How to improve the representation of hydrological processes in SWAT for a lowland catchment - temporal analysis of parameter sensitivity and model performance

Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes Jg. 28; H. 4; S. 2651 - 2670
Hauptverfasser: Guse, Björn, Reusser, Dominik E., Fohrer, Nicola
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Chichester Blackwell Publishing Ltd 15.02.2014
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0885-6087, 1099-1085
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing the whole discharge time series. In this study, we aim to improve the understanding of hydrological processes by investigating the temporal dynamics of parameter sensitivity and of model performance for the Soil and Water Assessment Tool model applied to the Treene lowland catchment in Northern Germany. The temporal analysis shows that the parameter sensitivity varies temporally with high sensitivity for three groundwater parameters (groundwater time delay, baseflow recession constant and aquifer fraction coefficient) and one evaporation parameter (soil evaporation compensation factor). Whereas the soil evaporation compensation factor dominates in baseflow and resaturation periods, groundwater time delay, baseflow recession constant and aquifer fraction coefficient are dominant in the peak and recession phases. The temporal analysis of model performance identifies three clusters with different model performances, which can be related to different phases of the hydrograph. The lowest performance, when comparing six performance measures, is detected for the baseflow cluster. A spatially distributed analysis for six hydrological stations within the Treene catchment shows similar results for all stations. The linkage of periods with poor model performance to the dominant model components in these phases and with the related hydrological processes shows that the groundwater module has the highest potential for improvement. This temporal diagnostic analysis enhances the understanding of the Soil and Water Assessment Tool model and of the dominant hydrological processes in the lowland catchment. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing the whole discharge time series. In this study, we aim to improve the understanding of hydrological processes by investigating the temporal dynamics of parameter sensitivity and of model performance for the Soil and Water Assessment Tool model applied to the Treene lowland catchment in Northern Germany. The temporal analysis shows that the parameter sensitivity varies temporally with high sensitivity for three groundwater parameters (groundwater time delay, baseflow recession constant and aquifer fraction coefficient) and one evaporation parameter (soil evaporation compensation factor). Whereas the soil evaporation compensation factor dominates in baseflow and resaturation periods, groundwater time delay, baseflow recession constant and aquifer fraction coefficient are dominant in the peak and recession phases. The temporal analysis of model performance identifies three clusters with different model performances, which can be related to different phases of the hydrograph. The lowest performance, when comparing six performance measures, is detected for the baseflow cluster. A spatially distributed analysis for six hydrological stations within the Treene catchment shows similar results for all stations. The linkage of periods with poor model performance to the dominant model components in these phases and with the related hydrological processes shows that the groundwater module has the highest potential for improvement. This temporal diagnostic analysis enhances the understanding of the Soil and Water Assessment Tool model and of the dominant hydrological processes in the lowland catchment. Copyright © 2013 John Wiley & Sons, Ltd.
Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal analysis detects periods of poor model performance and model components with potential for model improvements, which cannot be found by analysing the whole discharge time series. In this study, we aim to improve the understanding of hydrological processes by investigating the temporal dynamics of parameter sensitivity and of model performance for the Soil and Water Assessment Tool model applied to the Treene lowland catchment in Northern Germany. The temporal analysis shows that the parameter sensitivity varies temporally with high sensitivity for three groundwater parameters (groundwater time delay, baseflow recession constant and aquifer fraction coefficient) and one evaporation parameter (soil evaporation compensation factor). Whereas the soil evaporation compensation factor dominates in baseflow and resaturation periods, groundwater time delay, baseflow recession constant and aquifer fraction coefficient are dominant in the peak and recession phases. The temporal analysis of model performance identifies three clusters with different model performances, which can be related to different phases of the hydrograph. The lowest performance, when comparing six performance measures, is detected for the baseflow cluster. A spatially distributed analysis for six hydrological stations within the Treene catchment shows similar results for all stations. The linkage of periods with poor model performance to the dominant model components in these phases and with the related hydrological processes shows that the groundwater module has the highest potential for improvement. This temporal diagnostic analysis enhances the understanding of the Soil and Water Assessment Tool model and of the dominant hydrological processes in the lowland catchment. Copyright © 2013 John Wiley & Sons, Ltd.
Author Guse, Björn
Reusser, Dominik E.
Fohrer, Nicola
Author_xml – sequence: 1
  givenname: Björn
  surname: Guse
  fullname: Guse, Björn
  email: Correspondence to: Björn Guse, Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian-Albrechts-University of Kiel, Kiel, Germany., bguse@hydrology.uni-kiel.de
  organization: Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian-Albrechts-University of Kiel, Kiel, Germany
– sequence: 2
  givenname: Dominik E.
  surname: Reusser
  fullname: Reusser, Dominik E.
  organization: Potsdam Institute for Climate Impact Research, Potsdam, Germany
– sequence: 3
  givenname: Nicola
  surname: Fohrer
  fullname: Fohrer, Nicola
  organization: Institute of Natural Resource Conservation, Department of Hydrology and Water Resources Management, Christian-Albrechts-University of Kiel, Kiel, Germany
BookMark eNp1kMFu1DAQhi1UJLYFiUewxIVLFjtex_axqmgXqYIiCiu4WFNnwrokcWq7XfIyPCteLUICwWku3_fPzH9MjsYwIiHPOVtyxupX23laGqXUI7LgzJiKMy2PyIJpLauGafWEHKd0yxhbMc0W5Mc67GgO1A9TDA9I8xZpxCliwjFD9mGkoaPbuY2hD1-9g54W0GFKmKgf6YfN6TXtQqRA-7DrYWypg-y2Q9FpRTMOU4hFghH6Ofm0T5sgwoAZIy1Lks_-weeZ7tUhtFgWYCyJA4wOn5LHHfQJn_2aJ-Tj-evrs3V1-e7izdnpZeWE4KrqULMGjW5VK-RK3xhuwLiuNSDbjotVjWBY7Rp0XK1aLXQtG60kqBswnIlOnJAXh9zy3N09pmxvw30sNyfLG2lKupJ1oV4eKBdDShE7O0U_QJwtZ3bfvi3t2337BV3-hTp_6DNH8P2_hOog7HyP83-D7frz1Z-8Txm__-YhfrONEkrazdsLy87fb9jVl092I34CEMyqpA
CitedBy_id crossref_primary_10_1016_j_jhydrol_2020_125370
crossref_primary_10_1007_s11269_017_1862_8
crossref_primary_10_1029_2020WR028042
crossref_primary_10_1016_j_jenvman_2023_117312
crossref_primary_10_3390_w11010171
crossref_primary_10_3390_w12010302
crossref_primary_10_1016_j_gsd_2024_101275
crossref_primary_10_5194_hess_26_2561_2022
crossref_primary_10_1016_j_jhydrol_2018_01_063
crossref_primary_10_1002_ldr_2889
crossref_primary_10_1016_j_ecolmodel_2015_07_009
crossref_primary_10_1016_j_envsoft_2018_12_002
crossref_primary_10_5194_hess_25_1365_2021
crossref_primary_10_1029_2019WR026555
crossref_primary_10_1002_hyp_11313
crossref_primary_10_1016_j_jsames_2022_103773
crossref_primary_10_1007_s10661_022_09858_0
