An algorithm to cluster data for efficient classification of support vector machines
Support vector machines (SVM) are widely applied to various classification problems. However, most SVM need lengthy computation time when faced with a large and complicated dataset. This research develops a clustering algorithm for efficient learning. The method mainly categorizes data into clusters...
Uloženo v:
| Vydáno v: | Expert systems with applications Ročník 34; číslo 3; s. 2013 - 2018 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.04.2008
|
| Témata: | |
| ISSN: | 0957-4174, 1873-6793 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Support vector machines (SVM) are widely applied to various classification problems. However, most SVM need lengthy computation time when faced with a large and complicated dataset. This research develops a clustering algorithm for efficient learning. The method mainly categorizes data into clusters, and finds critical data in clusters as a substitute for the original data to reduce the computational complexity. The computational experiments presented in this paper show that the clustering algorithm significantly advances SVM learning efficiency. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0957-4174 1873-6793 |
| DOI: | 10.1016/j.eswa.2007.02.016 |