Detecting Rain–Snow-Transition Elevations in Mountain Basins Using Wireless Sensor Networks

To provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two estimation methods using ground measurements from basin-scale wireless sensor networks: one based on wet-bulb temperature T wet and the other based on snow-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrometeorology Ročník 21; číslo 9; s. 2061 - 2081
Hlavní autoři: Cui, Guotao, Bales, Roger, Rice, Robert, Anderson, Michael, Avanzi, Francesco, Hartsough, Peter, Conklin, Martha
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States American Meteorological Society 01.09.2020
Témata:
ISSN:1525-755X, 1525-7541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two estimation methods using ground measurements from basin-scale wireless sensor networks: one based on wet-bulb temperature T wet and the other based on snow-depth measurements of accumulation and ablation. With data from 17 spatially distributed clusters (178 nodes) from two networks, in the American and Feather River basins of California’s Sierra Nevada, we analyzed transition elevation during 76 storm events in 2014–18. A T wet threshold of 0.5°C best matched the transition elevation defined by snow depth. Transition elevations using T wet in upper elevations of the basins generally agreed with atmospheric snow level from radars located at lower elevations, while radar snow level was ~100m higher due to snow-level lowering on windward mountainsides during orographic lifting. Diurnal patterns of the difference between transition elevation and radar snow level were observed in the American basin, related to diurnal ground-temperature variations. However, these patterns were not found in the Feather basin due to complex terrain and higher uncertainties in transition-elevation estimates. The American basin tends to exhibit 100-m-higher transition elevations than does the Feather basin, consistent with the Feather basin being about 1° latitude farther north. Transition elevation averaged 155m higher in intense atmospheric river events than in other events; meanwhile, snow-level lowering was enhanced with a 90-m-larger difference between radar snow level and transition elevation. On-the-ground continuous observations from distributed sensor networks can complement radar data and provide important ground truth and spatially resolved information on transition elevations in mountain basins.
AbstractList To provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two estimation methods using ground measurements from basin-scale wireless sensor networks: one based on wet-bulb temperature T wet and the other based on snow-depth measurements of accumulation and ablation. With data from 17 spatially distributed clusters (178 nodes) from two networks, in the American and Feather River basins of California’s Sierra Nevada, we analyzed transition elevation during 76 storm events in 2014–18. A T wet threshold of 0.5°C best matched the transition elevation defined by snow depth. Transition elevations using T wet in upper elevations of the basins generally agreed with atmospheric snow level from radars located at lower elevations, while radar snow level was ~100m higher due to snow-level lowering on windward mountainsides during orographic lifting. Diurnal patterns of the difference between transition elevation and radar snow level were observed in the American basin, related to diurnal ground-temperature variations. However, these patterns were not found in the Feather basin due to complex terrain and higher uncertainties in transition-elevation estimates. The American basin tends to exhibit 100-m-higher transition elevations than does the Feather basin, consistent with the Feather basin being about 1° latitude farther north. Transition elevation averaged 155m higher in intense atmospheric river events than in other events; meanwhile, snow-level lowering was enhanced with a 90-m-larger difference between radar snow level and transition elevation. On-the-ground continuous observations from distributed sensor networks can complement radar data and provide important ground truth and spatially resolved information on transition elevations in mountain basins.
To provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two estimation methods using ground measurements from basin-scale wireless sensor networks: one based on wet-bulb temperature T wet and the other based on snow-depth measurements of accumulation and ablation. With data from 17 spatially distributed clusters (178 nodes) from two networks, in the American and Feather River basins of California’s Sierra Nevada, we analyzed transition elevation during 76 storm events in 2014–18. A T wet threshold of 0.5°C best matched the transition elevation defined by snow depth. Transition elevations using T wet in upper elevations of the basins generally agreed with atmospheric snow level from radars located at lower elevations, while radar snow level was ~100 m higher due to snow-level lowering on windward mountainsides during orographic lifting. Diurnal patterns of the difference between transition elevation and radar snow level were observed in the American basin, related to diurnal ground-temperature variations. However, these patterns were not found in the Feather basin due to complex terrain and higher uncertainties in transition-elevation estimates. The American basin tends to exhibit 100-m-higher transition elevations than does the Feather basin, consistent with the Feather basin being about 1° latitude farther north. Transition elevation averaged 155 m higher in intense atmospheric river events than in other events; meanwhile, snow-level lowering was enhanced with a 90-m-larger difference between radar snow level and transition elevation. On-the-ground continuous observations from distributed sensor networks can complement radar data and provide important ground truth and spatially resolved information on transition elevations in mountain basins.