crossref_primary_10_1002_hyp_10062
crossref_primary_10_1016_j_envsoft_2016_02_008
crossref_primary_10_1016_j_jenvman_2017_02_060
crossref_primary_10_5194_hess_22_203_2018
crossref_primary_10_1002_2015WR016907
crossref_primary_10_1002_hyp_70081
crossref_primary_10_1016_j_ecolind_2025_113739
crossref_primary_10_2166_hydro_2024_293
crossref_primary_10_1111_1365_2745_13859
crossref_primary_10_1016_j_landusepol_2018_01_041
crossref_primary_10_1029_2020WR027468
crossref_primary_10_3390_rs15030796
crossref_primary_10_1016_j_jhydrol_2024_132470
crossref_primary_10_1016_j_scitotenv_2015_05_078
crossref_primary_10_1016_j_envsoft_2015_09_006
crossref_primary_10_1007_s11269_023_03678_8
crossref_primary_10_1007_s10661_023_11079_y
crossref_primary_10_1016_j_jsames_2025_105420
crossref_primary_10_3390_w12061711
crossref_primary_10_1002_eco_2193
crossref_primary_10_1016_j_scitotenv_2022_160689
crossref_primary_10_1016_j_scitotenv_2017_10_139
crossref_primary_10_1080_02626667_2023_2174027
crossref_primary_10_3390_w11010112
crossref_primary_10_3390_w14050807
crossref_primary_10_1002_hyp_10764
crossref_primary_10_3390_w8040158
crossref_primary_10_1002_joc_5099
crossref_primary_10_1016_j_jhydrol_2013_12_044
crossref_primary_10_1038_sdata_2018_224
crossref_primary_10_1016_j_still_2020_104703
crossref_primary_10_1016_j_jhydrol_2015_02_013
crossref_primary_10_1016_j_envsoft_2024_106189
crossref_primary_10_1016_j_jhydrol_2016_03_001
crossref_primary_10_5194_hess_19_4365_2015
crossref_primary_10_1016_j_envsoft_2016_10_011
crossref_primary_10_1029_2022WR032932
crossref_primary_10_5194_hess_28_5353_2024
crossref_primary_10_1016_j_envsoft_2021_104981
crossref_primary_10_3390_w16121746
crossref_primary_10_1002_hyp_11466
crossref_primary_10_1016_j_envres_2018_06_029
crossref_primary_10_1016_j_jhydrol_2018_12_050
crossref_primary_10_1007_s13762_023_04938_1
crossref_primary_10_1016_j_jhydrol_2021_126632
crossref_primary_10_3390_w13030318
crossref_primary_10_1007_s11356_022_18573_9
crossref_primary_10_1016_j_ecolmodel_2014_04_009
crossref_primary_10_3390_w10091135
crossref_primary_10_1016_j_jhydrol_2021_126781
crossref_primary_10_1016_j_ecolind_2017_04_032
crossref_primary_10_1016_j_ecolmodel_2014_01_020
crossref_primary_10_1016_j_earscirev_2019_04_006
crossref_primary_10_1029_2020WR027153
crossref_primary_10_5194_hess_17_5109_2013
crossref_primary_10_5194_hess_20_4655_2016
crossref_primary_10_1038_s41598_020_59107_y
crossref_primary_10_1088_2515_7620_ad85c8
crossref_primary_10_2166_nh_2024_042
crossref_primary_10_3390_su151813850
crossref_primary_10_1002_ece3_3903
crossref_primary_10_1016_j_scs_2025_106279
crossref_primary_10_1061__ASCE_HE_1943_5584_0001726
crossref_primary_10_1371_journal_pone_0130228
crossref_primary_10_1007_s12665_021_09912_z
crossref_primary_10_1175_JHM_D_16_0050_1
crossref_primary_10_1080_02626667_2018_1505047
crossref_primary_10_1029_2018WR022668
crossref_primary_10_2166_hydro_2017_038
crossref_primary_10_1007_s10333_014_0448_9
crossref_primary_10_5194_hess_21_5663_2017
crossref_primary_10_2166_nh_2021_119
crossref_primary_10_3390_w11050958
crossref_primary_10_1016_j_envsoft_2018_03_018
crossref_primary_10_1016_j_scitotenv_2017_04_074
crossref_primary_10_5194_hess_20_2861_2016
crossref_primary_10_5194_hess_27_2621_2023
crossref_primary_10_1155_2022_6587890
crossref_primary_10_1016_j_catena_2014_10_032
crossref_primary_10_1080_02626667_2020_1725238
crossref_primary_10_5194_hess_25_1307_2021
crossref_primary_10_1016_j_ejrh_2025_102604
crossref_primary_10_1016_j_jhydrol_2019_01_045
crossref_primary_10_1016_j_jhydrol_2025_133415
crossref_primary_10_1016_j_landusepol_2016_09_027
crossref_primary_10_1016_j_scitotenv_2021_148766
crossref_primary_10_1007_s10666_014_9414_6
crossref_primary_10_1016_j_jhydrol_2019_03_091
crossref_primary_10_1002_hyp_10968
crossref_primary_10_1080_02626667_2019_1682149
crossref_primary_10_3390_w11112411
crossref_primary_10_2134_jeq2015_10_0518
crossref_primary_10_1111_1752_1688_12524
crossref_primary_10_1016_j_envsoft_2016_07_003
crossref_primary_10_1029_2019WR025605
crossref_primary_10_5194_hess_19_4127_2015
crossref_primary_10_1016_j_envsoft_2016_09_012
crossref_primary_10_1002_rra_3603
crossref_primary_10_1080_15583058_2025_2512948
crossref_primary_10_1007_s40710_015_0099_x
crossref_primary_10_1029_2021WR031149
crossref_primary_10_1111_1752_1688_12413
crossref_primary_10_1007_s12665_016_5870_4
crossref_primary_10_1061__ASCE_HE_1943_5584_0001994
Cites_doi 10.1002/hyp.6734
10.1016/j.ecolmodel.2008.06.035
10.1029/2010WR009947
10.1016/j.ress.2005.11.014
10.1016/j.jhydrol.2006.08.001
10.13031/2013.23637
10.1016/S0304-3800(03)00198-4
10.1002/hyp.7568
10.1016/0098-1354(82)80003-3
10.2166/wst.2012.884
10.1016/S0022-1694(01)00421-8
10.2135/jeq2011.0382
10.1002/hyp.3360060305
10.1029/1998WR900018
10.5194/adgeo-5-89-2005
10.1029/2008GL034162
10.13031/2013.25407
10.1016/S0022-1694(02)00142-7
10.1016/j.envsoft.2011.11.013
10.1016/j.advwatres.2011.06.005
10.1061/(ASCE)1084-0699(2006)11:6(555)
10.23986/afsci.5966
10.1029/2002WR001746
10.1029/2010WR009946
10.1029/97WR03495
10.1016/S0167-9473(97)00043-1
10.1002/hyp.7607
10.1002/hyp.6989
10.1007/s00704-007-0352-y
10.1016/j.envsoft.2006.06.008
10.1111/j.1752-1688.1998.tb05961.x
10.1111/j.1752-1688.2001.tb03630.x
10.1063/1.431440
10.1002/hyp.5611
10.5194/hess-13-999-2009
10.1029/2007WR006716
10.1016/0021-9991(78)90097-9
10.1002/hyp.1135
10.5194/adgeo-21-91-2009
10.1002/hyp.7077
10.1111/j.1752-1688.2006.tb04475.x
10.1002/hyp.8058
10.1109/34.85677
10.5194/hess-12-657-2008
10.1016/j.jhydrol.2005.09.008
10.1029/2007WR006271
10.1016/j.pce.2005.07.006
10.1016/j.jhydrol.2006.07.012
10.13031/2013.23153
10.18637/jss.v022.i08
10.5194/hess-16-1259-2012
10.1016/j.jhydrol.2005.01.004
10.5194/hess-13-395-2009
10.1016/j.envsoft.2011.08.010
10.1063/1.1680571
10.1002/hyp.5613
10.1007/978-3-642-97610-0
10.1016/j.envsoft.2010.07.007
10.5194/hess-13-1555-2009
10.1111/j.1752-1688.2005.tb03786.x
10.3390/w2040849
10.1016/0022-1694(70)90255-6
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/hyp.9777
DatabaseName Istex
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Civil Engineering Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 2670
ExternalDocumentID 3610770831
10_1002_hyp_9777
HYP9777
ark_67375_WNG_0FQW0PZV_W
Genre article
GrantInformation_xml – fundername: German Federal Ministry for Education and Research (BMBF)
  funderid: 02WM1136
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~KM
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
WWD
AAYXX
CITATION
O8X
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c3317-fe806e98d7d3548b919a9cfd9a5df1342ea902c6ec174d838256875a7ba9103f3
IEDL.DBID DRFUL
ISICitedReferencesCount 120
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000330743000087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6087
IngestDate Fri Jul 25 03:31:22 EDT 2025
Tue Nov 18 22:19:54 EST 2025
Sat Nov 29 03:02:41 EST 2025
Wed Jan 22 16:29:37 EST 2025
Tue Nov 11 03:32:23 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3317-fe806e98d7d3548b919a9cfd9a5df1342ea902c6ec174d838256875a7ba9103f3
Notes German Federal Ministry for Education and Research (BMBF) - No. 02WM1136
ArticleID:HYP9777
istex:1D91DED45B84E76C7F71A2A63C562E46F158E51C
ark:/67375/WNG-0FQW0PZV-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1659806752
PQPubID 2034139
PageCount 20
ParticipantIDs proquest_journals_1659806752
crossref_primary_10_1002_hyp_9777
crossref_citationtrail_10_1002_hyp_9777
wiley_primary_10_1002_hyp_9777_HYP9777
istex_primary_ark_67375_WNG_0FQW0PZV_W
PublicationCentury 2000
PublicationDate 2014-02-15
15 February 2014
20140215
PublicationDateYYYYMMDD 2014-02-15
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: part I - a discussion of principles. Journal of Hydrology 10: 282-290.
