CFD modeling of an industrial scale two-fluid nozzle fluidized bed granulator
[Display omitted] •Modeling of three-phase dense bottom spray fluidized bed granulation of urea.•Solving heat and mass equations in a simulated industrial-scale granulator.•Droplets’ diameter determination in atomization process.•Comparing simulated bed height with measured industrial data.•Determin...
Gespeichert in:
| Veröffentlicht in: | Chemical engineering research & design Jg. 159; S. 605 - 614 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Rugby
Elsevier B.V
01.07.2020
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0263-8762, 1744-3563 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | [Display omitted]
•Modeling of three-phase dense bottom spray fluidized bed granulation of urea.•Solving heat and mass equations in a simulated industrial-scale granulator.•Droplets’ diameter determination in atomization process.•Comparing simulated bed height with measured industrial data.•Determination of temperature changes and water content evaporation in system.
A 3D computational fluid dynamic modeling of atomization and fluidization of urea was simulated in an external mixing, bottom spray, fluidized bed granulator. The Eulerian–Lagrangian approach was used to predict the mean diameter of melt urea droplets similar to the droplets produced by an industrial scale two-fluid nozzle under hot atomized air. Temperature changes and evaporation of water content from droplets were determined during simulations. Furthermore, three-phase fluidization was simulated in the Eulerian approach whereby the bed expansion of the granulator was predicted. The mean diameter of droplets and bed height were found in good agreement with the empirical correlation and the real bed height, as characterized by a level transmitter instrument in the industrial granulator, respectively. The important features of this study included solving mass, heat and hydraulic equations simultaneously, as well as simulating a real urea fluidized bed granulation unit. |
|---|---|
| AbstractList | A 3D computational fluid dynamic modeling of atomization and fluidization of urea was simulated in an external mixing, bottom spray, fluidized bed granulator. The Eulerian–Lagrangian approach was used to predict the mean diameter of melt urea droplets similar to the droplets produced by an industrial scale two-fluid nozzle under hot atomized air. Temperature changes and evaporation of water content from droplets were determined during simulations. Furthermore, three-phase fluidization was simulated in the Eulerian approach whereby the bed expansion of the granulator was predicted. The mean diameter of droplets and bed height were found in good agreement with the empirical correlation and the real bed height, as characterized by a level transmitter instrument in the industrial granulator, respectively. The important features of this study included solving mass, heat and hydraulic equations simultaneously, as well as simulating a real urea fluidized bed granulation unit. [Display omitted] •Modeling of three-phase dense bottom spray fluidized bed granulation of urea.•Solving heat and mass equations in a simulated industrial-scale granulator.•Droplets’ diameter determination in atomization process.•Comparing simulated bed height with measured industrial data.•Determination of temperature changes and water content evaporation in system. A 3D computational fluid dynamic modeling of atomization and fluidization of urea was simulated in an external mixing, bottom spray, fluidized bed granulator. The Eulerian–Lagrangian approach was used to predict the mean diameter of melt urea droplets similar to the droplets produced by an industrial scale two-fluid nozzle under hot atomized air. Temperature changes and evaporation of water content from droplets were determined during simulations. Furthermore, three-phase fluidization was simulated in the Eulerian approach whereby the bed expansion of the granulator was predicted. The mean diameter of droplets and bed height were found in good agreement with the empirical correlation and the real bed height, as characterized by a level transmitter instrument in the industrial granulator, respectively. The important features of this study included solving mass, heat and hydraulic equations simultaneously, as well as simulating a real urea fluidized bed granulation unit. |