Here, to provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two estimation methods using ground measurements from basin-scale wireless sensor networks: one based on wet-bulb temperature Twet and the other based on snow-depth measurements of accumulation and ablation. With data from 17 spatially distributed clusters (178 nodes) from two networks, in the American and Feather River basins of California’s Sierra Nevada, we analyzed transition elevation during 76 storm events in 2014–18. A Twet threshold of 0.5°C best matched the transition elevation defined by snow depth. Transition elevations using Twet in upper elevations of the basins generally agreed with atmospheric snow level from radars located at lower elevations, while radar snow level was ~100 m higher due to snow-level lowering on windward mountainsides during orographic lifting. Diurnal patterns of the difference between transition elevation and radar snow level were observed in the American basin, related to diurnal ground-temperature variations. However, these patterns were not found in the Feather basin due to complex terrain and higher uncertainties in transition-elevation estimates. The American basin tends to exhibit 100-m-higher transition elevations than does the Feather basin, consistent with the Feather basin being about 1° latitude farther north. Transition elevation averaged 155 m higher in intense atmospheric river events than in other events; meanwhile, snow-level lowering was enhanced with a 90-m-larger difference between radar snow level and transition elevation. On-the-ground continuous observations from distributed sensor networks can complement radar data and provide important ground truth and spatially resolved information on transition elevations in mountain basins.
Author Rice, Robert
Hartsough, Peter
Bales, Roger
Avanzi, Francesco
Conklin, Martha
Cui, Guotao
Anderson, Michael
Author_xml – sequence: 1
  givenname: Guotao
  surname: Cui
  fullname: Cui, Guotao
– sequence: 2
  givenname: Roger
  surname: Bales
  fullname: Bales, Roger
– sequence: 3
  givenname: Robert
  surname: Rice
  fullname: Rice, Robert
– sequence: 4
  givenname: Michael
  surname: Anderson
  fullname: Anderson, Michael
– sequence: 5
  givenname: Francesco
  surname: Avanzi
  fullname: Avanzi, Francesco
– sequence: 6
  givenname: Peter
  surname: Hartsough
  fullname: Hartsough, Peter
– sequence: 7
  givenname: Martha
  surname: Conklin
  fullname: Conklin, Martha
BackLink https://www.osti.gov/servlets/purl/2251501$$D View this record in Osti.gov
BookMark eNp9kLFOwzAQhi1UJNrCzIQUsae1nTiNR2gLBbUg0VawIMtJLuASbGQbKjbegTfkSUgo6sDAcLrT6f_u9P8d1NJGA0KHBPcIGbD-5WQWjkKKQ4xp2iM7qE0YZeGAxaS1ndndHuo4t8IYx5ykbXQ_Ag-5V_ohuJFKf318zrVZhwsrtVNeGR2MK3iTzeQCpYOZedW-Fgan0ql6tXQNeqssVOBcMAftjA2uwK-NfXL7aLeUlYOD395Fy7PxYjgJp9fnF8OTaZhHEfEhSQBiSrMsJVkeQ5FymhWk5KyM5SAtgMqEYAocJ4xHvIgLWiZ1AWQRp0VMoi463tw1zivhclV7esyN1rU1QSkjDDei_kaUW-OchVK8WPUs7bsgWDQRijpCMRIUiyZC0RDsD1Ff_snCW6mqf7ijDbdy3tjtG5rwZBAnUfQNKZaDgA
CitedBy_id crossref_primary_10_1002_hyp_14796
crossref_primary_10_1029_2021WR029954
crossref_primary_10_1016_j_rse_2024_114000
crossref_primary_10_3389_feart_2022_875795
crossref_primary_10_1016_j_envsoft_2021_105076
crossref_primary_10_3390_atmos11111259
crossref_primary_10_1002_hyp_14519
crossref_primary_10_1016_j_jhydrol_2022_128835
crossref_primary_10_5194_essd_15_639_2023