Beven KJ, Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology 249(1-2): 11-29.
Herbst M, Gupta HV, Casper MC. 2009. Mapping model behaviour using self-organizing maps. Hydrology and Earth System Sciences 13: 395-409.
Wu Y, Liu S. 2012. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package flexible modeling environment (fme): SWAT as an example. Environmental Modelling and Software 31: 99-109.
Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. The Journal of the American Water Resources Association 37(5): 1169-1187.
Eckhardt K, Fohrer N, Frede H-G. 2005. Automatic model calibration. Hydrological Processes 19: 651-658.
Nossent J, Elsen P, Bauwens W. 2011. Sobol sensitivity analyses of a complex environmental model. Environmental Modelling and Software 26: 1515-1525.
Saltelli A, Bolado R. 1998. An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics and Data Analysis 26(4): 445-460.
Sudheer KP, Lakshmi G, Chaubey I. 2011. Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environmental Modelling and Software 26: 135-143.
Orlowsky B, Gerstengarbe F-W, Werner PC. 2008. A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theoretical and Applied Climatology 92: 209-223.
Reusser DE, Zehe E. 2011. Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity. Water Resources Research 47(7): W07550. DOI:10.1029/2010WR009946.
Dawson CW, Abrahart RJ, See LM. 2007. Hydrotest: a Web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecast. Environmental Modelling and Software 22: 1034-1052.
Zhang X, Srinivasan R, Van Liew M. 2009. Multi-site calibration of the SWAT model for hydrologic modeling. Transactions of the ASABE 51(6): 2039-2049.
Van Griensven A, Meixner T, Grunwald S, Bishop T, Di Luzio M, Srinivasan R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology 324: 10-23.
Kannan N, White SM, Worrall F, Whelan MJ. 2007. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. Journal of Hydrology 332: 456-466.
Gupta HV, Sorooshian S, Yapo PO. 1998. Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resources Research 34(4): 751-763.
Beven KJ, Binley AM. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6: 279-298.
LANU S-H. 2006. Die Böden Schleswig-Holsteins. Landesamt für Natur und Umwelt des Landes Schleswig-Holsteins: Kiel.
Krause P, Boyle DP, Baese F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5: 89-97.
White KL, Chaubey I. 2005. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. The Journal of the American Water Resources Association 41(5): 1077-1089.
Xie X, Beni G. 1991. A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis 13: 841-847.
Aksoy H, Unal NE, Pektas AO. 2008. Smoothed minima baseflow separation tool for perennial and intermittent streams. Hydrological Processes 22: 4467-4476.
Grizzetti B, Bouraoui F, Granlund K, Rekolainen S, Bidoglio G. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecological Modelling 169(1): 25-38.
Schmalz B, Fohrer N. 2009. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Advances in Geosciences 21: 91-98.
Kalin L, Hantush MH. 2006. Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data. Journal of Hydrological Engineering 11: 555-569.
Legates D, McCabe Jr G. 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241.
McRae GJ, Tilden JW, Seinfeld JH. 1982. Global sensitivity analysis - a computational implementation of the Fourier amplitude sensitivity test (FAST). Computers and Chemical Engineering 6: 15-25.
Nossent J, Bauwens W. 2012. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Science and Technology 65(3): 539-549.
Tattari S, Koskiaho J, Barlund I, Jaakkola E. 2009. Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland. Agricultural and Food Science 180(3-4): 428-439.
Saltelli A, Ratto M, Tarantola S, Campolongo F.2006. Sensitivity analysis practices: strategies for model-based inference. Reliability Engineering and System Safety 91(10-11): 1109-1125.
Gitau MW, Chaubey I. 2010. Regionalization of SWAT model parameters for use in ungauged watersheds. Water 2: 849-871.
Gupta HV, Wagener T, Liu Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes 22: 3802-3813.
Fohrer N, Schmalz B, Tavares F, Golon J. 2007. Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems. Hydrologie und Wasserbewirtschaftung 51(4): 164-169.
Herbst M, Casper MC. 2008. Towards model evaluation and identification using self-organizing maps. Hydrology and Earth System Sciences 12: 657-667.
Kiesel J, Fohrer N, Schmalz B, White MJ. 2010. Incorporating landscape depressions and tile drainages of lowland catchments into spatially distributed hydrologic modeling. Hydrological Processes 24: 1472-1486.
Toth E. 2009. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrology and Earth System Sciences 13: 1555-1566.
Gassman PW, Reyes MR, Green CH, Arnold JG. 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE 50(4): 1211-1250.
Moriasi DN, Arnold JR, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900.
Cukier RI, Schaibly JH, Shuler KE. 1975. Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 3. Analysis of approximations. Journal of Chemical Physics 63(3): 1140-1149.
Wagener T, McIntyre N, Lees MJ, Wheater HS, Gupta HV. 2003. Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrological Processes 17: 455-476.
van Werkhoven K, Wagener T, Reed P, Tang Y. 2008a. Rainfall characteristics define the value of streamflow observations for distributed watershed model identification. Geophysical Research Letters 35(11): 1-6. DOI: 10.1029/2008GL034162.
Fohrer N, Dietrich A, Kolychalow O, Ulrich U. 2013. Assessment of the environmental fate of the herbicides Flufenacet and Metazachlor with the SWAT model. Journal of Environmental Quality, 42: 1-11 DOI:10.2135/jeq2011.0382.
