Convolutional sparse coding for demosaicking with panchromatic pixels

Image demosaicking is the problem of reconstructing color images from raw images captured by a digital camera covered by a Color Filter Array (CFA). CFAs allow only part of the incident light to transmit, so they will lose some incident light. Recently, CFAs with panchromatic pixels are used to avoi...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing. Image communication Vol. 77; pp. 20 - 27
Main Authors: Bai, Chenyan, Li, Jia
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.09.2019
Elsevier BV
Subjects:
ISSN:0923-5965, 1879-2677
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image demosaicking is the problem of reconstructing color images from raw images captured by a digital camera covered by a Color Filter Array (CFA). CFAs allow only part of the incident light to transmit, so they will lose some incident light. Recently, CFAs with panchromatic pixels are used to avoid excessive loss of light. These CFAs’ color is sampled at a sparse set of locations, making demosaicking more challenging. In this paper, we propose a Convolutional Sparse Coding based method for Demosaicking (CSCD) with panchromatic pixels. The CSCD learns a set of filters to decompose training images into color sparse feature maps, then it estimates a set of feature maps of the to-be-reconstructed raw images and gets color images. Convolutional Sparse Coding (CSC) commonly operates on gray images. Naively extending CSC to color images will make the learned filters to be gray, which means that the values of the red, green, and blue channels are almost equal. To address this issue, we add a regularization term to penalize gray filters. We use the Alternating Direction Method of Multipliers (ADMM) to solve the CSCD. We compare the proposed CSCD with the demosaicking methods that are applicable to CFAs with panchromatic pixels. Experimental results validate its advantages in terms of CPSNR and visual quality. •A convolutional sparse coding method for demosaicking panchromatic pixels is proposed•A regularization term to penalize gray filters is added•Colored filters facilitate the reconstruction of color images
AbstractList Image demosaicking is the problem of reconstructing color images from raw images captured by a digital camera covered by a Color Filter Array (CFA). CFAs allow only part of the incident light to transmit, so they will lose some incident light. Recently, CFAs with panchromatic pixels are used to avoid excessive loss of light. These CFAs’ color is sampled at a sparse set of locations, making demosaicking more challenging. In this paper, we propose a Convolutional Sparse Coding based method for Demosaicking (CSCD) with panchromatic pixels. The CSCD learns a set of filters to decompose training images into color sparse feature maps, then it estimates a set of feature maps of the to-be-reconstructed raw images and gets color images. Convolutional Sparse Coding (CSC) commonly operates on gray images. Naively extending CSC to color images will make the learned filters to be gray, which means that the values of the red, green, and blue channels are almost equal. To address this issue, we add a regularization term to penalize gray filters. We use the Alternating Direction Method of Multipliers (ADMM) to solve the CSCD. We compare the proposed CSCD with the demosaicking methods that are applicable to CFAs with panchromatic pixels. Experimental results validate its advantages in terms of CPSNR and visual quality. •A convolutional sparse coding method for demosaicking panchromatic pixels is proposed•A regularization term to penalize gray filters is added•Colored filters facilitate the reconstruction of color images
Image demosaicking is the problem of reconstructing color images from raw images captured by a digital camera covered by a Color Filter Array (CFA). CFAs allow only part of the incident light to transmit, so they will lose some incident light. Recently, CFAs with panchromatic pixels are used to avoid excessive loss of light. These CFAs' color is sampled at a sparse set of locations, making demosaicking more challenging. In this paper, we propose a Convolutional Sparse Coding based method for Demosaicking (CSCD) with panchromatic pixels. The CSCD learns a set of filters to decompose training images into color sparse feature maps, then it estimates a set of feature maps of the to-be-reconstructed raw images and gets color images. Convolutional Sparse Coding (CSC) commonly operates on gray images. Naively extending CSC to color images will make the learned filters to be gray, which means that the values of the red, green, and blue channels are almost equal. To address this issue, we add a regularization term to penalize gray filters. We use the Alternating Direction Method of Multipliers (ADMM) to solve the CSCD. We compare the proposed CSCD with the demosaicking methods that are applicable to CFAs with panchromatic pixels. Experimental results validate its advantages in terms of CPSNR and visual quality.