crossref_primary_10_3390_w13162260
Cites_doi 10.1175/JTECH-D-16-0063.1
10.1175/2009JHM1181.1
10.1002/2017WR020778
10.5194/essd-10-1795-2018
10.1029/94GL01710
10.1175/BAMS-86-2-225
10.1175/2007JHM855.1
10.5194/hess-21-1-2017
10.3390/w9110899
10.1029/2005WR004387
10.1175/JHM-D-12-035.1
10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2
10.1175/JAS-D-17-0168.1
10.1002/2017JD027355
10.1175/1520-0469(1983)040<1218:TKOOAD>2.0.CO;2
10.1038/s41558-018-0236-4
10.1175/2010EI364.1
10.1002/joc.1688
10.6071/M39Q2V
10.1029/2019GL085722
10.1175/JAS3554.1
10.1016/j.atmosres.2018.02.002
10.1175/2011JHM1358.1
10.1175/JHM-D-12-0101.1
10.1016/j.advwatres.2012.11.012
10.1175/BAMS-D-18-0091.1
10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2
10.1002/2015GL065435
10.1109/ACCESS.2019.2895397
10.1061/(ASCE)HE.1943-5584.0000324
10.1016/j.jhydrol.2014.03.038
10.1175/BAMS-D-17-0157.1
10.3390/s17112583
10.3390/w3020445
10.1175/JAS-D-12-0194.1
10.1002/2016WR019619
10.1061/(ASCE)HE.1943-5584.0000722
10.1038/s41467-018-03629-7
10.1175/BAMS-D-18-0023.1
10.1175/JHM-D-14-0211.1
10.1175/JCLI-D-16-0758.1
10.1175/JCLI-D-19-0254.1
10.1002/wrcr.20318
10.1175/JHM-D-18-0228.1
10.1175/2007JHM853.1
10.1016/j.coldregions.2020.103066
10.1002/2016WR018825
10.1029/2018GL080783
10.1029/2020WR027072
10.1175/JHM-D-18-0212.1
10.5194/hess-23-3765-2019
10.1175/JHM-D-16-0238.1
10.1175/JTECH-D-12-00217.1
10.1175/JCLI-D-18-0268.1
10.1175/1520-0469(1987)044<0159:DOSOTS>2.0.CO;2
10.1175/JAS-D-10-05006.1
10.1002/wrcr.20100
10.1002/qj.3240
ContentType Journal Article
Copyright 2020 American Meteorological Society
Copyright_xml – notice: 2020 American Meteorological Society
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1175/JHM-D-20-0028.1
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Meteorology & Climatology
Environmental Sciences
EISSN 1525-7541
EndPage 2081
ExternalDocumentID 2251501
10_1175_JHM_D_20_0028_1
26967463
GroupedDBID 4.4
4P2
5GY
8CJ
8FE
8FH
AAEFR
ABBHK
ABDBF
ABDNZ
ABXSQ
ACUHS
AEKFB
AENEX
AEUPB
AEUYN
AFKRA
AFRAH
AGFAN
ALMA_UNASSIGNED_HOLDINGS
ALQLQ
BENPR
BHPHI
BKSAR
CCPQU
CS3
D1J
E3Z
EAD
EAP
EBS
ECGQY
EDH
EMK
EPL
EST
ESX
FRP
H13
HCIFZ
I-F
IZHOT
JAAYA
JENOY
JKQEH
JLEZI
JLXEF
JPL
JST
LK5
M7R
MV1
OK1
P2P
PCBAR
PHGZM
PHGZT
RWA
RWE
SA0
SJN
SWMRO
TUS
~02
AAYXX
AFFHD
BANNL
CITATION
ABPTK
AIRJO
EQZMY
OIOZB
OTOTI
ID FETCH-LOGICAL-c331t-16ee422bb81bc4ed892bd1f95f4a78de2a6102e9065939d4d2f6d2feeb392d413
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617314100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1525-755X
IngestDate Mon Jan 22 04:57:38 EST 2024
Tue Nov 18 22:43:01 EST 2025
Sat Nov 29 06:13:18 EST 2025
Thu Jun 19 22:21:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-16ee422bb81bc4ed892bd1f95f4a78de2a6102e9065939d4d2f6d2feeb392d413
Notes USDOE
AC02-05CH11231
OpenAccessLink https://www.osti.gov/servlets/purl/2251501
PageCount 21
ParticipantIDs osti_scitechconnect_2251501
crossref_primary_10_1175_JHM_D_20_0028_1
crossref_citationtrail_10_1175_JHM_D_20_0028_1
jstor_primary_26967463
PublicationCentury 2000
PublicationDate 20200901
2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 9
  year: 2020
  text: 20200901
  day: 1
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of hydrometeorology
PublicationYear 2020
Publisher American Meteorological Society
Publisher_xml – name: American Meteorological Society
References Malek, S. A. (bib29) 2019; 7