Zhang H, Huang GH, Wang D, Zhang X. 2011a. Multi-period calibration of a semi-distributed hydrological model based on hydroclimatic clustering. Advances in Water Resources 34: 1292-1303.
Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH. 1973. Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory. Journal of Chemical Physics 59(8): 3873-3878.
Cukier RI, Levine HB, Shuler KE. 1978. Non-linear sensitivity analysis of multi-parameter model systems. Journal of Computational Physics 260(1): 1-42.
Reusser DE, Blume T, Schaefli B, Zehe E. 2009. Analysing the temporal dynamics of model performance for hydrological models. Hydrology and Earth System Sciences 13: 999-1018.
Yilmaz KK, Gupta HV, Wagener T. 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research 44: W09417. DOI: 10.1029/2007WR006716.
Holvoet K, van Griensven A, Seuntjens P, Vanrolleghem PA. 2005. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, Parts A/B/C 30(8-10): 518-526.
Vrugt J, Gupta HV, Bastidas LA, Bouten W, Sorooshian S. 2003. Effective and efficient algorithm for multiobjective optimization of hydrological models. Water Resources Research 39: 1214-1232.
Choi HT, Beven K. 2007. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of Topmodel within the GLUE framework. Journal of Hydrology 332: 316-336.
Sieber A, Uhlenbrook S. 2005. Sensitivity analyses of a distributed catchment model to verify the model structure. Journal of Hydrology 310(1-4): 216-235.
Arnold JG, Fohrer N. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes 19: 563-572.
van Werkhoven K, Wagener T, Reed P, Tang Y. 2008b. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resources Research 44: W01429. DOI: 10.1029/2007WR006271.
Cibin R, Sudheer KP, Chaubey I. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes 24: 1133-1148.
Niehoff D, Fritsch U, Bronstert A. 2002. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW German
2008a; 35
1991; 13
1973; 59
1978; 260
1972
2003; 17
2012; 16
2011a; 34
1992; 6
2007; 332
2009; 13
2009; 51
2010; 24
2002; 267
1982; 6
2005; 30
2008b; 44
2008; 22
2011; 26
2010; 2
2003; 169
2006; 324
2007; 22
2012; 65
1998; 26
2006; 91
2009; 21
2011
2009; 180
2011b; 25
2005; 310
2010
2006; 11
2013; 42
2008
2005; 41
2008; 12
1970; 10
2007
1995
2006
2003; 39
2007; 50
2004
2007; 51
2008; 92
2012; 31
2001; 249
1999
2005; 19
2006; 42
2005; 5
1999; 35
2008; 218
2001; 37
1975; 63
2008; 44
2011; 47
1998; 34
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
Fohrer N (e_1_2_7_16_1) 2007; 51
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
Beven KJ (e_1_2_7_6_1) 2001; 249
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Tattari S (e_1_2_7_61_1) 2009; 180
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
LANU S‐H (e_1_2_7_34_1) 2006
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Beven KJ, Binley AM. 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes 6: 279-298.
– reference: Holvoet K, van Griensven A, Seuntjens P, Vanrolleghem PA. 2005. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth, Parts A/B/C 30(8-10): 518-526.
– reference: White KL, Chaubey I. 2005. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. The Journal of the American Water Resources Association 41(5): 1077-1089.
– reference: Reusser DE, Buytaert W, Zehe E. 2011. Temporal dynamics of model parameter sensitivity for computationally expensive models with FAST (Fourier amplitude sensitivity test). Water Resources Research 47(7): W07551. DOI:10.1029/2010WR009947.
– reference: Saltelli A, Ratto M, Tarantola S, Campolongo F.2006. Sensitivity analysis practices: strategies for model-based inference. Reliability Engineering and System Safety 91(10-11): 1109-1125.
– reference: Zhang X, Srinivasan R, Van Liew M. 2009. Multi-site calibration of the SWAT model for hydrologic modeling. Transactions of the ASABE 51(6): 2039-2049.
– reference: Reusser DE, Blume T, Schaefli B, Zehe E. 2009. Analysing the temporal dynamics of model performance for hydrological models. Hydrology and Earth System Sciences 13: 999-1018.
– reference: Krause P, Boyle DP, Baese F. 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences 5: 89-97.
– reference: Cibin R, Sudheer KP, Chaubey I. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes 24: 1133-1148.
– reference: McRae GJ, Tilden JW, Seinfeld JH. 1982. Global sensitivity analysis - a computational implementation of the Fourier amplitude sensitivity test (FAST). Computers and Chemical Engineering 6: 15-25.
– reference: Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH. 1973. Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory. Journal of Chemical Physics 59(8): 3873-3878.
– reference: Hesse C, Krysanova V, Pazolt J, Hattermann FF. 2008. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling 218(1-2): 135-148.
– reference: Nossent J, Elsen P, Bauwens W. 2011. Sobol sensitivity analyses of a complex environmental model. Environmental Modelling and Software 26: 1515-1525.
– reference: Tattari S, Koskiaho J, Barlund I, Jaakkola E. 2009. Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland. Agricultural and Food Science 180(3-4): 428-439.
– reference: Sieber A, Uhlenbrook S. 2005. Sensitivity analyses of a distributed catchment model to verify the model structure. Journal of Hydrology 310(1-4): 216-235.
– reference: Grizzetti B, Bouraoui F, Granlund K, Rekolainen S, Bidoglio G. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model. Ecological Modelling 169(1): 25-38.
– reference: Kiesel J, Fohrer N, Schmalz B, White MJ. 2010. Incorporating landscape depressions and tile drainages of lowland catchments into spatially distributed hydrologic modeling. Hydrological Processes 24: 1472-1486.
– reference: Choi HT, Beven K. 2007. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of Topmodel within the GLUE framework. Journal of Hydrology 332: 316-336.
– reference: Orlowsky B, Gerstengarbe F-W, Werner PC. 2008. A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM. Theoretical and Applied Climatology 92: 209-223.
– reference: Beven KJ, Freer J. 2001. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology 249(1-2): 11-29.
– reference: Reusser DE, Zehe E. 2011. Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity. Water Resources Research 47(7): W07550. DOI:10.1029/2010WR009946.
– reference: Eckhardt K, Fohrer N, Frede H-G. 2005. Automatic model calibration. Hydrological Processes 19: 651-658.
– reference: Sudheer KP, Lakshmi G, Chaubey I. 2011. Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environmental Modelling and Software 26: 135-143.
– reference: Wu Y, Liu S. 2012. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package flexible modeling environment (fme): SWAT as an example. Environmental Modelling and Software 31: 99-109.
– reference: Luo Y, Arnold J, Allen P, Chen X. 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan mountains, northwest China. Hydrology and Earth System Sciences 16: 1259-1267.
– reference: Niehoff D, Fritsch U, Bronstert A. 2002. Land-use impacts on storm-runoff generation: scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW Germany. Journal of Hydrology 267(1-2): 80-93.
– reference: Saltelli A, Bolado R. 1998. An alternative way to compute Fourier amplitude sensitivity test (FAST). Computational Statistics and Data Analysis 26(4): 445-460.
– reference: Gupta HV, Wagener T, Liu Y. 2008. Reconciling theory with observations: elements of a diagnostic approach to model evaluation. Hydrological Processes 22: 3802-3813.
– reference: Zhang X, Srinivasan R, Arnold J, Izaurralde RC, Bosch D. 2011b. Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework. Hydrological Processes 25(14): 2313-2320.
– reference: Herbst M, Casper MC. 2008. Towards model evaluation and identification using self-organizing maps. Hydrology and Earth System Sciences 12: 657-667.
