CFD modeling of an industrial scale two-fluid nozzle fluidized bed granulator

[Display omitted] •Modeling of three-phase dense bottom spray fluidized bed granulation of urea.•Solving heat and mass equations in a simulated industrial-scale granulator.•Droplets’ diameter determination in atomization process.•Comparing simulated bed height with measured industrial data.•Determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design Jg. 159; S. 605 - 614
Hauptverfasser: Tabeei, A., Samimi, A., Mohebbi-Kalhori, D.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Rugby Elsevier B.V 01.07.2020
Elsevier Science Ltd
Schlagworte:
ISSN:0263-8762, 1744-3563
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract [Display omitted] •Modeling of three-phase dense bottom spray fluidized bed granulation of urea.•Solving heat and mass equations in a simulated industrial-scale granulator.•Droplets’ diameter determination in atomization process.•Comparing simulated bed height with measured industrial data.•Determination of temperature changes and water content evaporation in system. A 3D computational fluid dynamic modeling of atomization and fluidization of urea was simulated in an external mixing, bottom spray, fluidized bed granulator. The Eulerian–Lagrangian approach was used to predict the mean diameter of melt urea droplets similar to the droplets produced by an industrial scale two-fluid nozzle under hot atomized air. Temperature changes and evaporation of water content from droplets were determined during simulations. Furthermore, three-phase fluidization was simulated in the Eulerian approach whereby the bed expansion of the granulator was predicted. The mean diameter of droplets and bed height were found in good agreement with the empirical correlation and the real bed height, as characterized by a level transmitter instrument in the industrial granulator, respectively. The important features of this study included solving mass, heat and hydraulic equations simultaneously, as well as simulating a real urea fluidized bed granulation unit.
AbstractList A 3D computational fluid dynamic modeling of atomization and fluidization of urea was simulated in an external mixing, bottom spray, fluidized bed granulator. The Eulerian–Lagrangian approach was used to predict the mean diameter of melt urea droplets similar to the droplets produced by an industrial scale two-fluid nozzle under hot atomized air. Temperature changes and evaporation of water content from droplets were determined during simulations. Furthermore, three-phase fluidization was simulated in the Eulerian approach whereby the bed expansion of the granulator was predicted. The mean diameter of droplets and bed height were found in good agreement with the empirical correlation and the real bed height, as characterized by a level transmitter instrument in the industrial granulator, respectively. The important features of this study included solving mass, heat and hydraulic equations simultaneously, as well as simulating a real urea fluidized bed granulation unit.
[Display omitted] •Modeling of three-phase dense bottom spray fluidized bed granulation of urea.•Solving heat and mass equations in a simulated industrial-scale granulator.•Droplets’ diameter determination in atomization process.•Comparing simulated bed height with measured industrial data.•Determination of temperature changes and water content evaporation in system. A 3D computational fluid dynamic modeling of atomization and fluidization of urea was simulated in an external mixing, bottom spray, fluidized bed granulator. The Eulerian–Lagrangian approach was used to predict the mean diameter of melt urea droplets similar to the droplets produced by an industrial scale two-fluid nozzle under hot atomized air. Temperature changes and evaporation of water content from droplets were determined during simulations. Furthermore, three-phase fluidization was simulated in the Eulerian approach whereby the bed expansion of the granulator was predicted. The mean diameter of droplets and bed height were found in good agreement with the empirical correlation and the real bed height, as characterized by a level transmitter instrument in the industrial granulator, respectively. The important features of this study included solving mass, heat and hydraulic equations simultaneously, as well as simulating a real urea fluidized bed granulation unit.
Author Tabeei, A.
Mohebbi-Kalhori, D.
Samimi, A.
Author_xml – sequence: 1
  givenname: A.
  surname: Tabeei
  fullname: Tabeei, A.
– sequence: 2
  givenname: A.
  surname: Samimi
  fullname: Samimi, A.
  email: a.samimi@eng.usb.ac.ir, samimi683@yahoo.co.uk
– sequence: 3
  givenname: D.
  surname: Mohebbi-Kalhori
  fullname: Mohebbi-Kalhori, D.
