Stochastic Event-Triggered Algorithm for Distributed Convex Optimisation

This paper investigates the problem of distributed convex optimisation under constrained communication. A novel stochastic event-triggering algorithm is shown to solve the problem asymptotically to any arbitrarily small error without exhibiting Zeno behaviour. A systematic design of the stochastic e...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on control of network systems Ročník 10; číslo 3; s. 1 - 12
Hlavní autoři: Tsang, Kam Fai Elvis, Huang, Mengyu, Shi, Ling, Johansson, Karl Henrik
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2325-5870, 2372-2533
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper investigates the problem of distributed convex optimisation under constrained communication. A novel stochastic event-triggering algorithm is shown to solve the problem asymptotically to any arbitrarily small error without exhibiting Zeno behaviour. A systematic design of the stochastic event processes is then derived from the analysis on optimality and communication rate with the help of a meta-optimisation problem. Lastly, a numerical example on distributed classification is provided to visualise the performance of the proposed algorithm in terms of convergence in optimisation error and average communication rate with comparison to other algorithms in the literature. We show that the proposed algorithm is highly effective in reducing communication rates compared with algorithms proposed in the literature.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2325-5870
2372-2533
DOI:10.1109/TCNS.2022.3229769