Hatchett, B. (bib18) 2017; 9
Jennings, K. S. (bib22) 2018; 9
Gao, Y. (bib14) 2015; 42
Cannon, F. (bib6) 2017; 122
Welch, S. C. (bib53) 2013; 49
Olsen, A. (bib43) 2003
Ralph, F. M. (bib44) 2004; 132
Musselman, K. N. (bib38) 2018; 8
Behrangi, A. (bib5) 2018; 144
Johnston, P. E. (bib24) 2017; 34
Goldenson, N. (bib16) 2018; 31
Ralph, F. M. (bib46) 2019; 100
White, A. B. (bib56) 2013; 30
Huning, L. S. (bib20) 2019; 46
White, A. B. (bib54) 2002; 19
Neiman, P. J. (bib40) 2011; 12
Malek, S. A. (bib28) 2017; 17
Bales, R. C. (bib4) 2020
Dettinger, M. D. (bib9) 2011; 3
Avanzi, F. (bib1) 2020; 175
Zagrodnik, J. P. (bib59) 2018; 75
Gelaro, R. (bib15) 2017; 30
Koczot, K. M. (bib25) 2004
Tamang, S. K. (bib50) 2020; 33
Marks, D. (bib30) 2013; 55
Bales, R. C. (bib3) 2018; 10
Van Cleave, D. (bib51) 2019
Yigzaw, W. (bib58) 2013; 18
Zhang, Z. (bib60) 2017a; 53
Feld, S. I. (bib12) 2013; 49
Marwitz, J. D. (bib31) 1983; 40
Sumargo, E. (bib49) 2020
Harpold, A. A. (bib17) 2017; 21
Demaria, E. M. C. (bib8) 2017; 53
Medina, S. (bib34) 2005; 62
Wang, Y. (bib52) 2019; 46
Freeman, G. J. (bib13) 2011
Matrosov, S. Y. (bib33) 2017; 18
Neiman, P. J. (bib39) 2008; 9
Ohara, N. (bib42) 2011; 16
White, A. B. (bib55) 2010; 11
Minder, J. R. (bib35) 2013; 70
Jennings, K. S. (bib21) 2019; 23
Johnston, P. E. (bib23) 2009
Zhang, Z. (bib61) 2017b; 53
Mizukami, N. (bib37) 2013; 14
Zhu, Y. (bib63) 1994; 21
Lundquist, J. D. (bib27) 2008; 9
Lawrence, M. G. (bib26) 2005; 86
Ding, B. (bib10) 2014; 513
Ralph, F. M. (bib45) 2018; 99
Eldardiry, H. (bib11) 2019; 20
Henn, B. (bib19) 2020; 21
Marwitz, J. D. (bib32) 1987; 44
Daly, C. (bib7) 2008; 28
Neiman, P. J. (bib41) 2013; 14
Risley, J. (bib47) 2011; 15
Zhong, K. (bib62) 2018; 205
Minder, J. R. (bib36) 2011; 68
White, A. B. (bib57) 2019; 100
Bales, R. C. (bib2) 2006; 42
Sims, E. M. (bib48) 2015; 16
References_xml – volume: 34
  start-page: 249
  year: 2017
  ident: bib24
  article-title: The NOAA FM-CW snow-level radar
  doi: 10.1175/JTECH-D-16-0063.1
– volume: 11
  start-page: 739
  year: 2010
  ident: bib55
  article-title: Developing a performance measure for snow-level forecasts
  doi: 10.1175/2009JHM1181.1
– volume: 53
  start-page: 10 025
  year: 2017
  ident: bib8
  article-title: Observed hydrologic impacts of landfalling atmospheric rivers in the Salt and Verde river basins of Arizona, United States
  doi: 10.1002/2017WR020778
– volume: 10
  start-page: 1795
  year: 2018
  ident: bib3
  article-title: Spatially distributed water-balance and meteorological data from the rain–snow transition, southern Sierra Nevada, California
  doi: 10.5194/essd-10-1795-2018
– volume: 21
  start-page: 1999
  year: 1994
  ident: bib63
  article-title: Atmospheric rivers and bombs
  doi: 10.1029/94GL01710
– volume: 86
  start-page: 225
  year: 2005
  ident: bib26
  article-title: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications
  doi: 10.1175/BAMS-86-2-225
– volume: 9
  start-page: 22
  year: 2008
  ident: bib39
  article-title: Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations
  doi: 10.1175/2007JHM855.1
– volume: 21
  start-page: 1
  year: 2017
  ident: bib17
  article-title: Rain or snow: Hydrologic processes, observations, prediction, and research needs
  doi: 10.5194/hess-21-1-2017
– year: 2003
  ident: bib43
– volume: 9
  start-page: 899
  year: 2017
  ident: bib18