BookMark eNqFkD1PwzAQhi0EEuXjF7BEYk7wR5ykAwMqFJBALDBbju9aXAUbbAdEfz0uZWKA4fTqPp473XtAdp13SMgJoxWjrDlbVeYZA1ScclpRWWXZIRPW1nUpZCN2yYTyRpRd2_B9chDjilKau92E3M_ml8WLBxysWxZ-UWhXWAdjTMHqoYhGD1ikD18uhtFC4fx6nQvfiV0jFH2OZdBuHHTy4YjsLfQQ8fhHD8nT_OpxdlPePVzfzi7uSiMESyXj2E57aAEln7Le0L7rjIGWcsk6iZ0RPTAJveip1IggZN13IEDKGhtoQByS0-3e1-DfRoxJrfwYXD6peF3zaSNrxvLUdDtlgo8x4EIZm3Sy3qWg7aAYVRv31Ep9u6c27ikqVZbMil_sa7AvOnz-Q51vKczPv1sMKhqLziDYgCYp8PZP_gt3hox7
CitedBy_id crossref_primary_10_1016_j_powtec_2022_117597
crossref_primary_10_3390_app122110747
crossref_primary_10_1016_j_cherd_2022_01_019
crossref_primary_10_1016_j_carbon_2024_119322
crossref_primary_10_1016_j_ces_2022_117723
crossref_primary_10_1016_j_ijpharm_2023_122638
crossref_primary_10_1088_1742_6596_2012_1_012082
crossref_primary_10_1016_j_ces_2021_117090
crossref_primary_10_1016_j_powtec_2023_118392
crossref_primary_10_3390_pharmaceutics16101304
crossref_primary_10_1016_j_cherd_2021_06_014
Cites_doi 10.1016/j.powtec.2009.09.014
10.1016/j.powtec.2006.12.015
10.1002/app.32302
10.1081/DRT-120002550
10.1016/j.compfluid.2010.10.013
10.1016/S0032-5910(01)00313-8
10.1016/S0255-2701(97)00022-6
10.1016/S0032-5910(02)00294-2
10.1016/j.icheatmasstransfer.2010.05.009
10.1002/ppsc.19890060129
10.1063/1.4913809
10.1109/28.297899
10.1002/aic.690220104
10.1016/j.ijpharm.2013.08.022
10.1016/S0032-5910(02)00221-8
10.1016/0032-5910(91)80189-P
10.1002/aic.690491112
10.1016/j.ces.2008.04.014
10.1016/j.powtec.2013.05.050
10.1016/S1369-703X(01)00121-8
10.1016/j.surfcoat.2012.12.010
10.1016/j.elstat.2011.10.006
10.1016/j.ces.2012.06.026
10.1016/0304-3886(93)90096-P
10.1016/j.ces.2010.02.008
10.1016/j.cej.2010.08.056
10.1007/s00348-008-0593-2
10.1016/S0032-5910(01)00355-2
10.1016/j.powtec.2003.08.025
10.1016/j.ces.2013.06.051
10.1002/aic.690170318
10.1016/j.cherd.2010.08.006
10.1016/j.powtec.2006.03.024
10.1016/j.ces.2011.09.014
10.1590/S0104-66322005000200004
ContentType Journal Article
Copyright 2020 Institution of Chemical Engineers
Copyright Elsevier Science Ltd. Jul 2020
Copyright_xml – notice: 2020 Institution of Chemical Engineers
– notice: Copyright Elsevier Science Ltd. Jul 2020
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.cherd.2020.05.020
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1744-3563
EndPage 614
ExternalDocumentID 10_1016_j_cherd_2020_05_020
S0263876220302434
GroupedDBID --K
--M
-QF
-~X
.~1
0R~
1B1
1~.
1~5
29B
3EH
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDBF
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHPOS
AI.
AIAGR
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO9
EP2
EP3
ESX
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
I-F
IHE
J1W
JARJE
KOM
M41
ML-
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SJN
SPC
SPCBC
SSG
SSR
SSZ
T5K
T9H
TUS
UNMZH
VH1
XFK
~02
~8M
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACUHS
ACVFH
ADCNI
ADMLS
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
8FD
AGCQF
JG9
ID FETCH-LOGICAL-c331t-12e79bd7de5291bc0b88ccd7025185e8c3bd15db3b05aeed354b8d3d554e6d6d3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000544050400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-8762
IngestDate Wed Aug 13 10:04:54 EDT 2025
Sat Nov 29 07:23:08 EST 2025
Tue Nov 18 22:38:39 EST 2025
Fri Feb 23 02:47:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords CFD
Eulerian–Lagrangian approach
Two-fluid nozzle
Fluidization
Atomization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c331t-12e79bd7de5291bc0b88ccd7025185e8c3bd15db3b05aeed354b8d3d554e6d6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2442965411
PQPubID 2047566
PageCount 10
ParticipantIDs proquest_journals_2442965411
crossref_citationtrail_10_1016_j_cherd_2020_05_020
crossref_primary_10_1016_j_cherd_2020_05_020
elsevier_sciencedirect_doi_10_1016_j_cherd_2020_05_020
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
20200701
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Rugby
PublicationPlace_xml – name: Rugby
PublicationTitle Chemical engineering research & design
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Lefebvre (bib0085) 1989; 6
Iveson, Litster, Hapgood, Ennis (bib0070) 2001; 117
Lin, Schlunder (bib0095) 1997; 36
Behjat, Shahhosseini, Ahmadi Marvast (bib0020) 2010; 37
Litster, Ennis (bib0100) 2004
Ennis, Tardos, Pfeffer (bib0035) 1991; 65
McKeen, Pugsley (bib0105) 2003; 129
Balachandran, Machowski, Ahmad (bib0010) 1994; 30
Fryer, Potter (bib0045) 1976; 22
Hede, Bach, Jensen (bib0055) 2008; 63
Osborne, Sochon, Cartwright, Doughty, Hounslow, Salman (bib0115) 2011; 89
Salman, Hounslow, Seville (bib0135) 2007; vol. 11
Toschkoff, Just, Funke, Djuric, Knop, Kleinebudde, Scharrer, Khinast (bib0165) 2013; 101
Moghadam, Samimi, Samimi, Khorram (bib0110) 2010; 118
Feies, Antonyuk, Heinrich, Dopfer, Palzer (bib0040) 2013; 86
Zhai, Li, Jones, Walker, Andrews (bib0190) 2010; 164
Speranza, Ghadiri (bib0145) 2003; 135-136
Hemati, Cherif, Saleh, Pont (bib0065) 2003; 130
Kim, Marshall (bib0075) 1971; 17
Duangkhamchan, Ronsse, Depypere, Dewettinck, Pieters (bib0030) 2010; 65
Zeoli, Tabbara, Gu (bib0185) 2011; 66
Aydin, Unal (bib0005) 2011; 42
Watanabe, Matsuyama, Yamamoto (bib0180) 2001; 8
Heinrich, Henneberg, Peglow, Drechsler, Mörl (bib0060) 2005; 22
Braumann, Kraft, Mort (bib0025) 2010; 197
Ruotsalainen, Heinämäki, Rantanen, Yliruusi (bib0130) 2002
Thielmann, Naderi, Ansari, Stepanek (bib0160) 2008; 181
Koutsakis, Gu, Vardelle (bib0080) 2013; 220
Syamlal, O’Brien (bib0150) 2003; 49
Bérengére, Elisabeth (bib0015) 2002; 20
Sichani, Emami (bib0140) 2015; 27
Guildenbecher, López-Rivera, Sojka (bib0050) 2009; 46
Pont, Saleh, Steinmetz, Hemati (bib0120) 2001; 120
Toschkoff, Khinast (bib0170) 2013; 457
Tabeei, Samimi, Khoram, Moghadam (bib0155) 2012; 70
Rodriguez-Rivero, Martin, Martin del Valle, Galan (bib0125) 2013; 246
Lehr, Hiller (bib0090) 1993; 30
Walker, Andrews, Jones (bib0175) 2006; 165
Thielmann (10.1016/j.cherd.2020.05.020_bib0160) 2008; 181
Bérengére (10.1016/j.cherd.2020.05.020_bib0015) 2002; 20
Tabeei (10.1016/j.cherd.2020.05.020_bib0155) 2012; 70
Rodriguez-Rivero (10.1016/j.cherd.2020.05.020_bib0125) 2013; 246
Salman (10.1016/j.cherd.2020.05.020_bib0135) 2007; vol. 11
Pont (10.1016/j.cherd.2020.05.020_bib0120) 2001; 120
Braumann (10.1016/j.cherd.2020.05.020_bib0025) 2010; 197
Litster (10.1016/j.cherd.2020.05.020_bib0100) 2004
Lefebvre (10.1016/j.cherd.2020.05.020_bib0085) 1989; 6
Toschkoff (10.1016/j.cherd.2020.05.020_bib0165) 2013; 101
Zeoli (10.1016/j.cherd.2020.05.020_bib0185) 2011; 66
Heinrich (10.1016/j.cherd.2020.05.020_bib0060) 2005; 22
Ruotsalainen (10.1016/j.cherd.2020.05.020_bib0130) 2002
Aydin (10.1016/j.cherd.2020.05.020_bib0005) 2011; 42
Walker (10.1016/j.cherd.2020.05.020_bib0175) 2006; 165
Behjat (10.1016/j.cherd.2020.05.020_bib0020) 2010; 37
Hemati (10.1016/j.cherd.2020.05.020_bib0065) 2003; 130
Lehr (10.1016/j.cherd.2020.05.020_bib0090) 1993; 30
Koutsakis (10.1016/j.cherd.2020.05.020_bib0080) 2013; 220
McKeen (10.1016/j.cherd.2020.05.020_bib0105) 2003; 129
Feies (10.1016/j.cherd.2020.05.020_bib0040) 2013; 86
Speranza (10.1016/j.cherd.2020.05.020_bib0145) 2003; 135-136
Duangkhamchan (10.1016/j.cherd.2020.05.020_bib0030) 2010; 65
Ennis (10.1016/j.cherd.2020.05.020_bib0035) 1991; 65
Zhai (10.1016/j.cherd.2020.05.020_bib0190) 2010; 164
Moghadam (10.1016/j.cherd.2020.05.020_bib0110) 2010; 118
Lin (10.1016/j.cherd.2020.05.020_bib0095) 1997; 36
Guildenbecher (10.1016/j.cherd.2020.05.020_bib0050) 2009; 46
Iveson (10.1016/j.cherd.2020.05.020_bib0070) 2001; 117
Toschkoff (10.1016/j.cherd.2020.05.020_bib0170) 2013; 457
Hede (10.1016/j.cherd.2020.05.020_bib0055) 2008; 63
Balachandran (10.1016/j.cherd.2020.05.020_bib0010) 1994; 30
Kim (10.1016/j.cherd.2020.05.020_bib0075) 1971; 17
Sichani (10.1016/j.cherd.2020.05.020_bib0140) 2015; 27
Syamlal (10.1016/j.cherd.2020.05.020_bib0150) 2003; 49
Fryer (10.1016/j.cherd.2020.05.020_bib0045) 1976; 22
Osborne (10.1016/j.cherd.2020.05.020_bib0115) 2011; 89
Watanabe (10.1016/j.cherd.2020.05.020_bib0180) 2001; 8
References_xml – volume: vol. 11
  start-page: 417
  year: 2007
  end-page: 476
  ident: bib0135
  article-title: Granulation
  publication-title: Handbook of Powder Technology
– volume: 42
  start-page: 37
  year: 2011
  end-page: 43
  ident: bib0005
  article-title: Experimental and numerical modeling of the gas atomization nozzle for gas fiow behavior
  publication-title: Comp. Fluids
– volume: 37
  start-page: 935
  year: 2010
  end-page: 943
  ident: bib0020
  article-title: Modeling gas oil spray coalescence and vaporization in gas solid riser reactor
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 30
  start-page: 850
  year: 1994
  end-page: 855
  ident: bib0010
  article-title: Electrostatic atomization of conducting liquids using AC superimposed
  publication-title: IEEE Trans. Indus. Appl.
– volume: 20
  start-page: 419
  year: 2002
  end-page: 447
  ident: bib0015
  article-title: Fluid bed encapsulation of particles: principles and practice
  publication-title: Dry. Technol.
– volume: 66
  start-page: 6498
  year: 2011
  end-page: 6504
  ident: bib0185
  article-title: CFD modeling of primary breakup during powder atomization
  publication-title: Chem. Eng. Sci.
– volume: 120
  start-page: 97
  year: 2001
  end-page: 104
  ident: bib0120
  article-title: Influence of the physicochemical properties on the growth of solid particles by granulation in fluidized bed
  publication-title: Powder Technol.
– volume: 49
  start-page: 2793
  year: 2003
  end-page: 2801
  ident: bib0150
  article-title: Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed
  publication-title: AIChE J.
– volume: 6
  start-page: 176
  year: 1989
  end-page: 186
  ident: bib0085
  article-title: Properties of sprays
  publication-title: Part. Part. Syst. Charact.
– start-page: 75
  year: 2002
  end-page: 86
  ident: bib0130
  article-title: Development of an automation system for a tablet coater
  publication-title: J. Am. Assoc. Pharma. Sci.
– volume: 86
  start-page: 108
  year: 2013
  end-page: 123
  ident: bib0040
  article-title: Collision dynamics in fluidised bed granulators: a DEM-CFD study
  publication-title: Chem. Eng. Sci.
– volume: 246
  start-page: 617
  year: 2013
  end-page: 624
  ident: bib0125
  article-title: CFD modelling and its validation of non-Newtonian fluid flow in a microparticle production process using fan jet nozzles
  publication-title: Powder Technol.