| Author | Tabeei, A. Mohebbi-Kalhori, D. Samimi, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Tabeei fullname: Tabeei, A. – sequence: 2 givenname: A. surname: Samimi fullname: Samimi, A. email: a.samimi@eng.usb.ac.ir, samimi683@yahoo.co.uk – sequence: 3 givenname: D. surname: Mohebbi-Kalhori fullname: Mohebbi-Kalhori, D. |
| BookMark | eNqFkD1PwzAQhi0EEuXjF7BEYk7wR5ykAwMqFJBALDBbju9aXAUbbAdEfz0uZWKA4fTqPp473XtAdp13SMgJoxWjrDlbVeYZA1ScclpRWWXZIRPW1nUpZCN2yYTyRpRd2_B9chDjilKau92E3M_ml8WLBxysWxZ-UWhXWAdjTMHqoYhGD1ikD18uhtFC4fx6nQvfiV0jFH2OZdBuHHTy4YjsLfQQ8fhHD8nT_OpxdlPePVzfzi7uSiMESyXj2E57aAEln7Le0L7rjIGWcsk6iZ0RPTAJveip1IggZN13IEDKGhtoQByS0-3e1-DfRoxJrfwYXD6peF3zaSNrxvLUdDtlgo8x4EIZm3Sy3qWg7aAYVRv31Ep9u6c27ikqVZbMil_sa7AvOnz-Q51vKczPv1sMKhqLziDYgCYp8PZP_gt3hox7 |
| CitedBy_id | crossref_primary_10_1016_j_powtec_2022_117597 crossref_primary_10_3390_app122110747 crossref_primary_10_1016_j_cherd_2022_01_019 crossref_primary_10_1016_j_carbon_2024_119322 crossref_primary_10_1016_j_ces_2022_117723 crossref_primary_10_1016_j_ijpharm_2023_122638 crossref_primary_10_1088_1742_6596_2012_1_012082 crossref_primary_10_1016_j_ces_2021_117090 crossref_primary_10_1016_j_powtec_2023_118392 crossref_primary_10_3390_pharmaceutics16101304 crossref_primary_10_1016_j_cherd_2021_06_014 |
| Cites_doi | 10.1016/j.powtec.2009.09.014 10.1016/j.powtec.2006.12.015 10.1002/app.32302 10.1081/DRT-120002550 10.1016/j.compfluid.2010.10.013 10.1016/S0032-5910(01)00313-8 10.1016/S0255-2701(97)00022-6 10.1016/S0032-5910(02)00294-2 10.1016/j.icheatmasstransfer.2010.05.009 10.1002/ppsc.19890060129 10.1063/1.4913809 10.1109/28.297899 10.1002/aic.690220104 10.1016/j.ijpharm.2013.08.022 10.1016/S0032-5910(02)00221-8 10.1016/0032-5910(91)80189-P 10.1002/aic.690491112 10.1016/j.ces.2008.04.014 10.1016/j.powtec.2013.05.050 10.1016/S1369-703X(01)00121-8 10.1016/j.surfcoat.2012.12.010 10.1016/j.elstat.2011.10.006 10.1016/j.ces.2012.06.026 10.1016/0304-3886(93)90096-P 10.1016/j.ces.2010.02.008 10.1016/j.cej.2010.08.056 10.1007/s00348-008-0593-2 10.1016/S0032-5910(01)00355-2 10.1016/j.powtec.2003.08.025 10.1016/j.ces.2013.06.051 10.1002/aic.690170318 10.1016/j.cherd.2010.08.006 10.1016/j.powtec.2006.03.024 10.1016/j.ces.2011.09.014 10.1590/S0104-66322005000200004 |
| ContentType | Journal Article |
| Copyright | 2020 Institution of Chemical Engineers Copyright Elsevier Science Ltd. Jul 2020 |
| Copyright_xml | – notice: 2020 Institution of Chemical Engineers – notice: Copyright Elsevier Science Ltd. Jul 2020 |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1016/j.cherd.2020.05.020 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1744-3563 |
| EndPage | 614 |
| ExternalDocumentID | 10_1016_j_cherd_2020_05_020 S0263876220302434 |
| GroupedDBID | --K --M -QF -~X .~1 0R~ 1B1 1~. 1~5 29B 3EH 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARJD AAXUO ABDBF ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHPOS AI. AIAGR AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CAG COF CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO9 EP2 EP3 ESX FDB FEDTE FGOYB FIRID FNPLU FYGXN GBLVA HVGLF HZ~ I-F IHE J1W JARJE KOM M41 ML- MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SJN SPC SPCBC SSG SSR SSZ T5K T9H TUS UNMZH VH1 XFK ~02 ~8M ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACUHS ACVFH ADCNI ADMLS ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 8FD AGCQF JG9 |