– reference: Kohonen T. 1995. Self-organizing Maps. Springer: Heidelberg.
– reference: Aksoy H, Unal NE, Pektas AO. 2008. Smoothed minima baseflow separation tool for perennial and intermittent streams. Hydrological Processes 22: 4467-4476.
– reference: Gitau MW, Chaubey I. 2010. Regionalization of SWAT model parameters for use in ungauged watersheds. Water 2: 849-871.
– reference: Dawson CW, Abrahart RJ, See LM. 2007. Hydrotest: a Web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecast. Environmental Modelling and Software 22: 1034-1052.
– reference: Nash JE, Sutcliffe JV. 1970. River flow forecasting through conceptual models: part I - a discussion of principles. Journal of Hydrology 10: 282-290.
– reference: Vrugt J, Gupta HV, Bastidas LA, Bouten W, Sorooshian S. 2003. Effective and efficient algorithm for multiobjective optimization of hydrological models. Water Resources Research 39: 1214-1232.
– reference: Moriasi DN, Arnold JR, Van Liew MW, Bingner RL, Harmel RD, Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900.
– reference: Arnold JG, Fohrer N. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes 19: 563-572.
– reference: Arnold JG, Srinivasan R, Muttiah RS, Williams JR. 1998. Large area hydrologic modeling and assessment part I: model development. The Journal of the American Water Resources Association 34: 73-89.
– reference: Wagener T, McIntyre N, Lees MJ, Wheater HS, Gupta HV. 2003. Towards reduced uncertainty in conceptual rainfall-runoff modelling: dynamic identifiability analysis. Hydrological Processes 17: 455-476.
– reference: Srivastava P, McNair JN, Johnson TE. 2006. Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed. Journal of the American Water Resources Association 42: 545-563.
– reference: Kalin L, Hantush MH. 2006. Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data. Journal of Hydrological Engineering 11: 555-569.
– reference: Xie X, Beni G. 1991. A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis 13: 841-847.
– reference: Schmalz B, Fohrer N. 2009. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Advances in Geosciences 21: 91-98.
– reference: Yilmaz KK, Gupta HV, Wagener T. 2008. A process-based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model. Water Resources Research 44: W09417. DOI: 10.1029/2007WR006716.
– reference: Fohrer N, Dietrich A, Kolychalow O, Ulrich U. 2013. Assessment of the environmental fate of the herbicides Flufenacet and Metazachlor with the SWAT model. Journal of Environmental Quality, 42: 1-11 DOI:10.2135/jeq2011.0382.
– reference: Toth E. 2009. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrology and Earth System Sciences 13: 1555-1566.
– reference: Van Griensven A, Meixner T, Grunwald S, Bishop T, Di Luzio M, Srinivasan R. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology 324: 10-23.
– reference: Cloke H, Pappenberger F, Renaud J-P. 2008. Multi-method global sensitivity analysis (mmgsa) for modelling floodplain hydrological processes. Hydrological Processes 22: 1660-1674.
– reference: Nossent J, Bauwens W. 2012. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Science and Technology 65(3): 539-549.
– reference: Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. The Journal of the American Water Resources Association 37(5): 1169-1187.
– reference: Kannan N, White SM, Worrall F, Whelan MJ. 2007. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT-2000. Journal of Hydrology 332: 456-466.
– reference: LANU S-H. 2006. Die Böden Schleswig-Holsteins. Landesamt für Natur und Umwelt des Landes Schleswig-Holsteins: Kiel.
– reference: Zhang H, Huang GH, Wang D, Zhang X. 2011a. Multi-period calibration of a semi-distributed hydrological model based on hydroclimatic clustering. Advances in Water Resources 34: 1292-1303.
– reference: Cukier RI, Schaibly JH, Shuler KE. 1975. Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 3. Analysis of approximations. Journal of Chemical Physics 63(3): 1140-1149.
– reference: Cukier RI, Levine HB, Shuler KE. 1978. Non-linear sensitivity analysis of multi-parameter model systems. Journal of Computational Physics 260(1): 1-42.
– reference: Gassman PW, Reyes MR, Green CH, Arnold JG. 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE 50(4): 1211-1250.
– reference: Herbst M, Gupta HV, Casper MC. 2009. Mapping model behaviour using self-organizing maps. Hydrology and Earth System Sciences 13: 395-409.
– reference: van Werkhoven K, Wagener T, Reed P, Tang Y. 2008a. Rainfall characteristics define the value of streamflow observations for distributed watershed model identification. Geophysical Research Letters 35(11): 1-6. DOI: 10.1029/2008GL034162.
– reference: van Werkhoven K, Wagener T, Reed P, Tang Y. 2008b. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resources Research 44: W01429. DOI: 10.1029/2007WR006271.
– reference: Fohrer N, Schmalz B, Tavares F, Golon J. 2007. Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems. Hydrologie und Wasserbewirtschaftung 51(4): 164-169.
– reference: Legates D, McCabe Jr G. 1999. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35(1): 233-241.
– reference: Gupta HV, Sorooshian S, Yapo PO. 1998. Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods. Water Resources Research 34(4): 751-763.
– reference: Jachner S, van den Boogaart KG, Petzoldt T. 2007. Statistical methods for the qualitative assessment of dynamic models with time delay (R package qualv). Journal of Statistical Software 22: 1-30.
– year: 2011
– volume: 41
  start-page: 1077
  issue: 5
  year: 2005
  end-page: 1089
  article-title: Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model
  publication-title: The Journal of the American Water Resources Association
– volume: 47
  start-page: W07550
  issue: 7
  year: 2011
  article-title: Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity
  publication-title: Water Resources Research
– volume: 22
  start-page: 4467
  year: 2008
  end-page: 4476
  article-title: Smoothed minima baseflow separation tool for perennial and intermittent streams
  publication-title: Hydrological Processes
– volume: 42
  start-page: 1
  year: 2013
  end-page: 11
  article-title: Assessment of the environmental fate of the herbicides Flufenacet and Metazachlor with the SWAT model
  publication-title: Journal of Environmental Quality
– volume: 26
  start-page: 445
  issue: 4
  year: 1998
  end-page: 460
  article-title: An alternative way to compute Fourier amplitude sensitivity test (FAST)
  publication-title: Computational Statistics and Data Analysis
– volume: 13
  start-page: 395
  year: 2009
  end-page: 409
  article-title: Mapping model behaviour using self‐organizing maps
  publication-title: Hydrology and Earth System Sciences
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models: part I – a discussion of principles
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 1555
  year: 2009
  end-page: 1566
  article-title: Classification of hydro‐meteorological conditions and multiple artificial neural networks for streamflow forecasting
  publication-title: Hydrology and Earth System Sciences
– volume: 37
  start-page: 1169
  issue: 5
  year: 2001
  end-page: 1187
  article-title: Validation of the SWAT model on a large river basin with point and nonpoint sources
  publication-title: The Journal of the American Water Resources Association
– volume: 324
  start-page: 10
  year: 2006
  end-page: 23
  article-title: A global sensitivity analysis tool for the parameters of multi‐variable catchment models
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 563
  year: 2005
  end-page: 572
  article-title: SWAT2000: current capabilities and research opportunities in applied watershed modelling
  publication-title: Hydrological Processes
– volume: 21
  start-page: 91
  year: 2009
  end-page: 98
  article-title: Comparing model sensitivities of different landscapes using the ecohydrological SWAT model
  publication-title: Advances in Geosciences
– volume: 22
  start-page: 1
  year: 2007
  end-page: 30
  article-title: Statistical methods for the qualitative assessment of dynamic models with time delay (R package qualv)
  publication-title: Journal of Statistical Software
– volume: 19
  start-page: 651
  year: 2005
  end-page: 658
  article-title: Automatic model calibration
  publication-title: Hydrological Processes
– volume: 332
  start-page: 316
  year: 2007
  end-page: 336
  article-title: Multi‐period and multi‐criteria model conditioning to reduce prediction uncertainty in an application of Topmodel within the GLUE framework
  publication-title: Journal of Hydrology
– year: 2008
– year: 2004
– volume: 51
  start-page: 2039
  issue: 6
  year: 2009
  end-page: 2049
  article-title: Multi‐site calibration of the SWAT model for hydrologic modeling
  publication-title: Transactions of the ASABE
– year: 1972
– volume: 218
  start-page: 135
  issue: 1–2
  year: 2008
  end-page: 148
  article-title: Eco‐hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality
  publication-title: Ecological Modelling
– volume: 2
  start-page: 849
  year: 2010
  end-page: 871
  article-title: Regionalization of SWAT model parameters for use in ungauged watersheds
  publication-title: Water
– volume: 310
  start-page: 216
  issue: 1–4
  year: 2005
  end-page: 235
  article-title: Sensitivity analyses of a distributed catchment model to verify the model structure
  publication-title: Journal of Hydrology
– volume: 24
  start-page: 1133
  year: 2010
  end-page: 1148
  article-title: Sensitivity and identifiability of stream flow generation parameters of the SWAT model
  publication-title: Hydrological Processes
– volume: 42
  start-page: 545
  year: 2006
  end-page: 563
  article-title: Comparison of process‐based and artificial neural network approaches for streamflow modeling in an agricultural watershed
  publication-title: Journal of the American Water Resources Association
– volume: 34
  start-page: 1292
  year: 2011a
  end-page: 1303
  article-title: Multi‐period calibration of a semi‐distributed hydrological model based on hydroclimatic clustering
  publication-title: Advances in Water Resources
– volume: 22
  start-page: 1034
  year: 2007
  end-page: 1052
  article-title: Hydrotest: a Web‐based toolbox of evaluation metrics for the standardised assessment of hydrological forecast
  publication-title: Environmental Modelling and Software
– volume: 11
  start-page: 555
  year: 2006
  end-page: 569
  article-title: Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data
  publication-title: Journal of Hydrological Engineering
– volume: 13
  start-page: 999
  year: 2009
  end-page: 1018
  article-title: Analysing the temporal dynamics of model performance for hydrological models
  publication-title: Hydrology and Earth System Sciences
– volume: 180
  start-page: 428
  issue: 3–4
  year: 2009
  end-page: 439
  article-title: Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland
  publication-title: Agricultural and Food Science
– volume: 13
  start-page: 841
  year: 1991
  end-page: 847
  article-title: A validity measure for fuzzy clustering
  publication-title: IEEE Transactions on Pattern Analysis
– volume: 26
  start-page: 135
  year: 2011
  end-page: 143
  article-title: Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models
  publication-title: Environmental Modelling and Software
– volume: 34
  start-page: 751
  issue: 4
  year: 1998
  end-page: 763
  article-title: Toward improved calibration of hydrologic models: combining the strengths of manual and automatic methods
  publication-title: Water Resources Research
– volume: 12
  start-page: 657
  year: 2008
  end-page: 667
  article-title: Towards model evaluation and identification using self‐organizing maps
  publication-title: Hydrology and Earth System Sciences
– volume: 17
  start-page: 455
  year: 2003
  end-page: 476
  article-title: Towards reduced uncertainty in conceptual rainfall–runoff modelling: dynamic identifiability analysis
  publication-title: Hydrological Processes
– volume: 51
  start-page: 164
  issue: 4
  year: 2007
  end-page: 169
  article-title: Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems
  publication-title: Hydrologie und Wasserbewirtschaftung
– volume: 5
  start-page: 89
  year: 2005
  end-page: 97
  article-title: Comparison of different efficiency criteria for hydrological model assessment
  publication-title: Advances in Geosciences
– volume: 65
  start-page: 539
  issue: 3
  year: 2012
  end-page: 549
  article-title: Multi‐variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling
  publication-title: Water Science and Technology
– volume: 6
  start-page: 279
  year: 1992
  end-page: 298
  article-title: The future of distributed models: model calibration and uncertainty prediction
  publication-title: Hydrological Processes
– year: 2007
– volume: 22
  start-page: 1660
  year: 2008
  end-page: 1674
  article-title: Multi‐method global sensitivity analysis (mmgsa) for modelling floodplain hydrological processes
  publication-title: Hydrological Processes
– volume: 92
  start-page: 209
  year: 2008
  end-page: 223
  article-title: A resampling scheme for regional climate simulations and its performance compared to a dynamical RCM
  publication-title: Theoretical and Applied Climatology
– volume: 169
  start-page: 25
  issue: 1
  year: 2003
  end-page: 38
