Study of JavaScript Static Analysis Tools for Vulnerability Detection in Node.js Packages

With the emergence of the Node.js ecosystem, JavaScript has become a widely used programming language for implementing server-side web applications. In this article, we present the first empirical study of static code analysis tools for detecting vulnerabilities in Node.js code. To conduct a compreh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on reliability Jg. 72; H. 4; S. 1324 - 1339
Hauptverfasser: Brito, Tiago, Ferreira, Mafalda, Monteiro, Miguel, Lopes, Pedro, Barros, Miguel, Santos, Jose Fragoso, Santos, Nuno
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9529, 1558-1721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the emergence of the Node.js ecosystem, JavaScript has become a widely used programming language for implementing server-side web applications. In this article, we present the first empirical study of static code analysis tools for detecting vulnerabilities in Node.js code. To conduct a comprehensive tool evaluation, we created the largest known curated dataset of Node.js code vulnerabilities. We characterized and annotated a set of 957 vulnerabilities by analyzing information contained in npm advisory reports. We tested nine different tools and found that many important vulnerabilities appearing in the OWASP top-10 are not detected by any tool. The three best performing tools combined only detect up to 57.6% of all vulnerabilities in the dataset, but at a very low precision of 0.11%. Our curated dataset offers a new benchmark to help characterize existing Node.js code vulnerabilities and foster the development of better vulnerability detection tools for Node.js code.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9529
1558-1721
DOI:10.1109/TR.2023.3286301