Author Bai, Chenyan
Li, Jia
Author_xml – sequence: 1
  givenname: Chenyan
  surname: Bai
  fullname: Bai, Chenyan
  email: cybai@cnu.edu.cn
  organization: College of Information Engineering, Capital Normal University, Beijing, PR China
– sequence: 2
  givenname: Jia
  surname: Li
  fullname: Li, Jia
  organization: Key Laboratory of Machine Perception (MOE), School of Electronics Engineering and Computer Science, Peking University, Beijing, PR China
BookMark eNqFkD1PwzAURS1UJNrCL2CJxJxgO7YTDwyoKh9SJRaYLccfrUsaB9st8O9JKBMDTE96uufqvTMDk853BoBLBAsEEbveFm4n16bAEPEC0gKi-gRMUV3xHLOqmoAp5LjMKWf0DMxi3EIIMYF8CpYL3x18u0_Od7LNYi9DNJny2nXrzPqQabPzUTr1Oi7eXdpkvezUJvidTE5lvfswbTwHp1a20Vz8zDl4uVs-Lx7y1dP94-J2lauyRCnHJedEEyKVREQrJK1C1DSkYbKqG8QbXTFWa8ys0dqS2liqOZVWc6kILnU5B1fH3j74t72JSWz9PgyHR4ExZQhDXtdDih9TKvgYg7FCuSTHD1OQrhUIitGa2Ipva2K0JiAVg7WBLX-xfRhS4fMf6uZIDS7MwZkgonKmU0a7YFQS2rs_-S_QHot1
CitedBy_id crossref_primary_10_1016_j_image_2023_117003
crossref_primary_10_1016_j_image_2024_117135
crossref_primary_10_1145_3592438
crossref_primary_10_1016_j_patcog_2024_110929
crossref_primary_10_1109_ACCESS_2023_3341041
crossref_primary_10_1109_TIP_2023_3286253
Cites_doi 10.1016/j.image.2011.04.003
10.1109/MSP.2005.1407714
10.1109/TIP.2018.2803341
10.1109/TIP.2017.2679440
10.1109/TIP.2015.2495260
10.1109/TCE.2005.1561853
10.1007/s10994-014-5469-5
10.1109/TED.2009.2030630
10.1109/TIP.2016.2633869
10.1109/LSP.2005.859503
10.1109/TIP.2008.2002164
10.1109/TIP.2011.2107524
10.1016/j.neucom.2011.12.025
10.1109/TIP.2015.2409569
10.1117/1.JEI.27.4.043047
10.1109/TIP.2004.838691
10.1109/TIP.2007.911828
10.1109/TIP.2018.2842152
10.1109/TIP.2003.816004
10.1109/TIP.2010.2077642
10.1109/TIP.2013.2244215
10.1109/TIP.2017.2781303
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Sep 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Sep 2019
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.image.2019.05.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1879-2677
EndPage 27
ExternalDocumentID 10_1016_j_image_2019_05_018
S0923596519300906
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c331t-23994d44aca14dc1afc15eb4b6a78b19bd7668d26feddf48ef5d95afd9ac423d3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000473840100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0923-5965
IngestDate Wed Aug 13 04:22:26 EDT 2025
Tue Nov 18 22:12:02 EST 2025
Sat Nov 29 07:15:49 EST 2025
Fri Feb 23 02:28:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convolutional sparse coding (CSC)
Panchromatic pixels
Demosaicking
Color filter array (CFA)
Alternating direction method of multipliers (ADMM)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-23994d44aca14dc1afc15eb4b6a78b19bd7668d26feddf48ef5d95afd9ac423d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2256120988
PQPubID 2045400
PageCount 8
ParticipantIDs proquest_journals_2256120988
crossref_citationtrail_10_1016_j_image_2019_05_018
crossref_primary_10_1016_j_image_2019_05_018
elsevier_sciencedirect_doi_10_1016_j_image_2019_05_018
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Signal processing. Image communication
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Li, Gunturk, Zhang (b8) 2008
Bai, Li, Lin, Yu, Chen (b11) 2015; 24
Tan, Chen, Hua (b26) 2018; 27
Hu, Heide, Dai, Wetzstein (b37) 2018; 27
Leung, Jeon, Dubois (b22) 2011; 20
Zeiler, Krishnan, Taylor, Fergus (b29) 2010
Zhang, Tao (b25) 2014
Gu, Zuo, Xie, Meng (b35) 2015
L. Shi, B. Funt, Re-processed version of the gehler color constancy dataset of 568 images, Simon Fraser University.
Kan, Ding, Li (b12) 2015; 39
Kiku, Monno, Tanaka, Okutomi (b23) 2013
Gehler, Rother, Blake, Minka, Sharp (b42) 2008
Rehman, Shao (b10) 2012; 83
Kokkinos, Lefkimmiatis (b27) 2018
Hirakawa, Parks (b47) 2005; 14
Menon, Calvagno (b9) 2011; 26
Least-Squares Luma-Chroma Demultiplexing Algorithm, URL
Gunturk, Glotzbach, Altunbasak, Schafer, Mersereau (b7) 2005; 22
Lu, Tan (b46) 2003; 12
B.E. Bayer, Color imaging array, U.S. Patent 3,971,065, 1976.
Hirakawa, Wolfe (b3) 2008; 17
Choudhury, Swanson, Heide, Wetzstein, Heidrich (b32) 2017
Bai, Li, Lin (b28) 2018; 27
Kumar, Morales, Adams Jr, Hao (b14) 2009
2018.
Bristow, Eriksson, Lucey (b30) 2013
2011.
J. Wang, L. Zhao, L. Wu, Multi-convex Inequality-constrained Alternating Direction Method of Multipliers
Dubois (b19) 2005; 12
Rethinking Color Cameras, URL
Heide, Heidrich, Wetzstein (b31) 2015
J.T. Compton, J.F. Hamilton Jr, Image sensor with improved light sensitivity, U.S. Patent 20,070,024,931, 2017.
Lin, Liu, Li (b39) 2015; 99
Honda, Iida, Egawa, Seki (b15) 2009; 56
2015.
Wohlberg (b36) 2015; 25
2019.
Li, Bai, Lin, Yu (b13) 2017; 26
Moghadam, Aghagolzadeh, Kumar, Radha (b24) 2013; 22
Lukac, Plataniotis (b2) 2005; 51
Hao, Li, Lin, Dubois (b4) 2011; 20
Cai, Candès, Shen (b40) 2010; 20
Papyan, Romano, Elad (b33) 2017; 18
Li, Bai, Lin, Yu (b6) 2017; 26
Wang, Yao, Kwok, Ni (b34) 2018; 27
Chakrabarti, Freeman, Zickler (b16) 2014
Bai, Li, Lin, Yu (b5) 2016; 25
Mairal, Bach, Ponce, Sapiro, Zisserman (b21) 2009
Mairal, Elad, Sapiro (b20) 2008; 17
Peak Signal to Noise Ratio, URL
Wang, Zhang, Hao (b18) 2011
Li (10.1016/j.image.2019.05.018_b13) 2017; 26
Wang (10.1016/j.image.2019.05.018_b18) 2011
Cai (10.1016/j.image.2019.05.018_b40) 2010; 20
Gehler (10.1016/j.image.2019.05.018_b42) 2008
Bai (10.1016/j.image.2019.05.018_b28) 2018; 27
Heide (10.1016/j.image.2019.05.018_b31) 2015
Gu (10.1016/j.image.2019.05.018_b35) 2015
Mairal (10.1016/j.image.2019.05.018_b20) 2008; 17
Kokkinos (10.1016/j.image.2019.05.018_b27) 2018
Papyan (10.1016/j.image.2019.05.018_b33) 2017; 18
10.1016/j.image.2019.05.018_b17
Hao (10.1016/j.image.2019.05.018_b4) 2011; 20
10.1016/j.image.2019.05.018_b38
Zhang (10.1016/j.image.2019.05.018_b25) 2014
Honda (10.1016/j.image.2019.05.018_b15) 2009; 56
Dubois (10.1016/j.image.2019.05.018_b19) 2005; 12
Kiku (10.1016/j.image.2019.05.018_b23) 2013
Bristow (10.1016/j.image.2019.05.018_b30) 2013
Rehman (10.1016/j.image.2019.05.018_b10) 2012; 83
Hu (10.1016/j.image.2019.05.018_b37) 2018; 27
Lu (10.1016/j.image.2019.05.018_b46) 2003; 12
Li (10.1016/j.image.2019.05.018_b6) 2017; 26
Chakrabarti (10.1016/j.image.2019.05.018_b16) 2014
Wohlberg (10.1016/j.image.2019.05.018_b36) 2015; 25
Hirakawa (10.1016/j.image.2019.05.018_b47) 2005; 14
Choudhury (10.1016/j.image.2019.05.018_b32) 2017
Wang (10.1016/j.image.2019.05.018_b34) 2018; 27