| ID | FETCH-LOGICAL-c331t-12e79bd7de5291bc0b88ccd7025185e8c3bd15db3b05aeed354b8d3d554e6d6d3 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544050400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-8762 |
| IngestDate | Wed Aug 13 10:04:54 EDT 2025 Sat Nov 29 07:23:08 EST 2025 Tue Nov 18 22:38:39 EST 2025 Fri Feb 23 02:47:12 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | CFD Eulerian–Lagrangian approach Two-fluid nozzle Fluidization Atomization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c331t-12e79bd7de5291bc0b88ccd7025185e8c3bd15db3b05aeed354b8d3d554e6d6d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2442965411 |
| PQPubID | 2047566 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2442965411 crossref_citationtrail_10_1016_j_cherd_2020_05_020 crossref_primary_10_1016_j_cherd_2020_05_020 elsevier_sciencedirect_doi_10_1016_j_cherd_2020_05_020 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 2020-07-00 20200701 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Rugby |
| PublicationPlace_xml | – name: Rugby |
| PublicationTitle | Chemical engineering research & design |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Lefebvre (bib0085) 1989; 6 Iveson, Litster, Hapgood, Ennis (bib0070) 2001; 117 Lin, Schlunder (bib0095) 1997; 36 Behjat, Shahhosseini, Ahmadi Marvast (bib0020) 2010; 37 Litster, Ennis (bib0100) 2004 Ennis, Tardos, Pfeffer (bib0035) 1991; 65 McKeen, Pugsley (bib0105) 2003; 129 Balachandran, Machowski, Ahmad (bib0010) 1994; 30 Fryer, Potter (bib0045) 1976; 22 Hede, Bach, Jensen (bib0055) 2008; 63 Osborne, Sochon, Cartwright, Doughty, Hounslow, Salman (bib0115) 2011; 89 Salman, Hounslow, Seville (bib0135) 2007; vol. 11 Toschkoff, Just, Funke, Djuric, Knop, Kleinebudde, Scharrer, Khinast (bib0165) 2013; 101 Moghadam, Samimi, Samimi, Khorram (bib0110) 2010; 118 Feies, Antonyuk, Heinrich, Dopfer, Palzer (bib0040) 2013; 86 Zhai, Li, Jones, Walker, Andrews (bib0190) 2010; 164 Speranza, Ghadiri (bib0145) 2003; 135-136 Hemati, Cherif, Saleh, Pont (bib0065) 2003; 130 Kim, Marshall (bib0075) 1971; 17 Duangkhamchan, Ronsse, Depypere, Dewettinck, Pieters (bib0030) 2010; 65 Zeoli, Tabbara, Gu (bib0185) 2011; 66 Aydin, Unal (bib0005) 2011; 42 Watanabe, Matsuyama, Yamamoto (bib0180) 2001; 8 Heinrich, Henneberg, Peglow, Drechsler, Mörl (bib0060) 2005; 22 Braumann, Kraft, Mort (bib0025) 2010; 197 Ruotsalainen, Heinämäki, Rantanen, Yliruusi (bib0130) 2002 Thielmann, Naderi, Ansari, Stepanek (bib0160) 2008; 181 Koutsakis, Gu, Vardelle (bib0080) 2013; 220 Syamlal, O’Brien (bib0150) 2003; 49 Bérengére, Elisabeth (bib0015) 2002; 20 Sichani, Emami (bib0140) 2015; 27 Guildenbecher, López-Rivera, Sojka (bib0050) 2009; 46 Pont, Saleh, Steinmetz, Hemati (bib0120) 2001; 120 Toschkoff, Khinast (bib0170) 2013; 457 Tabeei, Samimi, Khoram, Moghadam (bib0155) 2012; 70 Rodriguez-Rivero, Martin, Martin del Valle, Galan (bib0125) 2013; 246 Lehr, Hiller (bib0090) 1993; 30 Walker, Andrews, Jones (bib0175) 2006; 165 Thielmann (10.1016/j.cherd.2020.05.020_bib0160) 2008; 181 Bérengére (10.1016/j.cherd.2020.05.020_bib0015) 2002; 20 Tabeei (10.1016/j.cherd.2020.05.020_bib0155) 2012; 70 Rodriguez-Rivero (10.1016/j.cherd.2020.05.020_bib0125) 2013; 246 Salman (10.1016/j.cherd.2020.05.020_bib0135) 2007; vol. 11 Pont (10.1016/j.cherd.2020.05.020_bib0120) 2001; 120 Braumann (10.1016/j.cherd.2020.05.020_bib0025) 2010; 197 Litster (10.1016/j.cherd.2020.05.020_bib0100) 2004 Lefebvre (10.1016/j.cherd.2020.05.020_bib0085) 1989; 6 Toschkoff (10.1016/j.cherd.2020.05.020_bib0165) 2013; 101 Zeoli (10.1016/j.cherd.2020.05.020_bib0185) 2011; 66 Heinrich (10.1016/j.cherd.2020.05.020_bib0060) 2005; 22 Ruotsalainen (10.1016/j.cherd.2020.05.020_bib0130) 2002 Aydin (10.1016/j.cherd.2020.05.020_bib0005) 2011; 42 Walker (10.1016/j.cherd.2020.05.020_bib0175) 2006; 165 Behjat (10.1016/j.cherd.2020.05.020_bib0020) 2010; 37 Hemati (10.1016/j.cherd.2020.05.020_bib0065) 2003; 130 Lehr (10.1016/j.cherd.2020.05.020_bib0090) 