An algorithm to cluster data for efficient classification of support vector machines

Support vector machines (SVM) are widely applied to various classification problems. However, most SVM need lengthy computation time when faced with a large and complicated dataset. This research develops a clustering algorithm for efficient learning. The method mainly categorizes data into clusters...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 34; číslo 3; s. 2013 - 2018
Hlavní autori: Li, Der-Chiang, Fang, Yao-Hwei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.04.2008
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Support vector machines (SVM) are widely applied to various classification problems. However, most SVM need lengthy computation time when faced with a large and complicated dataset. This research develops a clustering algorithm for efficient learning. The method mainly categorizes data into clusters, and finds critical data in clusters as a substitute for the original data to reduce the computational complexity. The computational experiments presented in this paper show that the clustering algorithm significantly advances SVM learning efficiency.
Bibliografia:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0957-4174
1873-6793
DOI:10.1016/j.eswa.2007.02.016