Lin (10.1016/j.image.2019.05.018_b39) 2015; 99
Menon (10.1016/j.image.2019.05.018_b9) 2011; 26
Bai (10.1016/j.image.2019.05.018_b11) 2015; 24
Kan (10.1016/j.image.2019.05.018_b12) 2015; 39
Lukac (10.1016/j.image.2019.05.018_b2) 2005; 51
Mairal (10.1016/j.image.2019.05.018_b21) 2009
Moghadam (10.1016/j.image.2019.05.018_b24) 2013; 22
Gunturk (10.1016/j.image.2019.05.018_b7) 2005; 22
Bai (10.1016/j.image.2019.05.018_b5) 2016; 25
10.1016/j.image.2019.05.018_b44
10.1016/j.image.2019.05.018_b1
Hirakawa (10.1016/j.image.2019.05.018_b3) 2008; 17
Kumar (10.1016/j.image.2019.05.018_b14) 2009
Tan (10.1016/j.image.2019.05.018_b26) 2018; 27
10.1016/j.image.2019.05.018_b45
10.1016/j.image.2019.05.018_b43
Zeiler (10.1016/j.image.2019.05.018_b29) 2010
10.1016/j.image.2019.05.018_b41
Li (10.1016/j.image.2019.05.018_b8) 2008
Leung (10.1016/j.image.2019.05.018_b22) 2011; 20
References_xml – volume: 25
  start-page: 1793
  year: 2016
  end-page: 1807
  ident: b5
  article-title: Automatic design of color filter arrays in the frequency domain
  publication-title: IEEE Trans. Image Process.
– reference: , 2019.
– reference: J.T. Compton, J.F. Hamilton Jr, Image sensor with improved light sensitivity, U.S. Patent 20,070,024,931, 2017.
– start-page: 1
  year: 2008
  end-page: 8
  ident: b42
  article-title: Bayesian Color constancy revisited
  publication-title: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
– volume: 17
  start-page: 53
  year: 2008
  end-page: 69
  ident: b20
  article-title: Sparse representation for color image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 83
  start-page: 222
  year: 2012
  end-page: 228
  ident: b10
  article-title: Classification-based de-mosaicing for digital cameras
  publication-title: Neurocomputing
– start-page: 303
  year: 2018
  end-page: 319
  ident: b27
  article-title: Deep image demosaicking using a Cascade of convolutional residual denoising networks
  publication-title: Proceedings of the European Conference on Computer Vision
– reference: Peak Signal to Noise Ratio, URL
– volume: 12
  start-page: 847
  year: 2005
  end-page: 850
  ident: b19
  article-title: Frequency-domain methods for demosaicking of bayer-sampled color images
  publication-title: IEEE Signal Process. Lett.
– volume: 27
  start-page: 1611
  year: 2018
  end-page: 1625
  ident: b37
  article-title: Convolutional sparse coding for rgb+nir imaging
  publication-title: IEEE Trans. Image Process.
– reference: Least-Squares Luma-Chroma Demultiplexing Algorithm, URL
– reference: , 2015.
– start-page: 5135
  year: 2015
  end-page: 5143
  ident: b31
  article-title: Fast and flexible convolutional sparse coding
  publication-title: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition
– volume: 51
  start-page: 1260
  year: 2005
  end-page: 1267
  ident: b2
  article-title: Color filter arrays: design and performance analysis
  publication-title: IEEE Trans. Consum. Electron.
– volume: 20
  start-page: 709
  year: 2011
  end-page: 722
  ident: b4
  article-title: A geometric method for optimal design of color filter arrays
  publication-title: IEEE Trans. Image Process.
– volume: 27
  start-page: 2408
  year: 2018
  end-page: 2419
  ident: b26
  article-title: Deepdemosaicking: Adaptive image demosaicking via multiple deep fully convolutional networks
  publication-title: IEEE Trans. Image Process.
– start-page: 2304
  year: 2013
  end-page: 2308
  ident: b23
  article-title: Residual interpolation for color image demosaicking
  publication-title: IEEE International Conference on Image Processing
– start-page: 1823
  year: 2015
  end-page: 1831
  ident: b35
  article-title: Convolutional sparse coding for image super-resolution
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: Rethinking Color Cameras, URL
– volume: 99
  start-page: 287
  year: 2015
  end-page: 325
  ident: b39
  article-title: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning
  publication-title: Mach. Learn.
– start-page: 4290
  year: 2017
  end-page: 4298
  ident: b32
  article-title: Consensus convolutional sparse coding
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– volume: 24
  start-page: 1672
  year: 2015
  end-page: 1684
  ident: b11
  article-title: Penrose demosaicking
  publication-title: IEEE Trans. Image Process.
– start-page: 391
  year: 2013
  end-page: 398
  ident: b30
  article-title: Fast convolutional sparse coding
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 26
  start-page: 870
  year: 2017
  end-page: 883
  ident: b6
  article-title: Automatic design of high-sensitivity color filter arrays with panchromatic pixels
  publication-title: IEEE Trans. Image Process.
– start-page: 236
  year: 2014
  end-page: 251
  ident: b25
  article-title: A patch aware multiple dictionary framework for demosaicing
  publication-title: Proceedings of Asian Conference on Computer Vision
– volume: 39
  start-page: 264
  year: 2015
  end-page: 279
  ident: b12
  article-title: Color image demosaicking using inter-channel correlation and nonlocal self-similarity
  publication-title: Signal Process., Image Commun.
– volume: 17
  start-page: 1876
  year: 2008
  end-page: 1890
  ident: b3
  article-title: Spatio-spectral color filter array design for optimal image recovery
  publication-title: IEEE Trans. Image Process.
– reference: , 2011.
– volume: 12
  start-page: 1194
  year: 2003
  end-page: 1210
  ident: b46
  article-title: Color filter array demosaicking: new method and performance measures
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 518
  year: 2011
  end-page: 533
  ident: b9
  article-title: Color image demosaicking: an overview
  publication-title: Signal Process., Image Commun.
– volume: 14
  start-page: 360
  year: 2005
  end-page: 369
  ident: b47
  article-title: Adaptive homogeneity-directed demosaicing algorithm
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 44
  year: 2005
  end-page: 54
  ident: b7
  article-title: Demosaicking: color filter array interpolation
  publication-title: IEEE Signal Process. Mag.
– reference: J. Wang, L. Zhao, L. Wu, Multi-convex Inequality-constrained Alternating Direction Method of Multipliers,
– start-page: 2681
  year: 2009
  end-page: 2684
  ident: b14
  article-title: New digital camera sensor architecture for low light imaging
  publication-title: Proceedings of IEEE International Conference on Image Processing
– start-page: 3153
  year: 2011
  end-page: 3156
  ident: b18
  article-title: New color filter arrays of high light sensitivity and high demosaicking performance
  publication-title: Proceedings of IEEE International Conference on Image Processing
– start-page: 2528
  year: 2010
  end-page: 2535
  ident: b29
  article-title: Deconvolutional networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition
– volume: 25
  start-page: 301
  year: 2015
  end-page: 315
  ident: b36
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 2381
  year: 2017
  end-page: 2393
  ident: b13
  article-title: Optimized color filter arrays for sparse representation-based demosaicking
  publication-title: IEEE Trans. Image Process.
– start-page: 1
  year: 2014
  end-page: 8
  ident: b16
  article-title: Rethinking color cameras
  publication-title: Proceedings of IEEE International Conference on Computational Photography
– volume: 20
  start-page: 1885
  year: 2011
  end-page: 1894
  ident: b22
  article-title: Least-squares luma–chroma demultiplexing algorithm for bayer demosaicking
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 1956
  year: 2010
  end-page: 1982
  ident: b40
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: J. Optim.
– reference: , 2018.
– volume: 18
  start-page: 1
  year: 2017
  end-page: 52
  ident: b33
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 043047
  year: 2018
  end-page: 1–043047–9
  ident: b28
  article-title: Channel-correlation adaptive dictionary learning based demosaicking
  publication-title: J. Electron. Imaging
– reference: L. Shi, B. Funt, Re-processed version of the gehler color constancy dataset of 568 images, Simon Fraser University.
– volume: 56
  start-page: 2398
  year: 2009
  end-page: 2402
  ident: b15
  article-title: A color CMOS imager with 4x4 white-RGB color filter array for increased low-illumination signal-to-noise ratio
  publication-title: IEEE Trans. Electron Devices
– reference: B.E. Bayer, Color imaging array, U.S. Patent 3,971,065, 1976.
– volume: 22
  start-page: 2356
  year: 2013
  end-page: 2371
  ident: b24
  article-title: Compressive framework for demosaicing of natural images
  publication-title: IEEE Trans. Image Process.
– start-page: 2272
  year: 2009
  end-page: 2279
  ident: b21
  article-title: Non-local sparse models for image restoration
  publication-title: Proceedings of IEEE International Conference on Computer Vision
– year: 2008
  ident: b8
  article-title: Image demosaicing: a systematic survey
  publication-title: Proceedings of SPIE on Visual Communications and Image Processing, Vol. 6822
– volume: 27
  start-page: 4850
  year: 2018
  end-page: 4859
  ident: b34
  article-title: Scalable online convolutional sparse coding
  publication-title: IEEE Trans. Image Process.
– volume: 25
  start-page: 1793
  issue: 4
  year: 2016
  ident: 10.1016/j.image.2019.05.018_b5
  article-title: Automatic design of color filter arrays in the frequency domain
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 518
  issue: 8
  year: 2011
  ident: 10.1016/j.image.2019.05.018_b9
  article-title: Color image demosaicking: an overview
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2011.04.003
– volume: 22
  start-page: 44
  issue: 1
  year: 2005
  ident: 10.1016/j.image.2019.05.018_b7
  article-title: Demosaicking: color filter array interpolation
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2005.1407714
– start-page: 2681
  year: 2009
  ident: 10.1016/j.image.2019.05.018_b14
  article-title: New digital camera sensor architecture for low light imaging
– start-page: 2304
  year: 2013
  ident: 10.1016/j.image.2019.05.018_b23
  article-title: Residual interpolation for color image demosaicking
– start-page: 391
  year: 2013
  ident: 10.1016/j.image.2019.05.018_b30
  article-title: Fast convolutional sparse coding
– volume: 27
  start-page: 2408
  issue: 5
  year: 2018
  ident: 10.1016/j.image.2019.05.018_b26
  article-title: Deepdemosaicking: Adaptive image demosaicking via multiple deep fully convolutional networks
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2803341
– ident: 10.1016/j.image.2019.05.018_b44
– start-page: 2272
  year: 2009
  ident: 10.1016/j.image.2019.05.018_b21
  article-title: Non-local sparse models for image restoration
– volume: 26
  start-page: 2381
  issue: 5
  year: 2017
  ident: 10.1016/j.image.2019.05.018_b13
  article-title: Optimized color filter arrays for sparse representation-based demosaicking
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2679440
– volume: 25
  start-page: 301
  issue: 1
  year: 2015
  ident: 10.1016/j.image.2019.05.018_b36
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2495260
– volume: 18
  start-page: 1
  issue: 83
  year: 2017
  ident: 10.1016/j.image.2019.05.018_b33
  article-title: Convolutional neural networks analyzed via convolutional sparse coding
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 1260
  issue: 4
  year: 2005
  ident: 10.1016/j.image.2019.05.018_b2
  article-title: Color filter arrays: design and performance analysis
  publication-title: IEEE Trans. Consum. Electron.
  doi: 10.1109/TCE.2005.1561853
– start-page: 1823
  year: 2015
  ident: 10.1016/j.image.2019.05.018_b35
  article-title: Convolutional sparse coding for image super-resolution
– volume: 99
  start-page: 287
  issue: 2
  year: 2015
  ident: 10.1016/j.image.2019.05.018_b39
  article-title: Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-014-5469-5
– volume: 56
  start-page: 2398
  issue: 11
  year: 2009
  ident: 10.1016/j.image.2019.05.018_b15
  article-title: A color CMOS imager with 4x4 white-RGB color filter array for increased low-illumination signal-to-noise ratio
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2009.2030630
– start-page: 236
  year: 2014
  ident: 10.1016/j.image.2019.05.018_b25
  article-title: A patch aware multiple dictionary framework for demosaicing
– volume: 26
  start-page: 870
  issue: 2
  year: 2017
  ident: 10.1016/j.image.2019.05.018_b6
  article-title: Automatic design of high-sensitivity color filter arrays with panchromatic pixels
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2633869
– volume: 12
  start-page: 847
  issue: 12
  year: 2005
  ident: 10.1016/j.image.2019.05.018_b19
  article-title: Frequency-domain methods for demosaicking of bayer-sampled color images
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2005.859503
– volume: 17
  start-page: 1876
  issue: 10
  year: 2008
  ident: 10.1016/j.image.2019.05.018_b3
  article-title: Spatio-spectral color filter array design for optimal image recovery
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2008.2002164
– volume: 39
  start-page: 264
  issue: Part A
  year: 2015
  ident: 10.1016/j.image.2019.05.018_b12
  article-title: Color image demosaicking using inter-channel correlation and nonlocal self-similarity
  publication-title: Signal Process., Image Commun.
– volume: 20
  start-page: 1885
  issue: 7
  year: 2011
  ident: 10.1016/j.image.2019.05.018_b22
  article-title: Least-squares luma–chroma demultiplexing algorithm for bayer demosaicking
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2107524
– volume: 83
  start-page: 222
  issue: 6
  year: 2012
  ident: 10.1016/j.image.2019.05.018_b10
  article-title: Classification-based de-mosaicing for digital cameras
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.025
– start-page: 2528
  year: 2010
  ident: 10.1016/j.image.2019.05.018_b29
  article-title: Deconvolutional networks
– volume: 24
  start-page: 1672
  issue: 5
  year: 2015
  ident: 10.1016/j.image.2019.05.018_b11
  article-title: Penrose demosaicking
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2409569
– ident: 10.1016/j.image.2019.05.018_b45
– volume: 27
  start-page: 043047
  issue: 4
  year: 2018
  ident: 10.1016/j.image.2019.05.018_b28
  article-title: Channel-correlation adaptive dictionary learning based demosaicking
  publication-title: J. Electron. Imaging
  doi: 10.1117/1.JEI.27.4.043047
– volume: 14
  start-page: 360
  issue: 3
  year: 2005
  ident: 10.1016/j.image.2019.05.018_b47
  article-title: Adaptive homogeneity-directed demosaicing algorithm
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.838691
– start-page: 5135
  year: 2015
  ident: 10.1016/j.image.2019.05.018_b31
  article-title: Fast and flexible convolutional sparse coding
– start-page: 1
  year: 2014
  ident: 10.1016/j.image.2019.05.018_b16
  article-title: Rethinking color cameras
– volume: 17
  start-page: 53
  issue: 1
  year: 2008
  ident: 10.1016/j.image.2019.05.018_b20
  article-title: Sparse representation for color image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2007.911828
– volume: 20
  start-page: 1956
  issue: 4
  year: 2010
  ident: 10.1016/j.image.2019.05.018_b40
  article-title: A singular value thresholding algorithm for matrix completion
  publication-title: J. Optim.