1993; 30 Koutsakis (10.1016/j.cherd.2020.05.020_bib0080) 2013; 220 McKeen (10.1016/j.cherd.2020.05.020_bib0105) 2003; 129 Feies (10.1016/j.cherd.2020.05.020_bib0040) 2013; 86 Speranza (10.1016/j.cherd.2020.05.020_bib0145) 2003; 135-136 Duangkhamchan (10.1016/j.cherd.2020.05.020_bib0030) 2010; 65 Ennis (10.1016/j.cherd.2020.05.020_bib0035) 1991; 65 Zhai (10.1016/j.cherd.2020.05.020_bib0190) 2010; 164 Moghadam (10.1016/j.cherd.2020.05.020_bib0110) 2010; 118 Lin (10.1016/j.cherd.2020.05.020_bib0095) 1997; 36 Guildenbecher (10.1016/j.cherd.2020.05.020_bib0050) 2009; 46 Iveson (10.1016/j.cherd.2020.05.020_bib0070) 2001; 117 Toschkoff (10.1016/j.cherd.2020.05.020_bib0170) 2013; 457 Hede (10.1016/j.cherd.2020.05.020_bib0055) 2008; 63 Balachandran (10.1016/j.cherd.2020.05.020_bib0010) 1994; 30 Kim (10.1016/j.cherd.2020.05.020_bib0075) 1971; 17 Sichani (10.1016/j.cherd.2020.05.020_bib0140) 2015; 27 Syamlal (10.1016/j.cherd.2020.05.020_bib0150) 2003; 49 Fryer (10.1016/j.cherd.2020.05.020_bib0045) 1976; 22 Osborne (10.1016/j.cherd.2020.05.020_bib0115) 2011; 89 Watanabe (10.1016/j.cherd.2020.05.020_bib0180) 2001; 8 |
| References_xml | – volume: vol. 11 start-page: 417 year: 2007 end-page: 476 ident: bib0135 article-title: Granulation publication-title: Handbook of Powder Technology – volume: 42 start-page: 37 year: 2011 end-page: 43 ident: bib0005 article-title: Experimental and numerical modeling of the gas atomization nozzle for gas fiow behavior publication-title: Comp. Fluids – volume: 37 start-page: 935 year: 2010 end-page: 943 ident: bib0020 article-title: Modeling gas oil spray coalescence and vaporization in gas solid riser reactor publication-title: Int. Commun. Heat Mass Transfer – volume: 30 start-page: 850 year: 1994 end-page: 855 ident: bib0010 article-title: Electrostatic atomization of conducting liquids using AC superimposed publication-title: IEEE Trans. Indus. Appl. – volume: 20 start-page: 419 year: 2002 end-page: 447 ident: bib0015 article-title: Fluid bed encapsulation of particles: principles and practice publication-title: Dry. Technol. – volume: 66 start-page: 6498 year: 2011 end-page: 6504 ident: bib0185 article-title: CFD modeling of primary breakup during powder atomization publication-title: Chem. Eng. Sci. – volume: 120 start-page: 97 year: 2001 end-page: 104 ident: bib0120 article-title: Influence of the physicochemical properties on the growth of solid particles by granulation in fluidized bed publication-title: Powder Technol. – volume: 49 start-page: 2793 year: 2003 end-page: 2801 ident: bib0150 article-title: Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed publication-title: AIChE J. – volume: 6 start-page: 176 year: 1989 end-page: 186 ident: bib0085 article-title: Properties of sprays publication-title: Part. Part. Syst. Charact. – start-page: 75 year: 2002 end-page: 86 ident: bib0130 article-title: Development of an automation system for a tablet coater publication-title: J. Am. Assoc. Pharma. Sci. – volume: 86 start-page: 108 year: 2013 end-page: 123 ident: bib0040 article-title: Collision dynamics in fluidised bed granulators: a DEM-CFD study publication-title: Chem. Eng. Sci. – volume: 246 start-page: 617 year: 2013 end-page: 624 ident: bib0125 article-title: CFD modelling and its validation of non-Newtonian fluid flow in a microparticle production process using fan jet nozzles publication-title: Powder Technol. – volume: 181 start-page: 160 year: 2008 end-page: 168 ident: bib0160 article-title: The effect of primary particle surface energy on agglomeration rate in fluidised bed wet granulation publication-title: Powder Technol. – volume: 36 start-page: 443 year: 1997 end-page: 457 ident: bib0095 article-title: Fluidized bed spray granulation investigation of the coating process on a single sphere publication-title: Chem. Eng. Process. – volume: 46 start-page: 371 year: 2009 end-page: 402 ident: bib0050 article-title: Secondary