  article-title: Modelling diffuse emission and retention of nutrients in the Vantaanjoki watershed (Finland) using the SWAT model
  publication-title: Ecological Modelling
– volume: 249
  start-page: 11
  issue: 1–2
  year: 2001
  end-page: 29
  article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
  publication-title: Journal of Hydrology
– volume: 34
  start-page: 73
  year: 1998
  end-page: 89
  article-title: Large area hydrologic modeling and assessment part I: model development
  publication-title: The Journal of the American Water Resources Association
– volume: 260
  start-page: 1
  issue: 1
  year: 1978
  end-page: 42
  article-title: Non‐linear sensitivity analysis of multi‐parameter model systems
  publication-title: Journal of Computational Physics
– volume: 50
  start-page: 1211
  issue: 4
  year: 2007
  end-page: 1250
  article-title: The soil and water assessment tool: historical development, applications, and future research directions
  publication-title: Transactions of the ASABE
– volume: 24
  start-page: 1472
  year: 2010
  end-page: 1486
  article-title: Incorporating landscape depressions and tile drainages of lowland catchments into spatially distributed hydrologic modeling
  publication-title: Hydrological Processes
– volume: 63
  start-page: 1140
  issue: 3
  year: 1975
  end-page: 1149
  article-title: Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 3. Analysis of approximations
  publication-title: Journal of Chemical Physics
– year: 2010
– volume: 44
  start-page: W01429
  year: 2008b
  article-title: Characterization of watershed model behavior across a hydroclimatic gradient
  publication-title: Water Resources Research
– volume: 31
  start-page: 99
  year: 2012
  end-page: 109
  article-title: Automating calibration, sensitivity and uncertainty analysis of complex models using the R package flexible modeling environment (fme): SWAT as an example
  publication-title: Environmental Modelling and Software
– volume: 91
  start-page: 1109
  issue: 10–11
  year: 2006
  end-page: 1125
  article-title: Sensitivity analysis practices: strategies for model‐based inference
  publication-title: Reliability Engineering and System Safety
– volume: 16
  start-page: 1259
  year: 2012
  end-page: 1267
  article-title: Baseflow simulation using SWAT model in an inland river basin in Tianshan mountains, northwest China
  publication-title: Hydrology and Earth System Sciences
– volume: 267
  start-page: 80
  issue: 1–2
  year: 2002
  end-page: 93
  article-title: Land‐use impacts on storm‐runoff generation: scenarios of land‐use change and simulation of hydrological response in a meso‐scale catchment in SW Germany
  publication-title: Journal of Hydrology
– volume: 30
  start-page: 518
  issue: 8–10
  year: 2005
  end-page: 526
  article-title: Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT
  publication-title: Physics and Chemistry of the Earth, Parts A/B/C
– volume: 25
  start-page: 2313
  issue: 14
  year: 2011b
  end-page: 2320
  article-title: Simultaneous calibration of surface flow and baseflow simulations: a revisit of the SWAT model calibration framework
  publication-title: Hydrological Processes
– volume: 35
  start-page: 1
  issue: 11
  year: 2008a
  end-page: 6
  article-title: Rainfall characteristics define the value of streamflow observations for distributed watershed model identification
  publication-title: Geophysical Research Letters
– volume: 59
  start-page: 3873
  issue: 8
  year: 1973
  end-page: 3878
  article-title: Study of sensitivity of coupled reaction systems to uncertainties in rate coefficients. 1. Theory
  publication-title: Journal of Chemical Physics
– year: 2006
– volume: 26
  start-page: 1515
  year: 2011
  end-page: 1525
  article-title: Sobol sensitivity analyses of a complex environmental model
  publication-title: Environmental Modelling and Software
– volume: 35
  start-page: 233
  issue: 1
  year: 1999
  end-page: 241
  article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resources Research
– volume: 47
  start-page: W07551
  issue: 7
  year: 2011
  article-title: Temporal dynamics of model parameter sensitivity for computationally expensive models with FAST (Fourier amplitude sensitivity test)
  publication-title: Water Resources Research
– year: 1995
– volume: 6
  start-page: 15
  year: 1982
  end-page: 25
  article-title: Global sensitivity analysis – a computational implementation of the Fourier amplitude sensitivity test (FAST)
  publication-title: Computers and Chemical Engineering
– volume: 44
  start-page: W09417
  year: 2008
  article-title: A process‐based diagnostic approach to model evaluation: application to the NWS distributed hydrologic model
  publication-title: Water Resources Research
– volume: 39
  start-page: 1214
  year: 2003
  end-page: 1232
  article-title: Effective and efficient algorithm for multiobjective optimization of hydrological models
  publication-title: Water Resources Research
– volume: 22
  start-page: 3802
  year: 2008
  end-page: 3813
  article-title: Reconciling theory with observations: elements of a diagnostic approach to model evaluation
  publication-title: Hydrological Processes
– volume: 332
  start-page: 456
  year: 2007
  end-page: 466
  article-title: Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modelling in SWAT‐2000
  publication-title: Journal of Hydrology
– volume: 50
  start-page: 885
  issue: 3
  year: 2007
  end-page: 900
  article-title: Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
  publication-title: Transactions of the ASABE
– year: 1999
– ident: e_1_2_7_10_1
  doi: 10.1002/hyp.6734
– ident: e_1_2_7_25_1
  doi: 10.1016/j.ecolmodel.2008.06.035
– ident: e_1_2_7_51_1
  doi: 10.1029/2010WR009947
– ident: e_1_2_7_53_1
  doi: 10.1016/j.ress.2005.11.014
– ident: e_1_2_7_29_1
  doi: 10.1016/j.jhydrol.2006.08.001
– ident: e_1_2_7_18_1
  doi: 10.13031/2013.23637
– volume-title: Die Böden Schleswig‐Holsteins
  year: 2006
  ident: e_1_2_7_34_1
– ident: e_1_2_7_20_1
  doi: 10.1016/S0304-3800(03)00198-4
– ident: e_1_2_7_48_1
– ident: e_1_2_7_9_1
  doi: 10.1002/hyp.7568
– ident: e_1_2_7_39_1
  doi: 10.1016/0098-1354(82)80003-3
– ident: e_1_2_7_56_1
– ident: e_1_2_7_44_1
  doi: 10.2166/wst.2012.884
– ident: e_1_2_7_33_1
– volume: 249
  start-page: 11
  issue: 1
  year: 2001
  ident: e_1_2_7_6_1
  article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
  publication-title: Journal of Hydrology
  doi: 10.1016/S0022-1694(01)00421-8
– ident: e_1_2_7_47_1
– ident: e_1_2_7_17_1
  doi: 10.2135/jeq2011.0382
– ident: e_1_2_7_5_1
  doi: 10.1002/hyp.3360060305
– ident: e_1_2_7_35_1
  doi: 10.1029/1998WR900018
– ident: e_1_2_7_32_1