– volume: 27
  start-page: 4850
  issue: 10
  year: 2018
  ident: 10.1016/j.image.2019.05.018_b34
  article-title: Scalable online convolutional sparse coding
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2842152
– ident: 10.1016/j.image.2019.05.018_b38
– volume: 12
  start-page: 1194
  issue: 10
  year: 2003
  ident: 10.1016/j.image.2019.05.018_b46
  article-title: Color filter array demosaicking: new method and performance measures
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.816004
– ident: 10.1016/j.image.2019.05.018_b1
– volume: 20
  start-page: 709
  issue: 3
  year: 2011
  ident: 10.1016/j.image.2019.05.018_b4
  article-title: A geometric method for optimal design of color filter arrays
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2077642
– ident: 10.1016/j.image.2019.05.018_b17
– ident: 10.1016/j.image.2019.05.018_b43
– start-page: 303
  year: 2018
  ident: 10.1016/j.image.2019.05.018_b27
  article-title: Deep image demosaicking using a Cascade of convolutional residual denoising networks
– start-page: 4290
  year: 2017
  ident: 10.1016/j.image.2019.05.018_b32
  article-title: Consensus convolutional sparse coding
– ident: 10.1016/j.image.2019.05.018_b41
– volume: 22
  start-page: 2356
  issue: 6
  year: 2013
  ident: 10.1016/j.image.2019.05.018_b24
  article-title: Compressive framework for demosaicing of natural images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2244215
– start-page: 1
  year: 2008
  ident: 10.1016/j.image.2019.05.018_b42
  article-title: Bayesian Color constancy revisited
– volume: 27
  start-page: 1611
  issue: 4
  year: 2018
  ident: 10.1016/j.image.2019.05.018_b37
  article-title: Convolutional sparse coding for rgb+nir imaging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2781303
– year: 2008
  ident: 10.1016/j.image.2019.05.018_b8
  article-title: Image demosaicing: a systematic survey
– start-page: 3153
  year: 2011
  ident: 10.1016/j.image.2019.05.018_b18
  article-title: New color filter arrays of high light sensitivity and high demosaicking performance
SSID ssj0002409
Score 2.2587738
Snippet Image demosaicking is the problem of reconstructing color images from raw images captured by a digital camera covered by a Color Filter Array (CFA). CFAs allow...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 20
SubjectTerms Alternating direction method of multipliers (ADMM)
Color coding
Color filter array (CFA)
Color imagery
Convolutional sparse coding (CSC)
Demosaicking
Digital cameras
Digital imaging
Feature maps
Image coding
Image reconstruction
Incident light
Panchromatic pixels
Pixels
Regularization
Title Convolutional sparse coding for demosaicking with panchromatic pixels
URI https://dx.doi.org/10.1016/j.image.2019.05.018
https://www.proquest.com/docview/2256120988
Volume 77
WOSCitedRecordID wos000473840100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2677
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002409
  issn: 0923-5965
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOPAqIQkE-cIOgTew49rGqFtEeKiSKtDfLsR1IS7PRZltt_z3j2M6GVqzogUsUjTYTZ7_JzHgyD4TeG5YTU5YkKbRmCS0sSZTIVJILS2A3AAoxDJsoTk74fC6-hmmbXT9OoGgavl6L9r9CDTQA25XO3gHugSkQ4BxAhyPADsd_Av5w0VyFG7hakBZ2ri4j3cSUSWMvFp2q9fkQhgWFoH8uF755a1uvfYflwWf9Vv9wnFpfUuAGLXw4unCpPnpcXLIJidb-M75trkf5Pj3xuFbjKEO6SaMawoUZAQD9XIeoOcMAlqD6piMj6uv9b6lnHyk4-1S7Vbq8OuHbpvKNNYpf4G8YqSF1MGalncmeiXRM5DSXwOQ-2smKXPAJ2jk4ms2PB4sMXovvuRieIXaf6vP8bq3lbx7KDVvdOyCnT9HjsHPABx7xZ-iebXbRk7CLwEFHd0CKgzoibRc9GnWdfI5mf0gI9hKCvYRgkBA8lhDsJASPJQR7CXmBvn-enR5-ScI0jUQTkq4SV8RMDaVKq5QanapKp7ktaclUwctUlKZgjJuMVdaYinJb5UbkqjJCafC5DXmJJs2isa8QZmRqBaUkUxWhWrGySEmVg8NjhChLrfdQFv9BqUOreTfx5Jfcgt4e-jhc1PpOK9t_ziI0MjiL3gmUIGzbL9yPQMrw2nYSrBpzVeScv77bMt6gh5vXZR9NVstL-xY90Ferulu-C4L4G0PYmFo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+sparse+coding+for+demosaicking+with+panchromatic+pixels&rft.jtitle=Signal+processing.+Image+communication&rft.au=Bai%2C+Chenyan&rft.au=Li%2C+Jia&rft.date=2019-09-01&rft.issn=0923-5965&rft.volume=77&rft.spage=20&rft.epage=27&rft_id=info:doi/10.1016%2Fj.image.2019.05.018&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_image_2019_05_018
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0923-5965&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0923-5965&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0923-5965&client=summon