– volume: 181
  start-page: 160
  year: 2008
  end-page: 168
  ident: bib0160
  article-title: The effect of primary particle surface energy on agglomeration rate in fluidised bed wet granulation
  publication-title: Powder Technol.
– volume: 36
  start-page: 443
  year: 1997
  end-page: 457
  ident: bib0095
  article-title: Fluidized bed spray granulation investigation of the coating process on a single sphere
  publication-title: Chem. Eng. Process.
– volume: 46
  start-page: 371
  year: 2009
  end-page: 402
  ident: bib0050
  article-title: Secondary atomization
  publication-title: Exp. Fluids
– volume: 27
  start-page: 032103
  year: 2015
  ident: bib0140
  article-title: A droplet deformation and breakup model based on virtual work principle
  publication-title: Phys. Fluids
– volume: 70
  start-page: 77
  year: 2012
  end-page: 82
  ident: bib0155
  article-title: Study pulsating electrospray of non-Newtonian and thixitropic sodium alginate solution
  publication-title: J. Electrostat.
– volume: 22
  start-page: 181
  year: 2005
  end-page: 194
  ident: bib0060
  article-title: Fluidized bed spray granulation: analysis of heat and mass transfers and dynamic particle populations
  publication-title: Braz. J. Chem. Eng.
– volume: 117
  start-page: 3
  year: 2001
  end-page: 39
  ident: bib0070
  article-title: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review
  publication-title: Powder Technol.
– volume: 197
  start-page: 196
  year: 2010
  end-page: 210
  ident: bib0025
  article-title: Parameter estimation in a multidimensional granulation model
  publication-title: Powder Technol.
– volume: 220
  start-page: 214
  year: 2013
  end-page: 218
  ident: bib0080
  article-title: Three dimensional CFD simulation of liquid copper break up for the liquid precursor spraying
  publication-title: Surf. Coat. Technol.
– volume: 30
  start-page: 433
  year: 1993
  end-page: 440
  ident: bib0090
  article-title: Electrostatic atomization of liquid hydrocarbons
  publication-title: J. Electrostat.
– volume: 118
  start-page: 1288
  year: 2010
  end-page: 1296
  ident: bib0110
  article-title: Electrospray modeling of highly viscous and non-Newtonian liquids
  publication-title: J. Appl. Polym. Sci.
– volume: 101
  start-page: 603
  year: 2013
  end-page: 614
  ident: bib0165
  article-title: Spray models for discrete element simulations of particle coating processes
  publication-title: Chem. Eng. Sci.
– volume: 17
  start-page: 575
  year: 1971
  end-page: 584
  ident: bib0075
  article-title: Drop-size distributions from pneumatic atomizers
  publication-title: AlChE J.
– volume: 165
  start-page: 161
  year: 2006
  end-page: 166
  ident: bib0175
  article-title: Effect of process parameters on the melt granulation of pharmaceutical powders
  publication-title: Powder Technol.
– volume: 65
  start-page: 3100
  year: 2010
  end-page: 3112
  ident: bib0030
  article-title: Comparison and evaluation of interphase momentum exchange models for simulation of solids volume fraction in tapered fludised beds
  publication-title: Chem. Eng. Sci.
– volume: 130
  start-page: 18
  year: 2003
  end-page: 34
  ident: bib0065
  article-title: Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics
  publication-title: Powder Technol.
– volume: 129
  start-page: 139
  year: 2003
  end-page: 152
  ident: bib0105
  article-title: Simulation and experimental validation of a freely bubbling bed of FCC catalyst
  publication-title: Powder Technol.
– volume: 8
  start-page: 171
  year: 2001
  end-page: 174
  ident: bib0180
  article-title: Preparation of immobilized enzyme gel particles using an electrostatic atomization technique
  publication-title: Biochem. Eng. J.
– volume: 63
  start-page: 3821
  year: 2008
  end-page: 3842
  ident: bib0055
  article-title: Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: a review
  publication-title: Chem. Eng. Sci.
– volume: 164
  start-page: 275
  year: 2010
  end-page: 284
  ident: bib0190
  article-title: The effect of the binder size and viscosity on agglomerate growth in fluidised hot melt granulation
  publication-title: Chem. Eng. J.
– volume: 457
  start-page: 407
  year: 2013
  end-page: 422
  ident: bib0170
  article-title: Mathematical modeling of the coating process
  publication-title: Int. J. Pharma.
– year: 2004
  ident: bib0100
  article-title: The Science and Engineering of Granulation Processes
– volume: 22
  start-page: 38
  year: 1976
  end-page: 47
  ident: bib0045
  article-title: Experimental investigation of models for fluidized bed catalytic reactors
  publication-title: AlChE J.
– volume: 89
  start-page: 553
  year: 2011
  end-page: 559
  ident: bib0115
  article-title: Binder addition methods and binder distribution in high shear and fluidised bed granulation
  publication-title: Chem. Eng. Res. Design
– volume: 135-136
  start-page: 361
  year: 2003
  end-page: 365
  ident: bib0145
  article-title: Effect of electrostatic field on dripping of highly conductive and viscous liquids
  publication-title: Powder Technol.
– volume: 65
  start-page: 257
  year: 1991
  end-page: 272
  ident: bib0035
  article-title: A microlevel-based characterization of granulation phenomena
  publication-title: Powder Technol.
– volume: 197
  start-page: 196
  year: 2010
  ident: 10.1016/j.cherd.2020.05.020_bib0025
  article-title: Parameter estimation in a multidimensional granulation model
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2009.09.014
– volume: 181
  start-page: 160
  year: 2008
  ident: 10.1016/j.cherd.2020.05.020_bib0160
  article-title: The effect of primary particle surface energy on agglomeration rate in fluidised bed wet granulation
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2006.12.015
– volume: 118
  start-page: 1288
  year: 2010
  ident: 10.1016/j.cherd.2020.05.020_bib0110
  article-title: Electrospray modeling of highly viscous and non-Newtonian liquids
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.32302
– volume: 20
  start-page: 419
  year: 2002
  ident: 10.1016/j.cherd.2020.05.020_bib0015
  article-title: Fluid bed encapsulation of particles: principles and practice
  publication-title: Dry. Technol.
  doi: 10.1081/DRT-120002550
– volume: 42
  start-page: 37
  year: 2011
  ident: 10.1016/j.cherd.2020.05.020_bib0005
  article-title: Experimental and numerical modeling of the gas atomization nozzle for gas fiow behavior
  publication-title: Comp. Fluids
  doi: 10.1016/j.compfluid.2010.10.013
– volume: 117
  start-page: 3
  year: 2001
  ident: 10.1016/j.cherd.2020.05.020_bib0070
  article-title: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(01)00313-8
– volume: 36
  start-page: 443
  year: 1997
  ident: 10.1016/j.cherd.2020.05.020_bib0095
  article-title: Fluidized bed spray granulation investigation of the coating process on a single sphere
  publication-title: Chem. Eng. Process.
  doi: 10.1016/S0255-2701(97)00022-6
– volume: 129
  start-page: 139
  year: 2003
  ident: 10.1016/j.cherd.2020.05.020_bib0105
  article-title: Simulation and experimental validation of a freely bubbling bed of FCC catalyst
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(02)00294-2
– volume: 37
  start-page: 935
  year: 2010
  ident: 10.1016/j.cherd.2020.05.020_bib0020
  article-title: Modeling gas oil spray coalescence and vaporization in gas solid riser reactor
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.05.009
– volume: 6
  start-page: 176
  year: 1989
  ident: 10.1016/j.cherd.2020.05.020_bib0085
  article-title: Properties of sprays
  publication-title: Part. Part. Syst. Charact.
  doi: 10.1002/ppsc.19890060129
– volume: 27
  start-page: 032103
  year: 2015
  ident: 10.1016/j.cherd.2020.05.020_bib0140
  article-title: A droplet deformation and breakup model based on virtual work principle
  publication-title: Phys. Fluids
  doi: 10.1063/1.4913809
– volume: 30
  start-page: 850
  year: 1994
  ident: 10.1016/j.cherd.2020.05.020_bib0010
  article-title: Electrostatic atomization of conducting liquids using AC superimposed
  publication-title: IEEE Trans. Indus. Appl.
  doi: 10.1109/28.297899
– volume: 22
  start-page: 38
  year: 1976
  ident: 10.1016/j.cherd.2020.05.020_bib0045
  article-title: Experimental investigation of models for fluidized bed catalytic reactors
  publication-title: AlChE J.
  doi: 10.1002/aic.690220104
– volume: 457
  start-page: 407
  year: 2013
  ident: 10.1016/j.cherd.2020.05.020_bib0170
  article-title: Mathematical modeling of the coating process
  publication-title: Int. J. Pharma.
  doi: 10.1016/j.ijpharm.2013.08.022
– volume: 130
  start-page: 18
  year: 2003
  ident: 10.1016/j.cherd.2020.05.020_bib0065
  article-title: Fluidized bed coating and granulation: influence of process-related variables and physicochemical properties on the growth kinetics
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(02)00221-8
– volume: 65
  start-page: 257
  year: 1991
  ident: 10.1016/j.cherd.2020.05.020_bib0035
  article-title: A microlevel-based characterization of granulation phenomena
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(91)80189-P
– volume: 49
  start-page: 2793
  year: 2003
  ident: 10.1016/j.cherd.2020.05.020_bib0150
  article-title: Fluid dynamic simulation of O3 decomposition in a bubbling fluidized bed
  publication-title: AIChE J.
  doi: 10.1002/aic.690491112
– volume: 63
  start-page: 3821
  year: 2008
  ident: 10.1016/j.cherd.2020.05.020_bib0055
  article-title: Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: a review
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2008.04.014
– start-page: 75
  year: 2002
  ident: 10.1016/j.cherd.2020.05.020_bib0130
  article-title: Development of an automation system for a tablet coater
  publication-title: J. Am. Assoc. Pharma. Sci.
– volume: 246
  start-page: 617
  year: 2013
  ident: 10.1016/j.cherd.2020.05.020_bib0125
  article-title: CFD modelling and its validation of non-Newtonian fluid flow in a microparticle production process using fan jet nozzles
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.05.050
– volume: vol. 11
  start-page: 417
  year: 2007
  ident: 10.1016/j.cherd.2020.05.020_bib0135
  article-title: Granulation
– volume: 8
  start-page: 171
  year: 2001
  ident: 10.1016/j.cherd.2020.05.020_bib0180
  article-title: Preparation of immobilized enzyme gel particles using an electrostatic atomization technique
  publication-title: Biochem. Eng. J.
  doi: 10.1016/S1369-703X(01)00121-8
– volume: 220
  start-page: 214
  year: 2013
  ident: 10.1016/j.cherd.2020.05.020_bib0080
  article-title: Three dimensional CFD simulation of liquid copper break up for the liquid precursor spraying
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2012.12.010
– volume: 70
  start-page: 77
  year: 2012
  ident: 10.1016/j.cherd.2020.05.020_bib0155
  article-title: Study pulsating electrospray of non-Newtonian and thixitropic sodium alginate solution
  publication-title: J. Electrostat.
  doi: 10.1016/j.elstat.2011.10.006
– volume: 86
  start-page: 108
  year: 2013
  ident: 10.1016/j.cherd.2020.05.020_bib0040
  article-title: Collision dynamics in fluidised bed granulators: a DEM-CFD study
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.06.026
– volume: 30
  start-page: 433
  year: 1993
  ident: 10.1016/j.cherd.2020.05.020_bib0090
  article-title: Electrostatic atomization of liquid hydrocarbons
  publication-title: J. Electrostat.
  doi: 10.1016/0304-3886(93)90096-P
– volume: 65
  start-page: 3100
  year: 2010
  ident: 10.1016/j.cherd.2020.05.020_bib0030
  article-title: Comparison and evaluation of interphase momentum exchange models for simulation of solids volume fraction in tapered fludised beds
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2010.02.008
– volume: 164
  start-page: 275
  year: 2010
  ident: 10.1016/j.cherd.2020.05.020_bib0190
  article-title: The effect of the binder size and viscosity on agglomerate growth in fluidised hot melt granulation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2010.08.056
– volume: 46
  start-page: 371
  year: 2009
  ident: 10.1016/j.cherd.2020.05.020_bib0050
  article-title: Secondary atomization
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-008-0593-2
– volume: 120
  start-page: 97
  year: 2001
  ident: 10.1016/j.cherd.2020.05.020_bib0120
  article-title: Influence of the physicochemical properties on the growth of solid particles by granulation in fluidized bed
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(01)00355-2
– volume: 135-136
  start-page: 361
  year: 2003
  ident: 10.1016/j.cherd.2020.05.020_bib0145
  article-title: Effect of electrostatic field on dripping of highly conductive and viscous liquids
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2003.08.025
– volume: 101
  start-page: 603
  year: 2013
  ident: 10.1016/j.cherd.2020.05.020_bib0165
  article-title: Spray models for discrete element simulations of particle coating processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.06.051
– volume: 17
  start-page: 575
  year: 1971
  ident: 10.1016/j.cherd.2020.05.020_bib0075
  article-title: Drop-size distributions from pneumatic atomizers
  publication-title: AlChE J.
  doi: 10.1002/aic.690170318
– volume: 89
  start-page: 553
  year: 2011
  ident: 10.1016/j.cherd.2020.05.020_bib0115
  article-title: Binder addition methods and binder distribution in high shear and fluidised bed granulation
  publication-title: Chem. Eng. Res. Design
  doi: 10.1016/j.cherd.2010.08.006
– volume: 165
  start-page: 161
  year: 2006
  ident: 10.1016/j.cherd.2020.05.020_bib0175
  article-title: Effect of process parameters on the melt granulation of pharmaceutical powders
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2006.03.024
– volume: 66
  start-page: 6498
  year: 2011
  ident: 10.1016/j.cherd.2020.05.020_bib0185
  article-title: CFD modeling of primary breakup during powder atomization
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2011.09.014
– volume: 22
  start-page: 181
  year: 2005
  ident: 10.1016/j.cherd.2020.05.020_bib0060
  article-title: Fluidized bed spray granulation: analysis of heat and mass transfers and dynamic particle populations
  publication-title: Braz. J. Chem. Eng.
  doi: 10.1590/S0104-66322005000200004
– year: 2004
  ident: 10.1016/j.cherd.2020.05.020_bib0100
SSID ssj0001748
Score 2.3349535
Snippet [Display omitted] •Modeling of three-phase dense bottom spray fluidized bed granulation of urea.•Solving heat and mass equations in a simulated...
A 3D computational fluid dynamic modeling of atomization and fluidization of urea was simulated in an external mixing, bottom spray, fluidized bed granulator....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 605
SubjectTerms Atomization
Atomizing
Bed expansions
CFD
Computational fluid dynamics
Computational mathematics
Computer simulation
Drop size distribution
Droplets
Dynamic models
Eulerian–Lagrangian approach
Fluid dynamics
Fluidization
Fluidized bed reactors
Fluidized beds
Granulation
Granulators
Moisture content
Nozzles
Simulation
Three dimensional models
Two-fluid nozzle
Urea
Title CFD modeling of an industrial scale two-fluid nozzle fluidized bed granulator
URI https://dx.doi.org/10.1016/j.cherd.2020.05.020
https://www.proquest.com/docview/2442965411
Volume 159
WOSCitedRecordID wos000544050400048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1744-3563
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001748
  issn: 0263-8762
  databaseCode: AIEXJ
  dateStart: 19961101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOiE8xGMgHdipBSRw38XHaWvGxFSQ6qTcrjh2aqUtK242pF_51nmM7aZmo4MChaes2H_L75b3nl_d-D6E3fpZQJjLmSbB-Htjj3BNMKC-MchmpQKiQ5nWziXg0SiYT9qXT-elqYa5ncVkmNzds_l9FDWMgbF06-w_ibg4KA_AZhA5bEDts_0rwx8MT09_G5jOnOpex6c-xBJmo3upH5eWzq0L2ymq9hoH6S7HW7ii8voEB0229qsWm79pwC6iWw7BnyYKmNYTkVjrIOBVKFVvx0q_pZXG5PXRWTZUQhfcpnU0rW_a-GYqAdadLW7XxMVcj49RSm5i0rCleSat7lVG3cRR5hFoV5_SxpQg3GrVfV2Xf1vQm6HDxTkNbM76Gfs3AGvqtYXMP80ef-fD89JSPB5PxIRnOv3u66Zh-OH9ITgwA7qC9MKYs6aK9ow-DycfGmMMVJiZMZy7eEVfVKYK3zv0n5-Y3M1_7LuOH6IFddOAjA5ZHqKPKx-j-BhXlE3QGsMEONrjKcVriFja4hg1uYIMNbHADGwywwS1snqLz4WB8_N6zrTa8jJBg5QWhipmQsVQ0ZIHIfJEkWSZjvQJNqEoyImRApSDCpym4VYRGIpFEgjOq-rIvyTPULatSPUeYBXkWsSgloAbA26dpnLBY880SX1FB030UujnimeWh1-1QZtwlHF7wemK5nljuUw5v--hts9Pc0LDs_nvfTT63nqTxEDnAZ_eOB05U3N7TSw4ecMj6NAqCF7t_fonutbfFAequFlfqFbqbXa-K5eK1hdYvFyabwA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CFD+modeling+of+an+industrial+scale+two-fluid+nozzle+fluidized+bed+granulator&rft.jtitle=Chemical+engineering+research+%26+design&rft.au=Tabeei%2C+A&rft.au=Samimi%2C+A&rft.au=Mohebbi-Kalhori%2C+D&rft.date=2020-07-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-8762&rft.eissn=1744-3563&rft.volume=159&rft.spage=605&rft_id=info:doi/10.1016%2Fj.cherd.2020.05.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-8762&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-8762&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-8762&client=summon