  article-title: Winter snow level rise in the northern Sierra Nevada from 2008 to 2017
  doi: 10.3390/w9110899
– year: 2004
  ident: bib25
– volume: 42
  year: 2006
  ident: bib2
  article-title: Mountain hydrology of the western United States
  doi: 10.1029/2005WR004387
– year: 2019
  ident: bib51
– volume: 14
  start-page: 1139
  year: 2013
  ident: bib37
  article-title: The impact of precipitation type discrimination on hydrologic simulation: Rain–snow partitioning derived from HMT-West radar-detected brightband height versus surface temperature data
  doi: 10.1175/JHM-D-12-035.1
– volume: 132
  start-page: 1721
  year: 2004
  ident: bib44
  article-title: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98
  doi: 10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2
– volume: 75
  start-page: 983
  year: 2018
  ident: bib59
  article-title: Stratiform precipitation processes in cyclones passing over a coastal mountain range
  doi: 10.1175/JAS-D-17-0168.1
– volume: 122
  start-page: 747
  year: 2017
  ident: bib6
  article-title: GPM satellite radar measurements of precipitation and freezing level in Atmospheric Rivers: Comparison with ground-based radars and reanalyses
  doi: 10.1002/2017JD027355
– volume: 40
  start-page: 1218
  year: 1983
  ident: bib31
  article-title: The kinematics of orographic airflow during Sierra storms
  doi: 10.1175/1520-0469(1983)040<1218:TKOOAD>2.0.CO;2
– volume: 8
  start-page: 808
  year: 2018
  ident: bib38
  article-title: Projected increases and shifts in rain-on-snow flood risk over western North America
  doi: 10.1038/s41558-018-0236-4
– volume: 15
  year: 2011
  ident: bib47
  article-title: Statistical comparisons of watershed-scale response to climate change in selected basins across the United States
  doi: 10.1175/2010EI364.1
– volume: 28
  start-page: 2031
  year: 2008
  ident: bib7
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  doi: 10.1002/joc.1688
– year: 2020
  ident: bib4
  doi: 10.6071/M39Q2V
– volume: 46
  start-page: 13 825
  year: 2019
  ident: bib52
  article-title: A wet-bulb temperature-based rain-snow partitioning scheme improves snowpack prediction over the drier western United States
  doi: 10.1029/2019GL085722
– volume: 62
  start-page: 3580
  year: 2005
  ident: bib34
  article-title: Cross-barrier flow during orographic precipitation events: Results from MAP and IMPROVE
  doi: 10.1175/JAS3554.1
– volume: 205
  start-page: 48
  year: 2018
  ident: bib62
  article-title: Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China
  doi: 10.1016/j.atmosres.2018.02.002
– volume: 12
  start-page: 1337
  year: 2011
  ident: bib40
  article-title: Flooding in western Washington: The connection to atmospheric rivers
  doi: 10.1175/2011JHM1358.1
– volume: 14
  start-page: 460
  year: 2013
  ident: bib41
  article-title: The landfall and inland penetration of a flood-producing atmospheric river in Arizona. Part I: Observed synoptic-scale, orographic, and hydrometeorological characteristics
  doi: 10.1175/JHM-D-12-0101.1
– volume: 55
  start-page: 98
  year: 2013
  ident: bib30
  article-title: An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin
  doi: 10.1016/j.advwatres.2012.11.012
– volume: 100
  start-page: 55
  year: 2019
  ident: bib57
  article-title: Winter storm conditions leading to excessive runoff above California’s Oroville Dam during January and February 2017