atomization publication-title: Exp. Fluids – volume: 27 start-page: 032103 year: 2015 ident: bib0140 article-title: A droplet deformation and breakup model based on virtual work principle publication-title: Phys. Fluids – volume: 70 start-page: 77 year: 2012 end-page: 82 ident: bib0155 article-title: Study pulsating electrospray of non-Newtonian and thixitropic sodium alginate solution publication-title: J. Electrostat. – volume: 22 start-page: 181 year: 2005 end-page: 194 ident: bib0060 article-title: Fluidized bed spray granulation: analysis of heat and mass transfers and dynamic particle populations publication-title: Braz. J. Chem. Eng. – volume: 117 start-page: 3 year: 2001 end-page: 39 ident: bib0070 article-title: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review publication-title: Powder Technol. – volume: 197 start-page: 196 year: 2010 end-page: 210 ident: bib0025 article-title: Parameter estimation in a multidimensional granulation model publication-title: Powder Technol. – volume: 220 start-page: 214 year: 2013 end-page: 218 ident: bib0080 article-title: Three dimensional CFD simulation of liquid copper break up for the liquid precursor spraying publication-title: Surf. Coat. Technol. – volume: 30 start-page: 433 year: 1993 end-page: 440 ident: bib0090 article-title: Electrostatic atomization of liquid hydrocarbons publication-title: J. Electrostat. – volume: 118 start-page: 1288 year: 2010 end-page: 1296 ident: bib0110 article-title: Electrospray modeling of highly viscous and non-Newtonian liquids publication-title: J. Appl. Polym. Sci. – volume: 101 start-page: 603 year: 2013 end-page: 614 ident: bib0165 article-title: Spray models for discrete element simulations of particle coating processes publication-title: Chem. Eng. Sci. – volume: 17 start-page: 575 year: 1971 end-page: 584 ident: bib0075 article-title: Drop-size distributions from pneumatic atomizers publication-title: AlChE J. – volume: 165 start-page: 161 year: 2006 end-page: 166 ident: bib0175 article-title: Effect of process parameters on the melt granulation of pharmaceutical powders publication-title: Powder Technol. – volume: 65 start-page: 3100 year: 2010 end-page: 3112 ident: bib0030 article-title: Comparison and evaluation of interphase momentum exchange models for simulation of solids volume fraction in tapered fludised beds publication-title: Chem. Eng. Sci. – volume: 130 start-page: 18 year: 2003 end-page: 34 ident: bib0065 article-title: Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics publication-title: Powder Technol. – volume: 129 start-page: 139 year: 2003 end-page: 152 ident: bib0105 article-title: Simulation and experimental validation of a freely bubbling bed of FCC catalyst publication-title: Powder Technol. – volume: 8 start-page: 171 year: 2001 end-page: 174 ident: bib0180 article-title: Preparation of immobilized enzyme gel particles using an electrostatic atomization technique publication-title: Biochem. Eng. J. – volume: 63 start-page: 3821 year: 2008 end-page: 3842 ident: bib0055 article-title: Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: a review publication-title: Chem. Eng. Sci. – volume: 164 start-page: 275 year: 2010 end-page: 284 ident: bib0190 article-title: The effect of the binder size and viscosity on agglomerate growth in fluidised hot melt granulation publication-title: Chem. Eng. J. – volume: 457 start-page: 407 year: 2013 end-page: 422 ident: bib0170 article-title: Mathematical modeling of the coating process publication-title: Int. J. Pharma. – year: 2004 ident: bib0100 article-title: The Science and Engineering of Granulation Processes – volume: 22 start-page: 38 year: 1976 end-page: 47 ident: bib0045 article-title: Experimental investigation of models for fluidized bed catalytic reactors publication-title: AlChE J. – volume: 89 start-page: 553 year: 2011 end-page: 559 ident: bib0115 article-title: Binder addition methods and binder distribution in high shear and fluidised bed granulation publication-title: Chem. Eng. Res. Design – volume: 135-136 start-page: 361 year: 2003 end-page: 365 ident: bib0145 article-title: Effect of electrostatic field on dripping of highly conductive and viscous liquids publication-title: Powder Technol. – volume: 65 start-page: 257 year: 1991 end-page: 272 ident: bib0035 article-title: A microlevel-based characterization of granulation phenomena publication-title: Powder Technol. – volume: 197 start-page: 196 year: 2010 ident: 10.1016/j.cherd.2020.05.020_bib0025 article-title: Parameter estimation in a multidimensional granulation model publication-title: Powder Technol. doi: 10.1016/j.powtec.2009.09.014 – volume: 181 start-page: 160 year: 2008 ident: 10.1016/j.cherd.2020.05.020_bib0160 article-title: The effect of primary particle surface energy on agglomeration rate in fluidised bed wet granulation publication-title: Powder Technol. doi: 10.1016/j.powtec.2006.12.015 – volume: 118 start-page: 1288 year: 2010 ident: 10.1016/j.cherd.2020.05.020_bib0110 article-title: Electrospray modeling of highly viscous and non-Newtonian liquids publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.32302 – volume: 20 start-page: 419 year: 2002 ident: 10.1016/j.cherd.2020.05.020_bib0015 article-title: Fluid bed encapsulation of particles: principles and practice publication-title: Dry. Technol. doi: 10.1081/DRT-120002550 – volume: 42 start-page: 37 year: 2011 ident: 10.1016/j.cherd.2020.05.020_bib0005 article-title: Experimental and numerical modeling of the gas atomization nozzle for gas fiow behavior publication-title: Comp. Fluids doi: 10.1016/j.compfluid.2010.10.013 – volume: 117 start-page: 3 year: 2001 ident: 10.1016/j.cherd.2020.05.020_bib0070 article-title: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review publication-title: Powder Technol. doi: 10.1016/S0032-5910(01)00313-8 – volume: 36 start-page: 443 year: 1997 ident: 10.1016/j.cherd.2020.05.020_bib0095 article-title: Fluidized bed spray granulation investigation of the coating process on a single sphere publication-title: Chem. Eng. Process. doi: 10.1016/S0255-2701(97)00022-6 – volume: 129 start-page: 139 year: 2003 ident: 10.1016/j.cherd.2020.05.020_bib0105 article-title: Simulation and experimental validation of a freely bubbling bed of FCC catalyst publication-title: Powder Technol. doi: 10.1016/S0032-5910(02)00294-2 – volume: 37 start-page: 935 year: 2010 ident: 10.1016/j.cherd.2020.05.020_bib0020 article-title: Modeling gas oil spray coalescence and vaporization in gas solid riser reactor publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.05.009 – volume: 6 start-page: 176 year: 1989 ident: 10.1016/j.cherd.2020.05.020_bib0085 article-title: Properties of sprays publication-title: Part. Part. Syst. Charact. doi: 10.1002/ppsc.19890060129 – volume: 27 start-page: 032103 year: 2015 ident: 10.1016/j.cherd.2020.05.020_bib0140 article-title: A droplet deformation and breakup model based on virtual work principle publication-title: Phys. Fluids doi: 10.1063/1.4913809 – volume: 30 start-page: 850 year: 1994 ident: 10.1016/j.cherd.2020.05.020_bib0010 article-title: Electrostatic atomization of conducting liquids using AC superimposed publication-title: IEEE Trans. Indus. Appl. doi: 10.1109/28.297899 – volume: 22 start-page: 38 year: 1976 ident: 10.1016/j.cherd.2020.05.020_bib0045 article-title: Experimental investigation of models for fluidized bed catalytic reactors publication-title: AlChE J. doi: 10.1002/aic.690220104 – volume: 457 start-page: 407 year: 2013 ident: 10.1016/j.cherd.2020.05.020_bib0170 article-title: Mathematical modeling of the coating process publication-title: Int. J. Pharma. doi: 10.1016/j.ijpharm.2013.08.022 – volume: 130 start-page: 18 year: 2003 ident: 10.1016/j.cherd.2020.05.020_bib0065 article-title: Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics publication-title: Powder Technol. doi: 10.1016/S0032-5910(02)00221-8 – volume: 65 start-page: 257 year: 1991 ident: 10.1016/j.cherd.2020.05.020_bib0035 article-title: A microlevel-based characterization of granulation phenomena publication-title: Powder Technol. doi: 10.1016/0032-5910(91)80189-P – volume: 49 start-page: 2793 year: 2003 ident: 10.1016/j.cherd.2020.05.020_bib0150 article-title: Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed publication-title: AIChE J. doi: 10.1002/aic.690491112 – volume: 63 start-page: 3821 year: 2008 ident: 10.1016/j.cherd.2020.05.020_bib0055 article-title: Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: a review publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2008.04.014 – start-page: 75 year: 2002 ident: 10.1016/j.cherd.2020.05.020_bib0130 article-title: Development of an automation system for a tablet coater publication-title: J. Am. Assoc. Pharma. Sci. – volume: 246 start-page: 617 year: 2013 ident: 10.1016/j.cherd.2020.05.020_bib0125 article-title: CFD modelling and its validation of non-Newtonian fluid flow in a microparticle production process using fan jet nozzles publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.05.050 – volume: vol. 11 start-page: 417 year: 2007 ident: 10.1016/j.cherd.2020.05.020_bib0135 article-title: Granulation – volume: 8 start-page: 171 year: 2001 ident: 10.1016/j.cherd.2020.05.020_bib0180 article-title: Preparation of immobilized enzyme gel particles using an electrostatic atomization technique publication-title: Biochem. Eng. J. doi: 10.1016/S1369-703X(01)00121-8 – volume: 220 start-page: 214 year: 2013 ident: 10.1016/j.cherd.2020.05.020_bib0080 article-title: Three dimensional CFD simulation of liquid copper break up for the liquid precursor spraying publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2012.12.010 – volume: 70 start-page: 77 year: 2012 ident: 10.1016/j.cherd.2020.05.020_bib0155 article-title: Study pulsating electrospray of non-Newtonian and thixitropic sodium alginate solution publication-title: J. Electrostat. doi: 10.1016/j.elstat.2011.10.006 – volume: 86 start-page: 108 year: 2013 ident: 10.1016/j.cherd.2020.05.020_bib0040 article-title: Collision dynamics in fluidised bed granulators: a DEM-CFD study publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.06.026 – volume: 30 start-page: 433 year: 1993 ident: 10.1016/j.cherd.2020.05.020_bib0090 article-title: Electrostatic atomization of liquid hydrocarbons publication-title: J. Electrostat. doi: 10.1016/0304-3886(93)90096-P – volume: 65 start-page: 3100 year: 2010 ident: 10.1016/j.cherd.2020.05.020_bib0030 article-title: Comparison and evaluation of interphase momentum exchange models for simulation of solids volume fraction in tapered fludised beds publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2010.02.008 – volume: 164 start-page: 275 year: 2010 ident: 10.1016/j.cherd.2020.05.020_bib0190 article-title: The effect of the binder size and viscosity on agglomerate growth in fluidised hot melt granulation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2010.08.056 – volume: 46 start-page: 371 year: 2009 ident: 10.1016/j.cherd.2020.05.020_bib0050 article-title: Secondary atomization publication-title: Exp. Fluids doi: 10.1007/s00348-008-0593-2 – volume: 120 start-page: 97 year: 2001 ident: 10.1016/j.cherd.2020.05.020_bib0120 article-title: Influence of the physicochemical properties on the growth of solid particles by granulation in fluidized bed publication-title: Powder Technol. doi: 10.1016/S0032-5910(01)00355-2 – volume: 135-136 start-page: 361 year: 2003 ident: 10.1016/j.cherd.2020.05.020_bib0145 article-title: Effect of electrostatic field on dripping of highly conductive and viscous liquids publication-title: Powder Technol. doi: 10.1016/j.powtec.2003.08.025 – volume: 101 start-page: 603 year: 2013 ident: 10.1016/j.cherd.2020.05.020_bib0165 article-title: Spray models for discrete element simulations of particle coating processes publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.06.051 – volume: 17 start-page: 575 year: 1971 ident: 10.1016/j.cherd.2020.05.020_bib0075 article-title: Drop-size distributions from pneumatic atomizers publication-title: AlChE J. doi: 10.1002/aic.690170318 – volume: 89 start-page: 553 year: 2011 ident: 10.1016/j.cherd.2020.05.020_bib0115 article-title: Binder addition methods and binder distribution in high shear and fluidised bed granulation publication-title: Chem. Eng. Res. Design doi: 10.1016/j.cherd.2010.08.006 – volume: 165 start-page: 161 year: 2006 ident: 10.1016/j.cherd.2020.05.020_bib0175 article-title: Effect of process parameters on the melt granulation of pharmaceutical powders publication-title: Powder Technol. doi: 10.1016/j.powtec.2006.03.024 – volume: 66 start-page: 6498 year: 2011 ident: 10.1016/j.cherd.2020.05.020_bib0185 article-title: CFD modeling of primary breakup during powder atomization publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2011.09.014 – volume: 22 start-page: 181 year: 2005 ident: 10.1016/j.cherd.2020.05.020_bib0060 article-title: Fluidized bed spray granulation: analysis of heat and mass transfers and dynamic particle populations publication-title: Braz. J. Chem. Eng. doi: 10.1590/S0104-66322005000200004 – year: 2004 ident: 10.1016/j.cherd.2020.05.020_bib0100 |
| SSID | ssj0001748 |
| Score | 2.3349535 |
| Snippet | [Display omitted]
•Modeling of three-phase dense bottom spray fluidized bed granulation of urea.•Solving heat and mass equations in a simulated... A 3D computational fluid dynamic modeling of atomization and fluidization of urea was simulated in an external mixing, bottom spray, fluidized bed granulator.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 605 |
| SubjectTerms | Atomization Atomizing Bed expansions CFD Computational fluid dynamics Computational mathematics Computer simulation Drop size distribution Droplets Dynamic models Eulerian–Lagrangian approach Fluid dynamics Fluidization Fluidized bed reactors Fluidized beds Granulation Granulators Moisture content Nozzles Simulation Three dimensional models Two-fluid nozzle Urea |
| Title | CFD modeling of an industrial scale two-fluid nozzle fluidized bed granulator |
| URI | https://dx.doi.org/10.1016/j.cherd.2020.05.020 https://www.proquest.com/docview/2442965411 |
| Volume | 159 |
| WOSCitedRecordID | wos000544050400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1744-3563 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001748 issn: 0263-8762 databaseCode: AIEXJ dateStart: 19961101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE8xGMgHdipBSRw38XHaWvGxFSQ6qTcrjh2aqUtK242pF_51nmM7aZmo4MChaes2H_L75b3nl_d-D6E3fpZQJjLmSbB-Htjj3BNMKC-MchmpQKiQ5nWziXg0SiYT9qXT-elqYa5ncVkmNzds_l9FDWMgbF06-w_ibg4KA_AZhA5bEDts_0rwx8MT09_G5jOnOpex6c-xBJmo3upH5eWzq0L2ymq9hoH6S7HW7ii8voEB0229qsWm79pwC6iWw7BnyYKmNYTkVjrIOBVKFVvx0q_pZXG5PXRWTZUQhfcpnU0rW_a-GYqAdadLW7XxMVcj49RSm5i0rCleSat7lVG3cRR5hFoV5_SxpQg3GrVfV2Xf1vQm6HDxTkNbM76Gfs3AGvqtYXMP80ef-fD89JSPB5PxIRnOv3u66Zh-OH9ITgwA7qC9MKYs6aK9ow-DycfGmMMVJiZMZy7eEVfVKYK3zv0n5-Y3M1_7LuOH6IFddOAjA5ZHqKPKx-j-BhXlE3QGsMEONrjKcVriFja4hg1uYIMNbHADGwywwS1snqLz4WB8_N6zrTa8jJBg5QWhipmQsVQ0ZIHIfJEkWSZjvQJNqEoyImRApSDCpym4VYRGIpFEgjOq-rIvyTPULatSPUeYBXkWsSgloAbA26dpnLBY880SX1FB030UujnimeWh1-1QZtwlHF7wemK5nljuUw5v--hts9Pc0LDs_nvfTT63nqTxEDnAZ_eOB05U3N7TSw4ecMj6NAqCF7t_fonutbfFAequFlfqFbqbXa-K5eK1hdYvFyabwA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+modeling+of+an+industrial+scale+two-fluid+nozzle+fluidized+bed+granulator&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Tabeei%2C+A&rft.au=Samimi%2C+A&rft.au=Mohebbi-Kalhori%2C+D&rft.date=2020-07-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-8762&rft.eissn=1744-3563&rft.volume=159&rft.spage=605&rft_id=info:doi/10.1016%2Fj.cherd.2020.05.020&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon |