: 10.2166/wst.2017.273 – volume: 51 start-page: 37 year: 2012 ident: ref_66 article-title: Application of Artificial Neural Network (ANN) for the prediction of EL-AGAMY wastewater treatment plant performance-EGYPT publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2012.07.005 – volume: 200 start-page: 330 year: 2018 ident: ref_16 article-title: A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.02.111 – volume: 78 start-page: 2064 year: 2018 ident: ref_30 article-title: Wastewater treatment plant performance analysis using artificial intelligence—An ensemble approach publication-title: Water Sci. Technol. doi: 10.2166/wst.2018.477 – volume: 359 start-page: 120972 year: 2024 ident: ref_3 article-title: Degradation of levofloxacin using electro coagulation residuals-alginate beads as a novel heterogeneous electro-fenton composite publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2024.120972 – volume: 41 start-page: 102033 year: 2021 ident: ref_29 article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2021.102033 – volume: 3 start-page: 131 year: 2015 ident: ref_20 article-title: An artificial neural network model for wastewater treatment plant of Konya publication-title: Int. J. Intell. Syst. Appl. Eng. doi: 10.18201/ijisae.65358 – volume: 37 start-page: 2059 year: 2021 ident: ref_63 article-title: Grey wolf optimization approach for searching critical failure surface in soil slopes publication-title: Eng. Comput. doi: 10.1007/s00366-019-00927-6 – volume: 133 start-page: 169 year: 2020 ident: ref_18 article-title: Application of artificial intelligence to wastewater treatment: A bibliometric analysis and systematic review of technology, economy, management, and wastewater reuse publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2019.11.014 – volume: 19 start-page: 919 year: 2004 ident: ref_19 article-title: Prediction of wastewater treatment plant performance using artificial neural networks publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2003.10.005 – volume: 211 start-page: 113054 year: 2022 ident: ref_7 article-title: A full-view management method based on artificial neural networks for energy and material-savings in wastewater treatment plants publication-title: Environ. Res. doi: 10.1016/j.envres.2022.113054 – volume: 540 start-page: 131 year: 2020 ident: ref_41 article-title: Gradient-based optimizer: A new metaheuristic optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.06.037 – volume: 34 start-page: e7017 year: 2022 ident: ref_42 article-title: Application of a metaheuristic gradient-based optimizer algorithm integrated into artificial neural network model in a local geoid modeling with global navigation satellite systems/leveling measurements publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.7017 – volume: 8 start-page: 184475 year: 2020 ident: ref_26 article-title: Forecasting of wastewater treatment plant key features using deep learning-based models: A case study publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3030820 – volume: 196 start-page: 566 year: 2015 ident: ref_35 article-title: An integrated prediction and optimization model of biogas production system at a wastewater treatment facility publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.08.017 – volume: 164 start-page: 315 year: 2017 ident: ref_4 article-title: Assessing the efficiency of wastewater treatment plants: A double-bootstrap approach publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.06.198 – volume: 19 start-page: 38 year: 2012 ident: ref_46 article-title: Investigating the Ability of Artificial Neural Network (ANN) Models to Estimate Missing Rain-gauge Data publication-title: J. Environ. Inform. doi: 10.3808/jei.201200207 – volume: 22 start-page: 2874 year: 2022 ident: ref_37 article-title: An optimized PSO-ANN model for improved prediction of water treatment desalination plant performance publication-title: Water Supply doi: 10.2166/ws.2021.432 – volume: 35 start-page: 3939 year: 2021 ident: ref_43 article-title: A novel LSSVM model integrated with GBO algorithm to assessment of water quality parameters publication-title: Water Resour. Manag. doi: 10.1007/s11269-021-02913-4 – ident: ref_21 doi: 10.3390/su12166348 – volume: 28 start-page: 15 year: 1988 ident: ref_47 article-title: Structure identification of fuzzy model publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(88)90113-3 – ident: ref_28 doi: 10.3390/w14193147 – volume: 69 start-page: 46 year: 2014 ident: ref_58 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 305 start-page: 135411 year: 2022 ident: ref_8 article-title: Dynamic calibration of process-wide partial-nitritation modeling with airlift granular for nitrogen removal in a full-scale wastewater treatment plant publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135411 – volume: 35 start-page: 3674 year: 2011 ident: ref_32 article-title: Predicting effluent from the wastewater treatment plant of industrial park based on fuzzy network and influent quality publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2011.01.019 – volume: 14 start-page: 478 year: 2012 ident: ref_45 article-title: Implementation of artificial neural network technique in the simulation of dam breach hydrograph publication-title: J. Hydroinform. doi: 10.2166/hydro.2011.114 – volume: 56 start-page: 769 year: 2008 ident: ref_55 article-title: Particle swarm optimization applied to the design of water supply systems publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.02.006 |
| SSID | ssj0000498850 |
| Score | 2.351985 |
| Snippet | For the accurate estimation of daily influent total nitrogen of sewage plants, a novel hybrid approach is proposed in this study, where a gradient-based... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 3038 |
| SubjectTerms | Algorithms Artificial intelligence Chemical oxygen demand Efficiency Effluents Energy consumption Environment Environmental aspects Environmental impact Fuzzy algorithms Fuzzy logic Fuzzy systems Generalized linear models Genetic algorithms Neural networks Nitrogen Optimization algorithms Pollutants Public health Purification Sewage Stream flow Support vector machines Water quality Water treatment Water treatment plants |
| Title | Enhancing the Prediction of Influent Total Nitrogen in Wastewater Treatment Plant Using Adaptive Neuro-Fuzzy Inference System–Gradient-Based Optimization Algorithm |
| URI | https://www.proquest.com/docview/3126064344 |
| Volume | 16 |
| WOSCitedRecordID | wos001351985300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-4441 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000498850 issn: 2073-4441 databaseCode: PIMPY dateStart: 20090101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELag5QBC_BQQCwWNEBJcrK4dJ-uc0BbtQg8sEVpEOUWOY7crtcmSTUH0xDvwDLwYT8JM4l1AqrhwyiGO5WjGM5_HM98w9jTxzhFRHbdDo7mSXvFUxyk3wrhUKJ8kdtg1mxjNZvrwMM1CwG0V0irXNrEz1GVtKUa-FwlE3ug-lXqx_MSpaxTdroYWGpfZNjGVoZ5v709m2btNlAXxr9bxsKcUivB8v_dFJJLstv7LEV1sjjsfM735v6u7xW4EdAnjXh1us0uu2mHX_uAc3GHX-0Ad9PVHd9iPSXVMnBvVESAWhKyhmxuSFtQeDvoWJi3MawTpMFu0TY0aB4sKPpgVxd1QLDBfJ6sDtUBqoUtDgHFplmRLoeP_4NOz8_OvNGFfXwg9VfrPb99fNV3WWcv30aGW8BY_Og3FoTA-OcK_bI9P77L308n85WseejdwG0Wi5dKponSpRQTnPRoJZZSVNh6ZQpYmwWOpL6SyZVz6tKAOWSo1JnYyLlKbDFO0DPfYVlVX7j4DYqR3eNCLZGSVdkJb4aNYCWESqX05GrDna0HmNhCbU3-NkxwPOCTzfCPzAXuyGbrs2TwuGvSMtCGnHY7zWBMKFXA1xJWVjzXCTkStIzVgu2ttyMPWX-W_VeHBv18_ZFclIqS-sHGXbbXNmXvErtjP7WLVPA6ajM_s4E328RdoQQMJ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFLWqKRKgikcBdaCAhUCwsZo4TsZZIDRAh47aDrMYRLsKjmO3I7XJkEmp2hX_wDew5aP4Eu6NkwGkil0XrONYkXN8H_a95xDyNLLGIFEd056STHArWCzDmClfmdgXNoq0V4tN9EYjubcXj5fIj7YXBssqW5tYG-qs0HhGvhH4EHmD-xTi1ewzQ9UovF1tJTQcLLbN2SmkbPOXw7fwf59xPticvNlijaoA00HgV4wbkWYm1hBbWAvwFUporsOeSnmmIkiYbMqFzsLMxilqN4lYqdDwMI115MUeqkSAyV8WCPYOWR4Pd8f7i1MdGC1l6DkKoyCIvY1TP-LoJ-Rfju9i81_7tMHN_201bpEbTfRM-w7ut8mSyVfJ9T84FVfJijuIpK6_6g75vpkfIqdIfkAh1qXjEm-mEI20sHToJFoqOikgCaGjaVUWsKPoNKcf1RzPFQF2dNIW41OUeKpoXWZB-5maoa-gNb8JG5ycn5_hhK5_kjoq-J9fv70r66q6ir2GgCGj7-Gl46b5lfaPDmBVq8Pju-TDpazbPdLJi9ysEYqM-wYS2YAHWkjjS-3bIBS-ryIubdbrkhctcBLdELejfshRAgkcYixZYKxLniyGzhxbyUWDniP6ErRgMI9WTSMGfA1ygSV9CWE1ROU90SXrLfqSxrTNk9_Qu__vx4_J1a3J7k6yMxxtPyDXOESDrolznXSq8sQ8JFf0l2o6Lx81u4iST5cN1V90319S |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF5VKUKgip8CaqDACoHgsoq9XjvrA0KBNhAVQg5BtCezXu-2kVo7OC5Ve-IdeAZegsfhSZjx2gGkilsPnLOxos23M9-sZ76PkMeRNQaF6pj2lGSCW8FiGcZM-crEvrBRpL3abKI_Hsvd3XiyQn60szDYVtnGxDpQZ4XGO_Je4APzhvQpRM82bRGTreGL-WeGDlL4prW103AQ2TGnJ1C-LZ6PtuC_fsL5cHv66g1rHAaYDgK_YtyINDOxBp5hLUBZKKG5Dvsq5ZmKoHiyKRc6CzMbp-jjJGKlQsPDNNaRF3voGAHhfxUoueAdsjoZvZvsLW94YLWUoefkjIIg9nonfsQxZ8i_kuD5qaDOb8Pr__PO3CDXGlZNB-4Y3CQrJl8nV__QWlwna-6Ckrq5q1vk-3Z-gFoj-T4FDkwnJb6xQpTSwtKRs26p6LSA4oSOZ1VZwEmjs5x-VAu8bwQ40mnbpE_R-qmidfsFHWRqjjmE1ronbHh8dnaKD3RzldRJxP_8-u11WXfbVewlEImMvocvHTVDsXRwuA-7Wh0c3SYfLmTf7pBOXuRmg1BU4jdQ4AY80EIaX2rfBqHwfRVxabN-lzxrQZToRtAdfUUOEyjsEG_JEm9d8mi5dO5UTM5b9BSRmGBkg-do1QxowK9BjbBkIIFuA1vviy7ZbJGYNCFvkfyG4d1_f_yQXAZ8Jm9H45175AoHkuhmOzdJpyqPzX1ySX-pZovyQXOgKPl00Uj9BU7_aBI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+the+Prediction+of+Influent+Total+Nitrogen+in+Wastewater+Treatment+Plant+Using+Adaptive+Neuro-Fuzzy+Inference+System%E2%80%93Gradient-Based+Optimization+Algorithm&rft.jtitle=Water+%28Basel%29&rft.au=Ikram%2C+Misbah&rft.au=Liu%2C+Hongbo&rft.au=Al-Janabi%2C+Ahmed+Mohammed+Sami&rft.au=Kisi%2C+Ozgur&rft.date=2024-11-01&rft.pub=MDPI+AG&rft.issn=2073-4441&rft.eissn=2073-4441&rft.volume=16&rft.issue=21&rft_id=info:doi/10.3390%2Fw16213038&rft.externalDocID=A815422674 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4441&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4441&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4441&client=summon |