  doi: 10.1175/BAMS-D-18-0091.1
– volume: 19
  start-page: 687
  year: 2002
  ident: bib54
  article-title: An automated brightband height detection algorithm for use with Doppler radar spectral moments
  doi: 10.1175/1520-0426(2002)019<0687:AABHDA>2.0.CO;2
– start-page: 71
  year: 2011
  ident: bib13
– volume: 42
  start-page: 7179
  year: 2015
  ident: bib14
  article-title: Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America
  doi: 10.1002/2015GL065435
– volume: 7
  start-page: 18 420
  year: 2019
  ident: bib29
  article-title: Wireless sensor networks for improved snow water equivalent and runoff estimates
  doi: 10.1109/ACCESS.2019.2895397
– volume: 16
  start-page: 351
  year: 2011
  ident: bib42
  article-title: Physically based estimation of maximum precipitation over American River Watershed, California
  doi: 10.1061/(ASCE)HE.1943-5584.0000324
– volume: 513
  start-page: 154
  year: 2014
  ident: bib10
  article-title: The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization
  doi: 10.1016/j.jhydrol.2014.03.038
– volume: 99
  start-page: 837
  year: 2018
  ident: bib45
  article-title: Defining “atmospheric river”: How the Glossary of Meteorology helped resolve a debate
  doi: 10.1175/BAMS-D-17-0157.1
– volume: 17
  start-page: 2583
  year: 2017
  ident: bib28
  article-title: Real-time alpine measurement system using wireless sensor networks
  doi: 10.3390/s17112583
– volume: 3
  start-page: 445
  year: 2011
  ident: bib9
  article-title: Atmospheric rivers, floods and the water resources of California
  doi: 10.3390/w3020445
– volume: 70
  start-page: 916
  year: 2013
  ident: bib35
  article-title: Mesoscale variations of the atmospheric snow line over the northern Sierra Nevada: Multiyear statistics, case study, and mechanisms
  doi: 10.1175/JAS-D-12-0194.1
– volume: 53
  start-page: 4487
  year: 2017b
  ident: bib61
  article-title: Technical report: The design and evaluation of a basin-scale wireless sensor network for mountain hydrology
  doi: 10.1002/2016WR019619
– volume: 18
  start-page: 1180
  year: 2013
  ident: bib58
  article-title: Impact of artificial reservoir size and land use/land cover patterns on probable maximum precipitation and flood: Case of Folsom Dam on the American River
  doi: 10.1061/(ASCE)HE.1943-5584.0000722
– volume: 9
  start-page: 1148
  year: 2018
  ident: bib22
  article-title: Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere
  doi: 10.1038/s41467-018-03629-7
– volume: 100
  start-page: 269
  year: 2019
  ident: bib46
  article-title: A scale to characterize the strength and impacts of atmospheric rivers
  doi: 10.1175/BAMS-D-18-0023.1
– volume: 16
  start-page: 1466
  year: 2015
  ident: bib48
  article-title: A parameterization of the probability of snow–rain transition
  doi: 10.1175/JHM-D-14-0211.1
– volume: 30
  start-page: 5419
  year: 2017
  ident: bib15
  article-title: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)
  doi: 10.1175/JCLI-D-16-0758.1
– volume: 33
  start-page: 39
  year: 2020
  ident: bib50
  article-title: Linking global changes of snowfall and wet-bulb temperature
  doi: 10.1175/JCLI-D-19-0254.1
– volume: 49
  start-page: 4424
  year: 2013
  ident: bib12
  article-title: Representing atmospheric moisture content along mountain slopes: Examination using distributed sensors in the Sierra Nevada, California
  doi: 10.1002/wrcr.20318
– volume: 20
  start-page: 613
  year: 2019
  ident: bib11
  article-title: Atmospheric river-induced precipitation and snowpack during the western United States cold season
  doi: 10.1175/JHM-D-18-0228.1
– volume: 9
  start-page: 194
  year: 2008
  ident: bib27
  article-title: Rain versus snow in the Sierra Nevada, California: Comparing Doppler profiling radar and surface observations of melting level
  doi: 10.1175/2007JHM853.1
– volume: 175
  year: 2020
  ident: bib1
  article-title: Gap-filling snow-depth time-series with Kalman filtering-smoothing and expectation maximization: Proof of concept using spatially dense wireless-sensor-network data
  doi: 10.1016/j.coldregions.2020.103066
– volume: 53
  start-page: 6626
  year: 2017a
  ident: bib60
  article-title: Insights into mountain precipitation and snowpack from a basin-scale wireless-sensor network
  doi: 10.1002/2016WR018825
– volume: 46
  start-page: 794
  year: 2019
  ident: bib20
  article-title: Sensitivity of seasonal snowfall attribution to Atmospheric Rivers and their reanalysis-based detection
  doi: 10.1029/2018GL080783
– year: 2009
  ident: bib23
– year: 2020
  ident: bib49
  article-title: Freezing level forecast error can consume reservoir flood control storage: Potentials for Lake Oroville and New Bullards Bar reservoirs in California
  doi: 10.1029/2020WR027072
– volume: 21
  start-page: 751
  year: 2020
  ident: bib19
  article-title: Skill of rain-snow level forecasts for landfalling atmospheric rivers: A multi-model model assessment using California’s network of vertically profiling radars
  doi: 10.1175/JHM-D-18-0212.1
– volume: 23
  start-page: 3765
  year: 2019
  ident: bib21
  article-title: The sensitivity of modeled snow accumulation and melt to precipitation phase methods across a climatic gradient
  doi: 10.5194/hess-23-3765-2019
– volume: 18
  start-page: 1009
  year: 2017
  ident: bib33
  article-title: Snow-level estimates using operational polarimetric weather radar measurements
  doi: 10.1175/JHM-D-16-0238.1
– volume: 30
  start-page: 1585
  year: 2013
  ident: bib56
  article-title: A twenty-first-century California observing network for monitoring extreme weather events
  doi: 10.1175/JTECH-D-12-00217.1
– volume: 31
  start-page: 9921
  year: 2018
  ident: bib16
  article-title: Influence of atmospheric rivers on mountain snowpack in the western United States
  doi: 10.1175/JCLI-D-18-0268.1
– volume: 44
  start-page: 159
  year: 1987
  ident: bib32
  article-title: Deep orographic storms over the Sierra Nevada. Part I: Thermodynamic and kinematic structure
  doi: 10.1175/1520-0469(1987)044<0159:DOSOTS>2.0.CO;2
– volume: 68
  start-page: 2107
  year: 2011
  ident: bib36
  article-title: Mesoscale controls on the mountainside snow line
  doi: 10.1175/JAS-D-10-05006.1
– volume: 49
  start-page: 891
  year: 2013
  ident: bib53
  article-title: Sensor placement strategies for snow water equivalent (SWE) estimation in the American River basin
  doi: 10.1002/wrcr.20100
– volume: 144
  start-page: 89
  year: 2018
  ident: bib5
  article-title: On distinguishing snowfall from rainfall using near-surface atmospheric information: Comparative analysis, uncertainties and hydrologic importance
  doi: 10.1002/qj.3240
SSID ssj0004918
Score 2.3757908
Snippet To provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two estimation...