  doi: 10.5194/adgeo-5-89-2005
– ident: e_1_2_7_66_1
  doi: 10.1029/2008GL034162
– ident: e_1_2_7_73_1
  doi: 10.13031/2013.25407
– ident: e_1_2_7_43_1
  doi: 10.1016/S0022-1694(02)00142-7
– ident: e_1_2_7_69_1
  doi: 10.1016/j.envsoft.2011.11.013
– ident: e_1_2_7_38_1
– ident: e_1_2_7_74_1
  doi: 10.1016/j.advwatres.2011.06.005
– ident: e_1_2_7_28_1
  doi: 10.1061/(ASCE)1084-0699(2006)11:6(555)
– volume: 180
  start-page: 428
  issue: 3
  year: 2009
  ident: e_1_2_7_61_1
  article-title: Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland
  publication-title: Agricultural and Food Science
  doi: 10.23986/afsci.5966
– ident: e_1_2_7_64_1
  doi: 10.1029/2002WR001746
– ident: e_1_2_7_49_1
  doi: 10.1029/2010WR009946
– ident: e_1_2_7_21_1
  doi: 10.1029/97WR03495
– ident: e_1_2_7_52_1
  doi: 10.1016/S0167-9473(97)00043-1
– ident: e_1_2_7_30_1
  doi: 10.1002/hyp.7607
– ident: e_1_2_7_57_1
– ident: e_1_2_7_22_1
  doi: 10.1002/hyp.6989
– ident: e_1_2_7_37_1
– ident: e_1_2_7_46_1
  doi: 10.1007/s00704-007-0352-y
– ident: e_1_2_7_14_1
  doi: 10.1016/j.envsoft.2006.06.008
– ident: e_1_2_7_4_1
  doi: 10.1111/j.1752-1688.1998.tb05961.x
– ident: e_1_2_7_54_1
  doi: 10.1111/j.1752-1688.2001.tb03630.x
– ident: e_1_2_7_12_1
  doi: 10.1063/1.431440
– ident: e_1_2_7_3_1
  doi: 10.1002/hyp.5611
– ident: e_1_2_7_50_1
  doi: 10.5194/hess-13-999-2009
– volume: 51
  start-page: 164
  issue: 4
  year: 2007
  ident: e_1_2_7_16_1
  article-title: Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems
  publication-title: Hydrologie und Wasserbewirtschaftung
– ident: e_1_2_7_72_1
  doi: 10.1029/2007WR006716
– ident: e_1_2_7_13_1
  doi: 10.1016/0021-9991(78)90097-9
– ident: e_1_2_7_65_1
  doi: 10.1002/hyp.1135
– ident: e_1_2_7_55_1
  doi: 10.5194/adgeo-21-91-2009
– ident: e_1_2_7_71_1
– ident: e_1_2_7_2_1
  doi: 10.1002/hyp.7077
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1752-1688.2006.tb04475.x
– ident: e_1_2_7_75_1
  doi: 10.1002/hyp.8058
– ident: e_1_2_7_70_1
  doi: 10.1109/34.85677
– ident: e_1_2_7_7_1
– ident: e_1_2_7_23_1
  doi: 10.5194/hess-12-657-2008
– ident: e_1_2_7_63_1
  doi: 10.1016/j.jhydrol.2005.09.008
– ident: e_1_2_7_67_1
  doi: 10.1029/2007WR006271
– ident: e_1_2_7_26_1
  doi: 10.1016/j.pce.2005.07.006
– ident: e_1_2_7_8_1
  doi: 10.1016/j.jhydrol.2006.07.012
– ident: e_1_2_7_40_1
  doi: 10.13031/2013.23153
– ident: e_1_2_7_27_1
  doi: 10.18637/jss.v022.i08
– ident: e_1_2_7_36_1
  doi: 10.5194/hess-16-1259-2012
– ident: e_1_2_7_58_1
  doi: 10.1016/j.jhydrol.2005.01.004
– ident: e_1_2_7_24_1
  doi: 10.5194/hess-13-395-2009
– ident: e_1_2_7_45_1
  doi: 10.1016/j.envsoft.2011.08.010
– ident: e_1_2_7_11_1
  doi: 10.1063/1.1680571
– ident: e_1_2_7_15_1
  doi: 10.1002/hyp.5613
– ident: e_1_2_7_31_1
  doi: 10.1007/978-3-642-97610-0
– ident: e_1_2_7_60_1
  doi: 10.1016/j.envsoft.2010.07.007
– ident: e_1_2_7_42_1
– ident: e_1_2_7_62_1
  doi: 10.5194/hess-13-1555-2009
– ident: e_1_2_7_68_1
  doi: 10.1111/j.1752-1688.2005.tb03786.x
– ident: e_1_2_7_19_1
  doi: 10.3390/w2040849
– ident: e_1_2_7_41_1
  doi: 10.1016/0022-1694(70)90255-6
SSID ssj0004080
Score 2.4522173
Snippet Model diagnostic analyses help to improve the understanding of hydrological processes and their representation in hydrological models. A detailed temporal...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2651
SubjectTerms model performance analysis
sensitivity analysis
SWAT
temporal diagnostic analysis
Title How to improve the representation of hydrological processes in SWAT for a lowland catchment - temporal analysis of parameter sensitivity and model performance
URI https://api.istex.fr/ark:/67375/WNG-0FQW0PZV-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.9777
https://www.proquest.com/docview/1659806752
Volume 28
WOSCitedRecordID wos000330743000087&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  issn: 0885-6087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELagRYLL8ruiy4IGCcEprOP8-rgCSg-oKrBLFy6WYztqRUmqprD0xjvwAjwbT8LYcVpWAgmJUy6TSWTPeL6xZr4h5JGkBeWKykDmRgcxK3SQy5gHGGsxGmMIVEy6YRPZeJyfnfGJr6q0vTAtP8T2ws16hjuvrYPLojnakYbONsunCF6yy6TP0GzjHuk_fzM8fbXriqRubhq6URKkNM866lnKjrp3LwSjvl3XrxeQ5u941QWc4fX_-dUbZM_DTDhu7eImuWSqW-Sqn3g-29wmP0b1OaxrmLtLBQOIA8ERXHbNSBXUJcw2etWdjrBsewpMA_MK3k6PTwABL0hY1Oe2PBIUnuoze9kIP799B895tQDpaU-sPks0_skW4EBjC-fbyRVgX3YTeWC5a2O4Q06HL06ejQI_rSFQEYKQoDQ5TQ3PdaYjTIMKHnLJVam5THQZRjEzklOmUqMwCdJ5hKlpismSzAqJkCUqo33Sq-rK3CUgM5rysJQm1EVsUE2sU6lTGhuGWstiQJ502yaUpzK3EzUWoiVhZgJXXNgVH5CHW8llS9_xB5nHbue3AnL10Za7ZYmYjl8KOnw9pZMP78R0QA470xDe0xsRpgnPbdrFUI8zgr9-SIzeT-zz4F8F75FriM9iWyQeJoekt159NvfJFfVlPW9WD7y9_wIdvwlR
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbhNBDLZKglQu_CMCBYyE4LR09n9HnCogBBGiAClpuYxmZ2aVqOlulARKbrwDL8Cz8SR49iehEkhInPbi9a5m7PHnkf0Z4JFkKeOKSUcmRjuBl2onkQF3KNZSNKYQqDxZDpuIB4Pk6IgPd-BZ0wtT8UNsLtysZ5TntXVweyG9v2UNnaznTwm9xBegHZAVhS1ov3jfPexv2yJZOTiN_Ch0IpbEDfcs8_abd89Fo7Zd2K_noObvgLWMON0r__WvV-FyDTTxoLKMa7Bj8uuwW888n6xvwI9ecYarAqfltYJBQoJYUlw27Ug5FhlO1nrRnI84r7oKzBKnOX4YH4yQIC9KnBVntkASFZ3rE3vdiD-_fcea9WqGsiY-sfos1fipLcHBpS2dr2ZXoH25nMmD820jw0047L4cPe859bwGR_kEQ5zMJCwyPNGx9ikRSrnLJVeZ5jLUmesHnpGceSoyitIgnfiUnEaULsk4lQRa_My_Ba28yM1tQBmziLuZNK5OA0NqAh1JHbHAeKQ1SzvwpNk3oWoycztTYyYqGmZP0IoLu-IdeLiRnFcEHn-QeVxu_UZALk5swVscivHglWDdd2M2_PRRjDuw19iGqH19Kdwo5IlNvDzSU1rBXz8kesdD-7zzr4IPYLc3etsX_deDN3fhEqG1wJaMu-EetFaLz-YeXFRfVtPl4n5t_L8A5qoNQQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELaWLQIu_CMKCwwSglNY58-JxWnFEopYVQV26S4Xy7EdtaIkUVtYeuMdeAGejSdh7CQtK4GExCmXySSyZzzfWDPfEPJI0pxyRaUnU6O9KMi1l8qIexhrMRpjCFSBdMMmkuEwPT7moy3yrOuFafgh1hdu1jPceW0d3NS62N2whk5W9VNEL8k50otiztAre_tvs6ODTVskdYPT0I9ij9E06bhnabDbvXsmGvXswn49AzV_B6wu4mRX_utfr5LLLdCEvcYyrpEtU14nF9uZ55PVDfJjUJ3CsoKpu1YwgEgQHMVl145UQlXAZKXn3fkIddNVYBYwLeHdeO8QEPKChFl1agskQeG5PrHXjfDz23doWa9mIFviE6vPUo1_siU4sLCl883sCrAvu5k8UG8aGW6So-zF4fOB185r8FSIMMQrTEqZ4alOdIiJUM59LrkqNJexLvwwCozkNFDMKEyDdBpicsowXZJJLhG0hEV4i2yXVWluE5AJZdwvpPF1HhlUE2kmNaORCVBrkffJk27fhGrJzO1MjZloaJgDgSsu7Ir3ycO1ZN0QePxB5rHb-rWAnH-0BW9JLMbDl4Jmb8Z09OG9GPfJTmcbovX1hfBZzFObeAWox1nBXz8kBicj-7zzr4IPyIXRfiYOXg1f3yWXEKxFtmLcj3fI9nL-2dwj59WX5XQxv9_a_i9hXwy8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+to+improve+the+representation+of+hydrological+processes+in+SWAT+for+a+lowland+catchment+-+temporal+analysis+of+parameter+sensitivity+and+model+performance&rft.jtitle=Hydrological+processes&rft.au=Guse%2C+Bj%C3%B6rn&rft.au=Reusser%2C+Dominik+E.&rft.au=Fohrer%2C+Nicola&rft.date=2014-02-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=28&rft.issue=4&rft.spage=2651&rft.epage=2670&rft_id=info:doi/10.1002%2Fhyp.9777&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_0FQW0PZV_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon