How to improve the representation of hydrological processes in SWAT for a lowland catchment - temporal analysis of parameter sensitivity and model performance
Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing...
Gespeichert in:
| Veröffentlicht in: | Hydrological processes Jg. 28; H. 4; S. 2651 - 2670 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Chichester
Blackwell Publishing Ltd
15.02.2014
Wiley Subscription Services, Inc |
| Schlagworte: | |
| ISSN: | 0885-6087, 1099-1085 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing the whole discharge time series.
In this study, we aim to improve the understanding of hydrological processes by investigating the temporal dynamics of parameter sensitivity and of model performance for the Soil and Water Assessment Tool model applied to the Treene lowland catchment in Northern Germany. The temporal analysis shows that the parameter sensitivity varies temporally with high sensitivity for three groundwater parameters (groundwater time delay, baseflow recession constant and aquifer fraction coefficient) and one evaporation parameter (soil evaporation compensation factor). Whereas the soil evaporation compensation factor dominates in baseflow and resaturation periods, groundwater time delay, baseflow recession constant and aquifer fraction coefficient are dominant in the peak and recession phases. The temporal analysis of model performance identifies three clusters with different model performances, which can be related to different phases of the hydrograph. The lowest performance, when comparing six performance measures, is detected for the baseflow cluster. A spatially distributed analysis for six hydrological stations within the Treene catchment shows similar results for all stations.
The linkage of periods with poor model performance to the dominant model components in these phases and with the related hydrological processes shows that the groundwater module has the highest potential for improvement. This temporal diagnostic analysis enhances the understanding of the Soil and Water Assessment Tool model and of the dominant hydrological processes in the lowland catchment. Copyright © 2013 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing the whole discharge time series.
In this study, we aim to improve the understanding of hydrological processes by investigating the temporal dynamics of parameter sensitivity and of model performance for the Soil and Water Assessment Tool model applied to the Treene lowland catchment in Northern Germany. The temporal analysis shows that the parameter sensitivity varies temporally with high sensitivity for three groundwater parameters (groundwater time delay, baseflow recession constant and aquifer fraction coefficient) and one evaporation parameter (soil evaporation compensation factor). Whereas the soil evaporation compensation factor dominates in baseflow and resaturation periods, groundwater time delay, baseflow recession constant and aquifer fraction coefficient are dominant in the peak and recession phases. The temporal analysis of model performance identifies three clusters with different model performances, which can be related to different phases of the hydrograph. The lowest performance, when comparing six performance measures, is detected for the baseflow cluster. A spatially distributed analysis for six hydrological stations within the Treene catchment shows similar results for all stations.
The linkage of periods with poor model performance to the dominant model components in these phases and with the related hydrological processes shows that the groundwater module has the highest potential for improvement. This temporal diagnostic analysis enhances the understanding of the Soil and Water Assessment Tool model and of the dominant hydrological processes in the lowland catchment. Copyright © 2013 John Wiley & Sons, Ltd. Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing the whole discharge time series. In this study, we aim to improve the understanding of hydrological processes by investigating the temporal dynamics of parameter sensitivity and of model performance for the Soil and Water Assessment Tool model applied to the Treene lowland catchment in Northern Germany. The temporal analysis shows that the parameter sensitivity varies temporally with high sensitivity for three groundwater parameters (groundwater time delay, baseflow recession constant and aquifer fraction coefficient) and one evaporation parameter (soil evaporation compensation factor). Whereas the soil evaporation compensation factor dominates in baseflow and resaturation periods, groundwater time delay, baseflow recession constant and aquifer fraction coefficient are dominant in the peak and recession phases. The temporal analysis of model performance identifies three clusters with different model performances, which can be related to different phases of the hydrograph. The lowest performance, when comparing six performance measures, is detected for the baseflow cluster. A spatially distributed analysis for six hydrological stations within the Treene catchment shows similar results for all stations. The linkage of periods with poor model performance to the dominant model components in these phases and with the related hydrological processes shows that the groundwater module has the highest potential for improvement. This temporal diagnostic analysis enhances the understanding of the Soil and Water Assessment Tool model and of the dominant hydrological processes in the lowland catchment. Copyright © 2013 John Wiley & Sons, Ltd. |
| Author | Guse, Björn Reusser, Dominik E. Fohrer, Nicola |
| Author_xml | – sequence: 1 givenname: Björn surname: Guse fullname: Guse, Björn email: Correspondence to: Björn Guse, Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian-Albrechts-University of Kiel, Kiel, Germany., bguse@hydrology.uni-kiel.de organization: Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian-Albrechts-University of Kiel, Kiel, Germany – sequence: 2 givenname: Dominik E. surname: Reusser fullname: Reusser, Dominik E. organization: Potsdam Institute for Climate Impact Research, Potsdam, Germany – sequence: 3 givenname: Nicola surname: Fohrer fullname: Fohrer, Nicola organization: Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian-Albrechts-University of Kiel, Kiel, Germany |