Here, to provide complementary information on the hydrologically important rain–snow-transition elevation in mountain basins, this study provides two...
SourceID osti
crossref
jstor
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2061
SubjectTerms ENVIRONMENTAL SCIENCES
Hydrology
Instrumentation/sensors
Measurements
Mountain meteorology
Operational forecasting
Radar observations
Radars
Title Detecting Rain–Snow-Transition Elevations in Mountain Basins Using Wireless Sensor Networks
URI https://www.jstor.org/stable/26967463
https://www.osti.gov/servlets/purl/2251501
Volume 21
WOSCitedRecordID wos000617314100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1525-7541
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0004918
  issn: 1525-755X
  databaseCode: PCBAR
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1525-7541
  dateEnd: 20231207
  omitProxy: false
  ssIdentifier: ssj0004918
  issn: 1525-755X
  databaseCode: BENPR
  dateStart: 20150201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLaqDQluEAwmygD5AiGkySNx4iS-ZG3ZhNRq6obUGxQljgOVomRq0zLueAdegufiSTj-SdIVVRoXXDRKrdRJe76eP38-B6HXYDRlzjJOPMkcAh6xTzhjAs5EmnqMe0II3WwinEyi2Yxf9Hq_mr0w6yIsy-jmhl__V1HDGAhbbZ39B3G3k8IAnIPQ4Qhih-OdBD-Ual1As-pU1G_JDN5lWX0j2jJpktbxqJDrjkg-Vi0j4PLj02SpSTM6haCosYVShZcQ7FZ6d7DicS13eLRfv-viB7WsFreS9YOVpgycrao6qbrUqe22Pa2-dAzhqW1CbwjfXY4i04HBNs_fZisgNG3oWK2CVe1zGZsZ-7M5ZgpgNVqZuhvo45sq1jHV2625po5p-fK3KQhV1YyP52MyJOo5wJE6cTur16z0bxnDlqKog6OQxTBBPIypKqJKoxji7H0aMg76c_90NLmYdntwuc4lt9_PlpGCKd5tPcMtD8iQYMEfqECjb3g2V4_QQytA_N5A6THqyfIA3T-Ttpj5AeqPO5niN3hQzCHM0e-eoM8t3LCC2-8fP7eAhjug4XmJG6BhAzSsgYYboGEDNNwA7Sn69GF0NTgntmUHEZ7n1sQNpPQpTVOIhoQvs4jTNHNzznI_CaNM0gTcdSq5Ws33eOZnNA_gJWUKfnoGDtUh2iurUj5DWPDUySH6DR3p-VFOU1cmiaM2UgeRSqH00UnzM8bC1rNXbVWKeIfo-uht-4FrU8pl96WHWi7tdTTgQegHXh8dKUHF4J6qGstCkdFEHYNRhMDKfX73OxyhB93f4wXaqxcr-RLdE-t6vly8suD6A22np7I
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+Rain%E2%80%93Snow-Transition+Elevations+in+Mountain+Basins+Using+Wireless+Sensor+Networks&rft.jtitle=Journal+of+hydrometeorology&rft.au=Cui%2C+Guotao&rft.au=Bales%2C+Roger&rft.au=Rice%2C+Robert&rft.au=Anderson%2C+Michael&rft.date=2020-09-01&rft.issn=1525-755X&rft.eissn=1525-7541&rft.volume=21&rft.issue=9&rft.spage=2061&rft.epage=2081&rft_id=info:doi/10.1175%2FJHM-D-20-0028.1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1175_JHM_D_20_0028_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-755X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-755X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-755X&client=summon