| BookMark | eNp1kMFu1DAQhi1UJLYFiUewxIVLFjtex_axqmgXqYIiCiu4WFNnwrokcWq7XfIyPCteLUICwWku3_fPzH9MjsYwIiHPOVtyxupX23laGqXUI7LgzJiKMy2PyIJpLauGafWEHKd0yxhbMc0W5Mc67GgO1A9TDA9I8xZpxCliwjFD9mGkoaPbuY2hD1-9g54W0GFKmKgf6YfN6TXtQqRA-7DrYWypg-y2Q9FpRTMOU4hFghH6Ofm0T5sgwoAZIy1Lks_-weeZ7tUhtFgWYCyJA4wOn5LHHfQJn_2aJ-Tj-evrs3V1-e7izdnpZeWE4KrqULMGjW5VK-RK3xhuwLiuNSDbjotVjWBY7Rp0XK1aLXQtG60kqBswnIlOnJAXh9zy3N09pmxvw30sNyfLG2lKupJ1oV4eKBdDShE7O0U_QJwtZ3bfvi3t2337BV3-hTp_6DNH8P2_hOog7HyP83-D7frz1Z-8Txm__-YhfrONEkrazdsLy87fb9jVl092I34CEMyqpA |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2020_125370 crossref_primary_10_1007_s11269_017_1862_8 crossref_primary_10_1029_2020WR028042 crossref_primary_10_1016_j_jenvman_2023_117312 crossref_primary_10_3390_w11010171 crossref_primary_10_3390_w12010302 crossref_primary_10_1016_j_gsd_2024_101275 crossref_primary_10_5194_hess_26_2561_2022 crossref_primary_10_1016_j_jhydrol_2018_01_063 crossref_primary_10_1002_ldr_2889 crossref_primary_10_1016_j_ecolmodel_2015_07_009 crossref_primary_10_1016_j_envsoft_2018_12_002 crossref_primary_10_5194_hess_25_1365_2021 crossref_primary_10_1029_2019WR026555 crossref_primary_10_1002_hyp_11313 crossref_primary_10_1016_j_jsames_2022_103773 crossref_primary_10_1007_s10661_022_09858_0 crossref_primary_10_1002_hyp_10062 crossref_primary_10_1016_j_envsoft_2016_02_008 crossref_primary_10_1016_j_jenvman_2017_02_060 crossref_primary_10_5194_hess_22_203_2018 crossref_primary_10_1002_2015WR016907 crossref_primary_10_1002_hyp_70081 crossref_primary_10_1016_j_ecolind_2025_113739 crossref_primary_10_2166_hydro_2024_293 crossref_primary_10_1111_1365_2745_13859 crossref_primary_10_1016_j_landusepol_2018_01_041 crossref_primary_10_1029_2020WR027468 crossref_primary_10_3390_rs15030796 crossref_primary_10_1016_j_jhydrol_2024_132470 crossref_primary_10_1016_j_scitotenv_2015_05_078 crossref_primary_10_1016_j_envsoft_2015_09_006 crossref_primary_10_1007_s11269_023_03678_8 crossref_primary_10_1007_s10661_023_11079_y crossref_primary_10_1016_j_jsames_2025_105420 crossref_primary_10_3390_w12061711 crossref_primary_10_1002_eco_2193 crossref_primary_10_1016_j_scitotenv_2022_160689 crossref_primary_10_1016_j_scitotenv_2017_10_139 crossref_primary_10_1080_02626667_2023_2174027 crossref_primary_10_3390_w11010112 crossref_primary_10_3390_w14050807 crossref_primary_10_1002_hyp_10764 crossref_primary_10_3390_w8040158 crossref_primary_10_1002_joc_5099 crossref_primary_10_1016_j_jhydrol_2013_12_044 crossref_primary_10_1038_sdata_2018_224 crossref_primary_10_1016_j_still_2020_104703 crossref_primary_10_1016_j_jhydrol_2015_02_013 crossref_primary_10_1016_j_envsoft_2024_106189 crossref_primary_10_1016_j_jhydrol_2016_03_001 crossref_primary_10_5194_hess_19_4365_2015 crossref_primary_10_1016_j_envsoft_2016_10_011 crossref_primary_10_1029_2022WR032932 crossref_primary_10_5194_hess_28_5353_2024 crossref_primary_10_1016_j_envsoft_2021_104981 crossref_primary_10_3390_w16121746 crossref_primary_10_1002_hyp_11466 crossref_primary_10_1016_j_envres_2018_06_029 crossref_primary_10_1016_j_jhydrol_2018_12_050 crossref_primary_10_1007_s13762_023_04938_1 crossref_primary_10_1016_j_jhydrol_2021_126632 crossref_primary_10_3390_w13030318 crossref_primary_10_1007_s11356_022_18573_9 crossref_primary_10_1016_j_ecolmodel_2014_04_009 crossref_primary_10_3390_w10091135 crossref_primary_10_1016_j_jhydrol_2021_126781 crossref_primary_10_1016_j_ecolind_2017_04_032 crossref_primary_10_1016_j_ecolmodel_2014_01_020 crossref_primary_10_1016_j_earscirev_2019_04_006 crossref_primary_10_1029_2020WR027153 crossref_primary_10_5194_hess_17_5109_2013 crossref_primary_10_5194_hess_20_4655_2016 crossref_primary_10_1038_s41598_020_59107_y crossref_primary_10_1088_2515_7620_ad85c8 crossref_primary_10_2166_nh_2024_042 crossref_primary_10_3390_su151813850 crossref_primary_10_1002_ece3_3903 crossref_primary_10_1016_j_scs_2025_106279 crossref_primary_10_1061__ASCE_HE_1943_5584_0001726 crossref_primary_10_1371_journal_pone_0130228 crossref_primary_10_1007_s12665_021_09912_z crossref_primary_10_1175_JHM_D_16_0050_1 crossref_primary_10_1080_02626667_2018_1505047 crossref_primary_10_1029_2018WR022668 crossref_primary_10_2166_hydro_2017_038 crossref_primary_10_1007_s10333_014_0448_9 crossref_primary_10_5194_hess_21_5663_2017 crossref_primary_10_2166_nh_2021_119 crossref_primary_10_3390_w11050958 crossref_primary_10_1016_j_envsoft_2018_03_018 crossref_primary_10_1016_j_scitotenv_2017_04_074 crossref_primary_10_5194_hess_20_2861_2016 crossref_primary_10_5194_hess_27_2621_2023 crossref_primary_10_1155_2022_6587890 crossref_primary_10_1016_j_catena_2014_10_032 crossref_primary_10_1080_02626667_2020_1725238 crossref_primary_10_5194_hess_25_1307_2021 crossref_primary_10_1016_j_ejrh_2025_102604 crossref_primary_10_1016_j_jhydrol_2019_01_045 crossref_primary_10_1016_j_jhydrol_2025_133415 crossref_primary_10_1016_j_landusepol_2016_09_027 crossref_primary_10_1016_j_scitotenv_2021_148766 crossref_primary_10_1007_s10666_014_9414_6 crossref_primary_10_1016_j_jhydrol_2019_03_091 crossref_primary_10_1002_hyp_10968 crossref_primary_10_1080_02626667_2019_1682149 crossref_primary_10_3390_w11112411 crossref_primary_10_2134_jeq2015_10_0518 crossref_primary_10_1111_1752_1688_12524 crossref_primary_10_1016_j_envsoft_2016_07_003 crossref_primary_10_1029_2019WR025605 crossref_primary_10_5194_hess_19_4127_2015 crossref_primary_10_1016_j_envsoft_2016_09_012 crossref_primary_10_1002_rra_3603 crossref_primary_10_1080_15583058_2025_2512948 crossref_primary_10_1007_s40710_015_0099_x crossref_primary_10_1029_2021WR031149 crossref_primary_10_1111_1752_1688_12413 crossref_primary_10_1007_s12665_016_5870_4 crossref_primary_10_1061__ASCE_HE_1943_5584_0001994 |
| Cites_doi | 10.1002/hyp.6734 10.1016/j.ecolmodel.2008.06.035 10.1029/2010WR009947 10.1016/j.ress.2005.11.014 10.1016/j.jhydrol.2006.08.001 10.13031/2013.23637 10.1016/S0304-3800(03)00198-4 10.1002/hyp.7568 10.1016/0098-1354(82)80003-3 10.2166/wst.2012.884 10.1016/S0022-1694(01)00421-8 10.2135/jeq2011.0382 10.1002/hyp.3360060305 10.1029/1998WR900018 10.5194/adgeo-5-89-2005 10.1029/2008GL034162 10.13031/2013.25407 10.1016/S0022-1694(02)00142-7 10.1016/j.envsoft.2011.11.013 10.1016/j.advwatres.2011.06.005 10.1061/(ASCE)1084-0699(2006)11:6(555) 10.23986/afsci.5966 10.1029/2002WR001746 10.1029/2010WR009946 10.1029/97WR03495 10.1016/S0167-9473(97)00043-1 10.1002/hyp.7607 10.1002/hyp.6989 10.1007/s00704-007-0352-y 10.1016/j.envsoft.2006.06.008 10.1111/j.1752-1688.1998.tb05961.x 10.1111/j.1752-1688.2001.tb03630.x 10.1063/1.431440 10.1002/hyp.5611 10.5194/hess-13-999-2009 10.1029/2007WR006716 10.1016/0021-9991(78)90097-9 10.1002/hyp.1135 10.5194/adgeo-21-91-2009 10.1002/hyp.7077 10.1111/j.1752-1688.2006.tb04475.x 10.1002/hyp.8058 10.1109/34.85677 10.5194/hess-12-657-2008 10.1016/j.jhydrol.2005.09.008 10.1029/2007WR006271 10.1016/j.pce.2005.07.006 10.1016/j.jhydrol.2006.07.012 10.13031/2013.23153 10.18637/jss.v022.i08 10.5194/hess-16-1259-2012 10.1016/j.jhydrol.2005.01.004 10.5194/hess-13-395-2009 10.1016/j.envsoft.2011.08.010 10.1063/1.1680571 10.1002/hyp.5613 10.1007/978-3-642-97610-0 10.1016/j.envsoft.2010.07.007 10.5194/hess-13-1555-2009 10.1111/j.1752-1688.2005.tb03786.x 10.3390/w2040849 10.1016/0022-1694(70)90255-6 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
| DOI | 10.1002/hyp.9777 |
| DatabaseName | Istex CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1099-1085 |
| EndPage | 2670 |
| ExternalDocumentID | 3610770831 10_1002_hyp_9777 HYP9777 ark_67375_WNG_0FQW0PZV_W |
| Genre | article |
| GrantInformation_xml | – fundername: German Federal Ministry for Education and Research (BMBF) funderid: 02WM1136 |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI WRC WWD AAYXX CITATION O8X 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI |
| ID | FETCH-LOGICAL-c3317-fe806e98d7d3548b919a9cfd9a5df1342ea902c6ec174d838256875a7ba9103f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 120 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330743000087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6087 |
| IngestDate | Fri Jul 25 03:31:22 EDT 2025 Tue Nov 18 22:19:54 EST 2025 Sat Nov 29 03:02:41 EST 2025 Wed Jan 22 16:29:37 EST 2025 Tue Nov 11 03:32:23 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3317-fe806e98d7d3548b919a9cfd9a5df1342ea902c6ec174d838256875a7ba9103f3 |
| Notes | German Federal Ministry for Education and Research (BMBF) - No. 02WM1136 ArticleID:HYP9777 istex:1D91DED45B84E76C7F71A2A63C562E46F158E51C ark:/67375/WNG-0FQW0PZV-W ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1659806752 |
| PQPubID | 2034139 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_1659806752 crossref_primary_10_1002_hyp_9777 crossref_citationtrail_10_1002_hyp_9777 wiley_primary_10_1002_hyp_9777_HYP9777 istex_primary_ark_67375_WNG_0FQW0PZV_W |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-15 15 February 2014 20140215 |
| PublicationDateYYYYMMDD | 2014-02-15 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | Hydrological processes |
| PublicationTitleAlternate | Hydrol. Process |
| PublicationYear | 2014 |
| Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: part I - a discussion of principles. Journal of Hydrology 10: 282-290. Beven KJ, Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology 249(1-2): 11-29. Herbst M, Gupta HV, Casper MC. 2009. Mapping model behaviour using self-organizing maps. Hydrology and Earth System Sciences 13: 395-409. Wu Y, Liu S. 2012. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package flexible modeling environment (fme): SWAT as an example. Environmental Modelling and Software 31: 99-109. Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. The Journal of the American Water Resources Association 37(5): 1169-1187. Eckhardt K, Fohrer N, Frede H-G. 2005. Automatic model calibration. Hydrological Processes 19: 651-658. Nossent J, Elsen P, Bauwens W. 2011. Sobol sensitivity analyses of a complex environmental model. Environmental Modelling and Software 26: 1515-1525. Saltelli A, Bolado R. 1998. An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics and Data Analysis 26(4): 445-460. Sudheer KP, Lakshmi G, Chaubey I. 2011. Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environmental Modelling and Software 26: 135-143. Orlowsky B, Gerstengarbe F-W, Werner PC. 2008. A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theoretical and Applied Climatology 92: 209-223. Reusser DE, Zehe E. 2011. Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity. Water Resources Research 47(7): W07550. DOI:10.1029/2010WR009946. Dawson CW, Abrahart RJ, See LM. 2007. Hydrotest: a Web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecast. Environmental Modelling and Software 22: 1034-1052. Zhang X, Srinivasan R, Van Liew M. 2009. Multi-site calibration of the SWAT model for hydrologic modeling. Transactions of the ASABE 51(6): 2039-2049. Van Griensven A, Meixner T, Grunwald S, Bishop T, Di Luzio M, Srinivasan R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology 324: 10-23. Kannan N, White SM, Worrall F, Whelan MJ. 2007. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. Journal of Hydrology 332: 456-466. Gupta HV, Sorooshian S, Yapo PO. 1998. Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resources Research 34(4): 751-763. Beven KJ, Binley AM. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6: 279-298. LANU S-H. 2006. Die Böden Schleswig-Holsteins. Landesamt für Natur und Umwelt des Landes Schleswig-Holsteins: Kiel. Krause P, Boyle DP, Baese F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5: 89-97. White KL, Chaubey I. 2005. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. The Journal of the American Water Resources Association 41(5): 1077-1089. Xie X, Beni G. 1991. A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis 13: 841-847. Aksoy H, Unal NE, Pektas AO. 2008. Smoothed minima baseflow separation tool for perennial and intermittent streams. Hydrological Processes 22: 4467-4476. Grizzetti B, Bouraoui F, Granlund K, Rekolainen S, Bidoglio G. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecological Modelling 169(1): 25-38. Schmalz B, Fohrer N. 2009. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Advances in Geosciences 21: 91-98. Kalin L, Hantush MH. 2006. Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data. Journal of Hydrological Engineering 11: 555-569. Legates D, McCabe Jr G. 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241. McRae GJ, Tilden JW, Seinfeld JH. 1982. Global sensitivity analysis - a computational implementation of the Fourier amplitude sensitivity test (FAST). Computers and Chemical Engineering 6: 15-25. Nossent J, Bauwens W. 2012. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Science and Technology 65(3): 539-549. Tattari S, Koskiaho J, Barlund I, Jaakkola E. 2009. Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland. Agricultural and Food Science 180(3-4): 428-439. Saltelli A, Ratto M, Tarantola S, Campolongo F.2006. Sensitivity analysis practices: strategies for model-based inference. Reliability Engineering and System Safety 91(10-11): 1109-1125. Gitau MW, Chaubey I. 2010. Regionalization of SWAT model parameters for use in ungauged watersheds. Water 2: 849-871. Gupta HV, Wagener T, Liu Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes 22: 3802-3813. Fohrer N, Schmalz B, Tavares F, Golon J. 2007. Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems. Hydrologie und Wasserbewirtschaftung 51(4): 164-169. Herbst M, Casper MC. 2008. Towards model evaluation and identification using self-organizing maps. Hydrology and Earth System Sciences 12: 657-667. Kiesel J, Fohrer N, Schmalz B, White MJ. 2010. Incorporating landscape depressions and tile drainages of lowland catchments into spatially distributed hydrologic modeling. Hydrological Processes 24: 1472-1486. Toth E. 2009. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrology and Earth System Sciences 13: 1555-1566. Gassman PW, Reyes MR, Green CH, Arnold JG. 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE 50(4): 1211-1250. Moriasi DN, Arnold JR, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900. Cukier RI, Schaibly JH, Shuler KE. 1975. Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 3. Analysis of approximations. Journal of Chemical Physics 63(3): 1140-1149. Wagener T, McIntyre N, Lees MJ, Wheater HS, Gupta HV. 2003. Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrological Processes 17: 455-476. van Werkhoven K, Wagener T, Reed P, Tang Y. 2008a. Rainfall characteristics define the value of streamflow observations for distributed watershed model identification. Geophysical Research Letters 35(11): 1-6. DOI: 10.1029/2008GL034162. Fohrer N, Dietrich A, Kolychalow O, Ulrich U. 2013. Assessment of the environmental fate of the herbicides Flufenacet and Metazachlor with the SWAT model. Journal of Environmental Quality, 42: 1-11 DOI:10.2135/jeq2011.0382. Zhang H, Huang GH, Wang D, Zhang X. 2011a. Multi-period calibration of a semi-distributed hydrological model based on hydroclimatic clustering. Advances in Water Resources 34: 1292-1303. Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH. 1973. Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory. Journal of Chemical Physics 59(8): 3873-3878. Cukier RI, Levine HB, Shuler KE. 1978. Non-linear sensitivity analysis of multi-parameter model systems. Journal of Computational Physics 260(1): 1-42. Reusser DE, Blume T, Schaefli B, Zehe E. 2009. Analysing the temporal dynamics of model performance for hydrological models. Hydrology and Earth System Sciences 13: 999-1018. Yilmaz KK, Gupta HV, Wagener T. 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research 44: W09417. DOI: 10.1029/2007WR006716. Holvoet K, van Griensven A, Seuntjens P, Vanrolleghem PA. 2005. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, Parts A/B/C 30(8-10): 518-526. Vrugt J, Gupta HV, Bastidas LA, Bouten W, Sorooshian S. 2003. Effective and efficient algorithm for multiobjective optimization of hydrological models. Water Resources Research 39: 1214-1232. Choi HT, Beven K. 2007. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of Topmodel within the GLUE framework. Journal of Hydrology 332: 316-336. Sieber A, Uhlenbrook S. 2005. Sensitivity analyses of a distributed catchment model to verify the model structure. Journal of Hydrology 310(1-4): 216-235. Arnold JG, Fohrer N. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes 19: 563-572. van Werkhoven K, Wagener T, Reed P, Tang Y. 2008b. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resources Research 44: W01429. DOI: 10.1029/2007WR006271. Cibin R, Sudheer KP, Chaubey I. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes 24: 1133-1148. Niehoff D, Fritsch U, Bronstert A. 2002. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW German 2008a; 35 1991; 13 1973; 59 1978; 260 1972 2003; 17 2012; 16 2011a; 34 1992; 6 2007; 332 2009; 13 2009; 51 2010; 24 2002; 267 1982; 6 2005; 30 2008b; 44 2008; 22 2011; 26 2010; 2 2003; 169 2006; 324 2007; 22 2012; 65 1998; 26 2006; 91 2009; 21 2011 2009; 180 2011b; 25 2005; 310 2010 2006; 11 2013; 42 2008 2005; 41 2008; 12 1970; 10 2007 1995 2006 2003; 39 2007; 50 2004 2007; 51 2008; 92 2012; 31 2001; 249 1999 2005; 19 2006; 42 2005; 5 1999; 35 2008; 218 2001; 37 1975; 63 2008; 44 2011; 47 1998; 34 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 Fohrer N (e_1_2_7_16_1) 2007; 51 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 Beven KJ (e_1_2_7_6_1) 2001; 249 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Tattari S (e_1_2_7_61_1) 2009; 180 e_1_2_7_73_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 LANU S‐H (e_1_2_7_34_1) 2006 e_1_2_7_72_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_74_1 e_1_2_7_22_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
| References_xml | – reference: Beven KJ, Binley AM. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6: 279-298. – reference: Holvoet K, van Griensven A, Seuntjens P, Vanrolleghem PA. 2005. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, Parts A/B/C 30(8-10): 518-526. – reference: White KL, Chaubey I. 2005. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. The Journal of the American Water Resources Association 41(5): 1077-1089. – reference: Reusser DE, Buytaert W, Zehe E. 2011. Temporal dynamics of model parameter sensitivity for computationally expensive models with FAST (Fourier amplitude sensitivity test). Water Resources Research 47(7): W07551. DOI:10.1029/2010WR009947. – reference: Saltelli A, Ratto M, Tarantola S, Campolongo F.2006. Sensitivity analysis practices: strategies for model-based inference. Reliability Engineering and System Safety 91(10-11): 1109-1125. – reference: Zhang X, Srinivasan R, Van Liew M. 2009. Multi-site calibration of the SWAT model for hydrologic modeling. Transactions of the ASABE 51(6): 2039-2049. – reference: Reusser DE, Blume T, Schaefli B, Zehe E. 2009. Analysing the temporal dynamics of model performance for hydrological models. Hydrology and Earth System Sciences 13: 999-1018. – reference: Krause P, Boyle DP, Baese F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5: 89-97. – reference: Cibin R, Sudheer KP, Chaubey I. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes 24: 1133-1148. – reference: McRae GJ, Tilden JW, Seinfeld JH. 1982. Global sensitivity analysis - a computational implementation of the Fourier amplitude sensitivity test (FAST). Computers and Chemical Engineering 6: 15-25. – reference: Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH. 1973. Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory. Journal of Chemical Physics 59(8): 3873-3878. – reference: Hesse C, Krysanova V, Pazolt J, Hattermann FF. 2008. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling 218(1-2): 135-148. – reference: Nossent J, Elsen P, Bauwens W. 2011. Sobol sensitivity analyses of a complex environmental model. Environmental Modelling and Software 26: 1515-1525. – reference: Tattari S, Koskiaho J, Barlund I, Jaakkola E. 2009. Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland. Agricultural and Food Science 180(3-4): 428-439. – reference: Sieber A, Uhlenbrook S. 2005. Sensitivity analyses of a distributed catchment model to verify the model structure. Journal of Hydrology 310(1-4): 216-235. – reference: Grizzetti B, Bouraoui F, Granlund K, Rekolainen S, Bidoglio G. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecological Modelling 169(1): 25-38. – reference: Kiesel J, Fohrer N, Schmalz B, White MJ. 2010. Incorporating landscape depressions and tile drainages of lowland catchments into spatially distributed hydrologic modeling. Hydrological Processes 24: 1472-1486. – reference: Choi HT, Beven K. 2007. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of Topmodel within the GLUE framework. Journal of Hydrology 332: 316-336. – reference: Orlowsky B, Gerstengarbe F-W, Werner PC. 2008. A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theoretical and Applied Climatology 92: 209-223. – reference: Beven KJ, Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology 249(1-2): 11-29. – reference: Reusser DE, Zehe E. 2011. Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity. Water Resources Research 47(7): W07550. DOI:10.1029/2010WR009946. – reference: Eckhardt K, Fohrer N, Frede H-G. 2005. Automatic model calibration. Hydrological Processes 19: 651-658. – reference: Sudheer KP, Lakshmi G, Chaubey I. 2011. Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environmental Modelling and Software 26: 135-143. – reference: Wu Y, Liu S. 2012. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package flexible modeling environment (fme): SWAT as an example. Environmental Modelling and Software 31: 99-109. – reference: Luo Y, Arnold J, Allen P, Chen X. 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan mountains, northwest China. Hydrology and Earth System Sciences 16: 1259-1267. – reference: Niehoff D, Fritsch U, Bronstert A. 2002. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW Germany. Journal of Hydrology 267(1-2): 80-93. – reference: Saltelli A, Bolado R. 1998. An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics and Data Analysis 26(4): 445-460. – reference: Gupta HV, Wagener T, Liu Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes 22: 3802-3813. – reference: Zhang X, Srinivasan R, Arnold J, Izaurralde RC, Bosch D. 2011b. Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework. Hydrological Processes 25(14): 2313-2320. – reference: Herbst M, Casper MC. 2008. Towards model evaluation and identification using self-organizing maps. Hydrology and Earth System Sciences 12: 657-667. – reference: Kohonen T. 1995. Self-organizing Maps. Springer: Heidelberg. – reference: Aksoy H, Unal NE, Pektas AO. 2008. Smoothed minima baseflow separation tool for perennial and intermittent streams. Hydrological Processes 22: 4467-4476. – reference: Gitau MW, Chaubey I. 2010. Regionalization of SWAT model parameters for use in ungauged watersheds. Water 2: 849-871. – reference: Dawson CW, Abrahart RJ, See LM. 2007. Hydrotest: a Web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecast. Environmental Modelling and Software 22: 1034-1052. – reference: Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: part I - a discussion of principles. Journal of Hydrology 10: 282-290. – reference: Vrugt J, Gupta HV, Bastidas LA, Bouten W, Sorooshian S. 2003. Effective and efficient algorithm for multiobjective optimization of hydrological models. Water Resources Research 39: 1214-1232. – reference: Moriasi DN, Arnold JR, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900. – reference: Arnold JG, Fohrer N. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes 19: 563-572. – reference: Arnold JG, Srinivasan R, Muttiah RS, Williams JR. 1998. Large area hydrologic modeling and assessment part I: model development. The Journal of the American Water Resources Association 34: 73-89. – reference: Wagener T, McIntyre N, Lees MJ, Wheater HS, Gupta HV. 2003. Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrological Processes 17: 455-476. – reference: Srivastava P, McNair JN, Johnson TE. 2006. Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed. Journal of the American Water Resources Association 42: 545-563. – reference: Kalin L, Hantush MH. 2006. Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data. Journal of Hydrological Engineering 11: 555-569. – reference: Xie X, Beni G. 1991. A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis 13: 841-847. – reference: Schmalz B, Fohrer N. 2009. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Advances in Geosciences 21: 91-98. – reference: Yilmaz KK, Gupta HV, Wagener T. 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research 44: W09417. DOI: 10.1029/2007WR006716. – reference: Fohrer N, Dietrich A, Kolychalow O, Ulrich U. 2013. Assessment of the environmental fate of the herbicides Flufenacet and Metazachlor with the SWAT model. Journal of Environmental Quality, 42: 1-11 DOI:10.2135/jeq2011.0382. – reference: Toth E. 2009. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrology and Earth System Sciences 13: 1555-1566. – reference: Van Griensven A, Meixner T, Grunwald S, Bishop T, Di Luzio M, Srinivasan R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology 324: 10-23. – reference: Cloke H, Pappenberger F, Renaud J-P. 2008. Multi-method global sensitivity analysis (mmgsa) for modelling floodplain hydrological processes. Hydrological Processes 22: 1660-1674. – reference: Nossent J, Bauwens W. 2012. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Science and Technology 65(3): 539-549. – reference: Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. The Journal of the American Water Resources Association 37(5): 1169-1187. – reference: Kannan N, White SM, Worrall F, Whelan MJ. 2007. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. Journal of Hydrology 332: 456-466. – reference: LANU S-H. 2006. Die Böden Schleswig-Holsteins. Landesamt für Natur und Umwelt des Landes Schleswig-Holsteins: Kiel. – reference: Zhang H, Huang GH, Wang D, Zhang X. 2011a. Multi-period calibration of a semi-distributed hydrological model based on hydroclimatic clustering. Advances in Water Resources 34: 1292-1303. – reference: Cukier RI, Schaibly JH, Shuler KE. 1975. Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 3. Analysis of approximations. Journal of Chemical Physics 63(3): 1140-1149. – reference: Cukier RI, Levine HB, Shuler KE. 1978. Non-linear sensitivity analysis of multi-parameter model systems. Journal of Computational Physics 260(1): 1-42. – reference: Gassman PW, Reyes MR, Green CH, Arnold JG. 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE 50(4): 1211-1250. – reference: Herbst M, Gupta HV, Casper MC. 2009. Mapping model behaviour using self-organizing maps. Hydrology and Earth System Sciences 13: 395-409. – reference: van Werkhoven K, Wagener T, Reed P, Tang Y. 2008a. Rainfall characteristics define the value of streamflow observations for distributed watershed model identification. Geophysical Research Letters 35(11): 1-6. DOI: 10.1029/2008GL034162. – reference: van Werkhoven K, Wagener T, Reed P, Tang Y. 2008b. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resources Research 44: W01429. DOI: 10.1029/2007WR006271. – reference: Fohrer N, Schmalz B, Tavares F, Golon J. 2007. Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems. Hydrologie und Wasserbewirtschaftung 51(4): 164-169. – reference: Legates D, McCabe Jr G. 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241. – reference: Gupta HV, Sorooshian S, Yapo PO. 1998. Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resources Research 34(4): 751-763. – reference: Jachner S, van den Boogaart KG, Petzoldt T. 2007. Statistical methods for the qualitative assessment of dynamic models with time delay (R package qualv). Journal of Statistical Software 22: 1-30. – year: 2011 – volume: 41 start-page: 1077 issue: 5 year: 2005 end-page: 1089 article-title: Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model publication-title: The Journal of the American Water Resources Association – volume: 47 start-page: W07550 issue: 7 year: 2011 article-title: Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity publication-title: Water Resources Research – volume: 22 start-page: 4467 year: 2008 end-page: 4476 article-title: Smoothed minima baseflow separation tool for perennial and intermittent streams publication-title: Hydrological Processes – volume: 42 start-page: 1 year: 2013 end-page: 11 article-title: Assessment of the environmental fate of the herbicides Flufenacet and Metazachlor with the SWAT model publication-title: Journal of Environmental Quality – volume: 26 start-page: 445 issue: 4 year: 1998 end-page: 460 article-title: An alternative way to compute Fourier amplitude sensitivity test (FAST) publication-title: Computational Statistics and Data Analysis – volume: 13 start-page: 395 year: 2009 end-page: 409 article-title: Mapping model behaviour using self‐organizing maps publication-title: Hydrology and Earth System Sciences – volume: 10 start-page: 282 year: 1970 end-page: 290 article-title: River flow forecasting through conceptual models: part I – a discussion of principles publication-title: Journal of Hydrology – volume: 13 start-page: 1555 year: 2009 end-page: 1566 article-title: Classification of hydro‐meteorological conditions and multiple artificial neural networks for streamflow forecasting publication-title: Hydrology and Earth System Sciences – volume: 37 start-page: 1169 issue: 5 year: 2001 end-page: 1187 article-title: Validation of the SWAT model on a large river basin with point and nonpoint sources publication-title: The Journal of the American Water Resources Association – volume: 324 start-page: 10 year: 2006 end-page: 23 article-title: A global sensitivity analysis tool for the parameters of multi‐variable catchment models publication-title: Journal of Hydrology – volume: 19 start-page: 563 year: 2005 end-page: 572 article-title: SWAT2000: current capabilities and research opportunities in applied watershed modelling publication-title: Hydrological Processes – volume: 21 start-page: 91 year: 2009 end-page: 98 article-title: Comparing model sensitivities of different landscapes using the ecohydrological SWAT model publication-title: Advances in Geosciences – volume: 22 start-page: 1 year: 2007 end-page: 30 article-title: Statistical methods for the qualitative assessment of dynamic models with time delay (R package qualv) publication-title: Journal of Statistical Software – volume: 19 start-page: 651 year: 2005 end-page: 658 article-title: Automatic model calibration publication-title: Hydrological Processes – volume: 332 start-page: 316 year: 2007 end-page: 336 article-title: Multi‐period and multi‐criteria model conditioning to reduce prediction uncertainty in an application of Topmodel within the GLUE framework publication-title: Journal of Hydrology – year: 2008 – year: 2004 – volume: 51 start-page: 2039 issue: 6 year: 2009 end-page: 2049 article-title: Multi‐site calibration of the SWAT model for hydrologic modeling publication-title: Transactions of the ASABE – year: 1972 – volume: 218 start-page: 135 issue: 1–2 year: 2008 end-page: 148 article-title: Eco‐hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality publication-title: Ecological Modelling – volume: 2 start-page: 849 year: 2010 end-page: 871 article-title: Regionalization of SWAT model parameters for use in ungauged watersheds publication-title: Water – volume: 310 start-page: 216 issue: 1–4 year: 2005 end-page: 235 article-title: Sensitivity analyses of a distributed catchment model to verify the model structure publication-title: Journal of Hydrology – volume: 24 start-page: 1133 year: 2010 end-page: 1148 article-title: Sensitivity and identifiability of stream flow generation parameters of the SWAT model publication-title: Hydrological Processes – volume: 42 start-page: 545 year: 2006 end-page: 563 article-title: Comparison of process‐based and artificial neural network approaches for streamflow modeling in an agricultural watershed publication-title: Journal of the American Water Resources Association – volume: 34 start-page: 1292 year: 2011a end-page: 1303 article-title: Multi‐period calibration of a semi‐distributed hydrological model based on hydroclimatic clustering publication-title: Advances in Water Resources – volume: 22 start-page: 1034 year: 2007 end-page: 1052 article-title: Hydrotest: a Web‐based toolbox of evaluation metrics for the standardised assessment of hydrological forecast publication-title: Environmental Modelling and Software – volume: 11 start-page: 555 year: 2006 end-page: 569 article-title: Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data publication-title: Journal of Hydrological Engineering – volume: 13 start-page: 999 year: 2009 end-page: 1018 article-title: Analysing the temporal dynamics of model performance for hydrological models publication-title: Hydrology and Earth System Sciences – volume: 180 start-page: 428 issue: 3–4 year: 2009 end-page: 439 article-title: Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland publication-title: Agricultural and Food Science – volume: 13 start-page: 841 year: 1991 end-page: 847 article-title: A validity measure for fuzzy clustering publication-title: IEEE Transactions on Pattern Analysis – volume: 26 start-page: 135 year: 2011 end-page: 143 article-title: Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models publication-title: Environmental Modelling and Software – volume: 34 start-page: 751 issue: 4 year: 1998 end-page: 763 article-title: Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods publication-title: Water Resources Research – volume: 12 start-page: 657 year: 2008 end-page: 667 article-title: Towards model evaluation and identification using self‐organizing maps publication-title: Hydrology and Earth System Sciences – volume: 17 start-page: 455 year: 2003 end-page: 476 article-title: Towards reduced uncertainty in conceptual rainfall–runoff modelling: dynamic identifiability analysis publication-title: Hydrological Processes – volume: 51 start-page: 164 issue: 4 year: 2007 end-page: 169 article-title: Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems publication-title: Hydrologie und Wasserbewirtschaftung – volume: 5 start-page: 89 year: 2005 end-page: 97 article-title: Comparison of different efficiency criteria for hydrological model assessment publication-title: Advances in Geosciences – volume: 65 start-page: 539 issue: 3 year: 2012 end-page: 549 article-title: Multi‐variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling publication-title: Water Science and Technology – volume: 6 start-page: 279 year: 1992 end-page: 298 article-title: The future of distributed models: model calibration and uncertainty prediction publication-title: Hydrological Processes – year: 2007 – volume: 22 start-page: 1660 year: 2008 end-page: 1674 article-title: Multi‐method global sensitivity analysis (mmgsa) for modelling floodplain hydrological processes publication-title: Hydrological Processes – volume: 92 start-page: 209 year: 2008 end-page: 223 article-title: A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM publication-title: Theoretical and Applied Climatology – volume: 169 start-page: 25 issue: 1 year: 2003 end-page: 38 article-title: Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model publication-title: Ecological Modelling – volume: 249 start-page: 11 issue: 1–2 year: 2001 end-page: 29 article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology publication-title: Journal of Hydrology – volume: 34 start-page: 73 year: 1998 end-page: 89 article-title: Large area hydrologic modeling and assessment part I: model development publication-title: The Journal of the American Water Resources Association – volume: 260 start-page: 1 issue: 1 year: 1978 end-page: 42 article-title: Non‐linear sensitivity analysis of multi‐parameter model systems publication-title: Journal of Computational Physics – volume: 50 start-page: 1211 issue: 4 year: 2007 end-page: 1250 article-title: The soil and water assessment tool: historical development, applications, and future research directions publication-title: Transactions of the ASABE – volume: 24 start-page: 1472 year: 2010 end-page: 1486 article-title: Incorporating landscape depressions and tile drainages of lowland catchments into spatially distributed hydrologic modeling publication-title: Hydrological Processes – volume: 63 start-page: 1140 issue: 3 year: 1975 end-page: 1149 article-title: Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 3. Analysis of approximations publication-title: Journal of Chemical Physics – year: 2010 – volume: 44 start-page: W01429 year: 2008b article-title: Characterization of watershed model behavior across a hydroclimatic gradient publication-title: Water Resources Research – volume: 31 start-page: 99 year: 2012 end-page: 109 article-title: Automating calibration, sensitivity and uncertainty analysis of complex models using the R package flexible modeling environment (fme): SWAT as an example publication-title: Environmental Modelling and Software – volume: 91 start-page: 1109 issue: 10–11 year: 2006 end-page: 1125 article-title: Sensitivity analysis practices: strategies for model‐based inference publication-title: Reliability Engineering and System Safety – volume: 16 start-page: 1259 year: 2012 end-page: 1267 article-title: Baseflow simulation using SWAT model in an inland river basin in Tianshan mountains, northwest China publication-title: Hydrology and Earth System Sciences – volume: 267 start-page: 80 issue: 1–2 year: 2002 end-page: 93 article-title: Land‐use impacts on storm‐runoff generation: scenarios of land‐use change and simulation of hydrological response in a meso‐scale catchment in SW Germany publication-title: Journal of Hydrology – volume: 30 start-page: 518 issue: 8–10 year: 2005 end-page: 526 article-title: Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT publication-title: Physics and Chemistry of the Earth, Parts A/B/C – volume: 25 start-page: 2313 issue: 14 year: 2011b end-page: 2320 article-title: Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework publication-title: Hydrological Processes – volume: 35 start-page: 1 issue: 11 year: 2008a end-page: 6 article-title: Rainfall characteristics define the value of streamflow observations for distributed watershed model identification publication-title: Geophysical Research Letters – volume: 59 start-page: 3873 issue: 8 year: 1973 end-page: 3878 article-title: Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory publication-title: Journal of Chemical Physics – year: 2006 – volume: 26 start-page: 1515 year: 2011 end-page: 1525 article-title: Sobol sensitivity analyses of a complex environmental model publication-title: Environmental Modelling and Software – volume: 35 start-page: 233 issue: 1 year: 1999 end-page: 241 article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resources Research – volume: 47 start-page: W07551 issue: 7 year: 2011 article-title: Temporal dynamics of model parameter sensitivity for computationally expensive models with FAST (Fourier amplitude sensitivity test) publication-title: Water Resources Research – year: 1995 – volume: 6 start-page: 15 year: 1982 end-page: 25 article-title: Global sensitivity analysis – a computational implementation of the Fourier amplitude sensitivity test (FAST) publication-title: Computers and Chemical Engineering – volume: 44 start-page: W09417 year: 2008 article-title: A process‐based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model publication-title: Water Resources Research – volume: 39 start-page: 1214 year: 2003 end-page: 1232 article-title: Effective and efficient algorithm for multiobjective optimization of hydrological models publication-title: Water Resources Research – volume: 22 start-page: 3802 year: 2008 end-page: 3813 article-title: Reconciling theory with observations: elements of a diagnostic approach to model evaluation publication-title: Hydrological Processes – volume: 332 start-page: 456 year: 2007 end-page: 466 article-title: Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT‐2000 publication-title: Journal of Hydrology – volume: 50 start-page: 885 issue: 3 year: 2007 end-page: 900 article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations publication-title: Transactions of the ASABE – year: 1999 – ident: e_1_2_7_10_1 doi: 10.1002/hyp.6734 – ident: e_1_2_7_25_1 doi: 10.1016/j.ecolmodel.2008.06.035 – ident: e_1_2_7_51_1 doi: 10.1029/2010WR009947 – ident: e_1_2_7_53_1 doi: 10.1016/j.ress.2005.11.014 – ident: e_1_2_7_29_1 doi: 10.1016/j.jhydrol.2006.08.001 – ident: e_1_2_7_18_1 doi: 10.13031/2013.23637 – volume-title: Die Böden Schleswig‐Holsteins year: 2006 ident: e_1_2_7_34_1 – ident: e_1_2_7_20_1 doi: 10.1016/S0304-3800(03)00198-4 – ident: e_1_2_7_48_1 – ident: e_1_2_7_9_1 doi: 10.1002/hyp.7568 – ident: e_1_2_7_39_1 doi: 10.1016/0098-1354(82)80003-3 – ident: e_1_2_7_56_1 – ident: e_1_2_7_44_1 doi: 10.2166/wst.2012.884 – ident: e_1_2_7_33_1 – volume: 249 start-page: 11 issue: 1 year: 2001 ident: e_1_2_7_6_1 article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology publication-title: Journal of Hydrology doi: 10.1016/S0022-1694(01)00421-8 – ident: e_1_2_7_47_1 – ident: e_1_2_7_17_1 doi: 10.2135/jeq2011.0382 – ident: e_1_2_7_5_1 doi: 10.1002/hyp.3360060305 – ident: e_1_2_7_35_1 doi: 10.1029/1998WR900018 – ident: e_1_2_7_32_1 doi: 10.5194/adgeo-5-89-2005 – ident: e_1_2_7_66_1 doi: 10.1029/2008GL034162 – ident: e_1_2_7_73_1 doi: 10.13031/2013.25407 – ident: e_1_2_7_43_1 doi: 10.1016/S0022-1694(02)00142-7 – ident: e_1_2_7_69_1 doi: 10.1016/j.envsoft.2011.11.013 – ident: e_1_2_7_38_1 – ident: e_1_2_7_74_1 doi: 10.1016/j.advwatres.2011.06.005 – ident: e_1_2_7_28_1 doi: 10.1061/(ASCE)1084-0699(2006)11:6(555) – volume: 180 start-page: 428 issue: 3 year: 2009 ident: e_1_2_7_61_1 article-title: Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland publication-title: Agricultural and Food Science doi: 10.23986/afsci.5966 – ident: e_1_2_7_64_1 doi: 10.1029/2002WR001746 – ident: e_1_2_7_49_1 doi: 10.1029/2010WR009946 – ident: e_1_2_7_21_1 doi: 10.1029/97WR03495 – ident: e_1_2_7_52_1 doi: 10.1016/S0167-9473(97)00043-1 – ident: e_1_2_7_30_1 doi: 10.1002/hyp.7607 – ident: e_1_2_7_57_1 – ident: e_1_2_7_22_1 doi: 10.1002/hyp.6989 – ident: e_1_2_7_37_1 – ident: e_1_2_7_46_1 doi: 10.1007/s00704-007-0352-y – ident: e_1_2_7_14_1 doi: 10.1016/j.envsoft.2006.06.008 – ident: e_1_2_7_4_1 doi: 10.1111/j.1752-1688.1998.tb05961.x – ident: e_1_2_7_54_1 doi: 10.1111/j.1752-1688.2001.tb03630.x – ident: e_1_2_7_12_1 doi: 10.1063/1.431440 – ident: e_1_2_7_3_1 doi: 10.1002/hyp.5611 – ident: e_1_2_7_50_1 doi: 10.5194/hess-13-999-2009 – volume: 51 start-page: 164 issue: 4 year: 2007 ident: e_1_2_7_16_1 article-title: Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems publication-title: Hydrologie und Wasserbewirtschaftung – ident: e_1_2_7_72_1 doi: 10.1029/2007WR006716 – ident: e_1_2_7_13_1 doi: 10.1016/0021-9991(78)90097-9 – ident: e_1_2_7_65_1 doi: 10.1002/hyp.1135 – ident: e_1_2_7_55_1 doi: 10.5194/adgeo-21-91-2009 – ident: e_1_2_7_71_1 – ident: e_1_2_7_2_1 doi: 10.1002/hyp.7077 – ident: e_1_2_7_59_1 doi: 10.1111/j.1752-1688.2006.tb04475.x – ident: e_1_2_7_75_1 doi: 10.1002/hyp.8058 – ident: e_1_2_7_70_1 doi: 10.1109/34.85677 – ident: e_1_2_7_7_1 – ident: e_1_2_7_23_1 doi: 10.5194/hess-12-657-2008 – ident: e_1_2_7_63_1 doi: 10.1016/j.jhydrol.2005.09.008 – ident: e_1_2_7_67_1 doi: 10.1029/2007WR006271 – ident: e_1_2_7_26_1 doi: 10.1016/j.pce.2005.07.006 – ident: e_1_2_7_8_1 doi: 10.1016/j.jhydrol.2006.07.012 – ident: e_1_2_7_40_1 doi: 10.13031/2013.23153 – ident: e_1_2_7_27_1 doi: 10.18637/jss.v022.i08 – ident: e_1_2_7_36_1 doi: 10.5194/hess-16-1259-2012 – ident: e_1_2_7_58_1 doi: 10.1016/j.jhydrol.2005.01.004 – ident: e_1_2_7_24_1 doi: 10.5194/hess-13-395-2009 – ident: e_1_2_7_45_1 doi: 10.1016/j.envsoft.2011.08.010 – ident: e_1_2_7_11_1 doi: 10.1063/1.1680571 – ident: e_1_2_7_15_1 doi: 10.1002/hyp.5613 – ident: e_1_2_7_31_1 doi: 10.1007/978-3-642-97610-0 – ident: e_1_2_7_60_1 doi: 10.1016/j.envsoft.2010.07.007 – ident: e_1_2_7_42_1 – ident: e_1_2_7_62_1 doi: 10.5194/hess-13-1555-2009 – ident: e_1_2_7_68_1 doi: 10.1111/j.1752-1688.2005.tb03786.x – ident: e_1_2_7_19_1 doi: 10.3390/w2040849 – ident: e_1_2_7_41_1 doi: 10.1016/0022-1694(70)90255-6 |
| SSID | ssj0004080 |
| Score | 2.4522173 |
| Snippet | Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2651 |
| SubjectTerms | model performance analysis sensitivity analysis SWAT temporal diagnostic analysis |
| Title | How to improve the representation of hydrological processes in SWAT for a lowland catchment - temporal analysis of parameter sensitivity and model performance |
| URI | https://api.istex.fr/ark:/67375/WNG-0FQW0PZV-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.9777 https://www.proquest.com/docview/1659806752 |
| Volume | 28 |
| WOSCitedRecordID | wos000330743000087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004080 issn: 0885-6087 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELagRYLL8ruiy4IGCcEprOP8-rgCSg-oKrBLFy6WYztqRUmqprD0xjvwAjwbT8LYcVpWAgmJUy6TSWTPeL6xZr4h5JGkBeWKykDmRgcxK3SQy5gHGGsxGmMIVEy6YRPZeJyfnfGJr6q0vTAtP8T2ws16hjuvrYPLojnakYbONsunCF6yy6TP0GzjHuk_fzM8fbXriqRubhq6URKkNM866lnKjrp3LwSjvl3XrxeQ5u941QWc4fX_-dUbZM_DTDhu7eImuWSqW-Sqn3g-29wmP0b1OaxrmLtLBQOIA8ERXHbNSBXUJcw2etWdjrBsewpMA_MK3k6PTwABL0hY1Oe2PBIUnuoze9kIP799B895tQDpaU-sPks0_skW4EBjC-fbyRVgX3YTeWC5a2O4Q06HL06ejQI_rSFQEYKQoDQ5TQ3PdaYjTIMKHnLJVam5THQZRjEzklOmUqMwCdJ5hKlpismSzAqJkCUqo33Sq-rK3CUgM5rysJQm1EVsUE2sU6lTGhuGWstiQJ502yaUpzK3EzUWoiVhZgJXXNgVH5CHW8llS9_xB5nHbue3AnL10Za7ZYmYjl8KOnw9pZMP78R0QA470xDe0xsRpgnPbdrFUI8zgr9-SIzeT-zz4F8F75FriM9iWyQeJoekt159NvfJFfVlPW9WD7y9_wIdvwlR |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhNBDLZKglQu_CMCBYyE4LR09n9HnCogBBGiAClpuYxmZ2aVqOlulARKbrwDL8Cz8SR49iehEkhInPbi9a5m7PHnkf0Z4JFkKeOKSUcmRjuBl2onkQF3KNZSNKYQqDxZDpuIB4Pk6IgPd-BZ0wtT8UNsLtysZ5TntXVweyG9v2UNnaznTwm9xBegHZAVhS1ov3jfPexv2yJZOTiN_Ch0IpbEDfcs8_abd89Fo7Zd2K_noObvgLWMON0r__WvV-FyDTTxoLKMa7Bj8uuwW888n6xvwI9ecYarAqfltYJBQoJYUlw27Ug5FhlO1nrRnI84r7oKzBKnOX4YH4yQIC9KnBVntkASFZ3rE3vdiD-_fcea9WqGsiY-sfos1fipLcHBpS2dr2ZXoH25nMmD820jw0047L4cPe859bwGR_kEQ5zMJCwyPNGx9ikRSrnLJVeZ5jLUmesHnpGceSoyitIgnfiUnEaULsk4lQRa_My_Ba28yM1tQBmziLuZNK5OA0NqAh1JHbHAeKQ1SzvwpNk3oWoycztTYyYqGmZP0IoLu-IdeLiRnFcEHn-QeVxu_UZALk5swVscivHglWDdd2M2_PRRjDuw19iGqH19Kdwo5IlNvDzSU1rBXz8kesdD-7zzr4IPYLc3etsX_deDN3fhEqG1wJaMu-EetFaLz-YeXFRfVtPl4n5t_L8A5qoNQQ |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELaWLQIu_CMKCwwSglNY58-JxWnFEopYVQV26S4Xy7EdtaIkUVtYeuMdeAGejSdh7CQtK4GExCmXySSyZzzfWDPfEPJI0pxyRaUnU6O9KMi1l8qIexhrMRpjCFSBdMMmkuEwPT7moy3yrOuFafgh1hdu1jPceW0d3NS62N2whk5W9VNEL8k50otiztAre_tvs6ODTVskdYPT0I9ij9E06bhnabDbvXsmGvXswn49AzV_B6wu4mRX_utfr5LLLdCEvcYyrpEtU14nF9uZ55PVDfJjUJ3CsoKpu1YwgEgQHMVl145UQlXAZKXn3fkIddNVYBYwLeHdeO8QEPKChFl1agskQeG5PrHXjfDz23doWa9mIFviE6vPUo1_siU4sLCl883sCrAvu5k8UG8aGW6So-zF4fOB185r8FSIMMQrTEqZ4alOdIiJUM59LrkqNJexLvwwCozkNFDMKEyDdBpicsowXZJJLhG0hEV4i2yXVWluE5AJZdwvpPF1HhlUE2kmNaORCVBrkffJk27fhGrJzO1MjZloaJgDgSsu7Ir3ycO1ZN0QePxB5rHb-rWAnH-0BW9JLMbDl4Jmb8Z09OG9GPfJTmcbovX1hfBZzFObeAWox1nBXz8kBicj-7zzr4IPyIXRfiYOXg1f3yWXEKxFtmLcj3fI9nL-2dwj59WX5XQxv9_a_i9hXwy8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+improve+the+representation+of+hydrological+processes+in+SWAT+for+a+lowland+catchment+-+temporal+analysis+of+parameter+sensitivity+and+model+performance&rft.jtitle=Hydrological+processes&rft.au=Guse%2C+Bj%C3%B6rn&rft.au=Reusser%2C+Dominik+E.&rft.au=Fohrer%2C+Nicola&rft.date=2014-02-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=28&rft.issue=4&rft.spage=2651&rft.epage=2670&rft_id=info:doi/10.1002%2Fhyp.9777&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0FQW0PZV_W |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |