Bias compensation recursive algorithm for dual-rate rational models
In dual-rate rational systems, some output data are missing (unmeasurable) to make the traditional recursive least squares (RLS) parameter estimation algorithms invalid. In order to overcome this difficulty, this study develops a bias compensation RLS algorithm for estimating the missing outputs and...
Saved in:
| Published in: | IET control theory & applications Vol. 12; no. 16; pp. 2184 - 2193 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
The Institution of Engineering and Technology
06.11.2018
|
| Subjects: | |
| ISSN: | 1751-8644, 1751-8652 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In dual-rate rational systems, some output data are missing (unmeasurable) to make the traditional recursive least squares (RLS) parameter estimation algorithms invalid. In order to overcome this difficulty, this study develops a bias compensation RLS algorithm for estimating the missing outputs and then the model parameters. The algorithm based on auxiliary model and particle filter has four steps: (i) to establish an auxiliary model to estimate unmeasurable outputs, (ii) to compensate bias induced by correlated noise, (iii) to add a filter to improve estimation accuracy of the unmeasurable outputs and (iv) to obtain an unbiased parameter estimation. Three examples are selected for simulation demonstrations to give further guarantees on the usefulness of the proposed algorithms. The comparative studies show that the bias compensation RLS is more effective for such systems with dual-rate input and output data. |
|---|---|
| AbstractList | In dual‐rate rational systems, some output data are missing (unmeasurable) to make the traditional recursive least squares (RLS) parameter estimation algorithms invalid. In order to overcome this difficulty, this study develops a bias compensation RLS algorithm for estimating the missing outputs and then the model parameters. The algorithm based on auxiliary model and particle filter has four steps: (i) to establish an auxiliary model to estimate unmeasurable outputs, (ii) to compensate bias induced by correlated noise, (iii) to add a filter to improve estimation accuracy of the unmeasurable outputs and (iv) to obtain an unbiased parameter estimation. Three examples are selected for simulation demonstrations to give further guarantees on the usefulness of the proposed algorithms. The comparative studies show that the bias compensation RLS is more effective for such systems with dual‐rate input and output data. |
| Author | Liu, Yanjun Zhu, Quanmin Chen, Jing |
| Author_xml | – sequence: 1 givenname: Jing surname: Chen fullname: Chen, Jing email: chenjing1981929@126.com organization: 1School of Science, Jiangnan University, Wuxi 214122, People's Republic of China – sequence: 2 givenname: Yanjun surname: Liu fullname: Liu, Yanjun organization: 2School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, People's Republic of China – sequence: 3 givenname: Quanmin surname: Zhu fullname: Zhu, Quanmin organization: 3Department of Engineering Design and Mathematics, University of the West of England, Bristol BS16 1QY, UK |
| BookMark | eNqFkLFOwzAURS1UJNrCB7D5B1xsx46TESKgSJVYymw5jgOunLiyXVD_nqStOjCU6b3hnnefzgxMet8bAO4JXhDMygdrEtJJLSgmxYJneXEFpkRwgoqc08l5Z-wGzGLcYMx5zvgUVE9WRah9tzV9VMn6HgajdyHabwOV-_TBpq8Otj7AZqccCioZGA5B5WDnG-PiLbhulYvm7jTn4OPleV0t0er99a16XCGdZYQh2gjGREkxbpuaEdFykxFRm5LmdVlQlbeYi1qVionGaM1agxuqCeUEC401zuZAHO_q4GMMppXapsMrKSjrJMFydCEHF3JwIUcXcnQxkOQPuQ22U2F_kTm1_Vhn9v8DslovKSUFG0h0JMfMxu_CoCpeaPoF2TGG9w |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2020_04_029 crossref_primary_10_1007_s12555_020_0688_y crossref_primary_10_1049_iet_cta_2018_6333 crossref_primary_10_1002_oca_2849 crossref_primary_10_1080_00207721_2023_2188983 crossref_primary_10_1016_j_automatica_2021_109663 crossref_primary_10_1007_s11071_024_10186_w crossref_primary_10_1049_cth2_12118 |
| Cites_doi | 10.1016/j.apm.2015.08.015 10.1049/iet-cta.2015.1056 10.1016/j.apm.2004.10.008 10.1016/j.jfranklin.2017.08.009 10.1016/j.apm.2016.07.015 10.1002/0470045345 10.1109/TCYB.2015.2499771 10.1007/s12555-015-0371-x 10.1093/jjfinec/nbu019 10.1007/s00034-017-0527-4 10.1049/iet-cta.2016.0491 10.1007/s00034-013-9563-x 10.1049/ip-cta:19990364 10.1002/aic.13735 10.1016/j.jfranklin.2016.11.030 10.1080/00207179108934174 10.1016/j.jprocont.2015.09.001 10.1016/0098-1354(93)80052-O 10.1080/00207721.2013.849774 10.1007/s00034-016-0367-7 10.1049/iet-cta.2016.0017 10.1016/j.sigpro.2018.01.012 10.1016/j.automatica.2016.11.009 10.1016/j.jfranklin.2017.05.017 10.1007/s00034-016-0420-6 10.1016/j.ins.2014.12.022 10.1007/s11071-017-3594-y 10.1016/S0307-904X(02)00097-5 10.1080/00207721.2016.1186243 10.1109/TSMC.2017.2672563 10.1016/S0005-1098(01)00295-3 10.1016/j.dsp.2016.11.010 10.1007/s11071-017-3445-x 10.1016/j.sigpro.2017.10.008 10.1016/j.na.2018.01.014 10.1049/iet-cta.2017.0821 10.1016/j.jfranklin.2013.08.016 10.1016/j.jfranklin.2017.09.014 10.1080/00207729808929516 10.1109/TAC.2017.2697210 10.1002/oca.2395 10.1016/j.automatica.2016.04.019 10.1016/j.compeleceng.2017.04.025 10.1049/iet-cta.2016.0202 |
| ContentType | Journal Article |
| Copyright | The Institution of Engineering and Technology 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2021 The Authors. IET Control Theory & Applications published by John Wiley & Sons, Ltd. on behalf of The Institution of Engineering and Technology |
| DBID | AAYXX CITATION |
| DOI | 10.1049/iet-cta.2018.5368 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1751-8652 |
| EndPage | 2193 |
| ExternalDocumentID | 10_1049_iet_cta_2018_5368 CTH22184 |
| Genre | article |
| GrantInformation_xml | – fundername: the Natural Science Foundation for Colleges and Universities in Jiangsu Province grantid: 16KJB120006 – fundername: the Fundamental Research Funds for the Central Universities grantid: JUSRP11833 – fundername: Fundamental Research Funds for the Central Universities funderid: JUSRP11833 – fundername: Natural Science Foundation for Colleges and Universities in Jiangsu Province funderid: 16KJB120006 – fundername: Qinglan Project of Jiangsu Province |
| GroupedDBID | 0R 24P 29I 4IJ 5GY 6IK 8VB AAJGR ABPTK ACGFS ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS BFFAM CS3 DU5 ESX HZ IFIPE IPLJI JAVBF LAI LOTEE LXI M43 MS NADUK NXXTH O9- OCL QWB RIE RNS RUI U5U UNMZH UNR ZL0 ZZ .DC 0R~ 0ZK 1OC 3V. 4.4 8FE 8FG 96U AAHHS AAHJG ABJCF ABQXS ABUWG ACCFJ ACCMX ACESK ACXQS ADEYR AEEZP AEGXH AEQDE AFAZI AFKRA AIWBW AJBDE ALUQN ARAPS AVUZU AZQEC BENPR BGLVJ BPHCQ CCPQU DWQXO EBS EJD F8P GNUQQ GOZPB GROUPED_DOAJ GRPMH HCIFZ HZ~ IAO ITC K1G K6V K7- L6V M0N M7S MCNEO MS~ OK1 P62 PQQKQ PROAC PTHSS ROL ~ZZ AAMMB AAYXX AEFGJ AFFHD AGXDD AIDQK AIDYY CITATION IDLOA IGS PHGZM PHGZT PQGLB WIN |
| ID | FETCH-LOGICAL-c3314-2d74479200fdb417f5e317be926b982a6f057ba9a47decc4fe0d2c125107c0c03 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447560100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1751-8644 |
| IngestDate | Wed Oct 29 21:14:51 EDT 2025 Tue Nov 18 21:23:11 EST 2025 Wed Jan 22 16:32:10 EST 2025 Tue Jan 05 21:44:22 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | recursive least squares parameter estimation algorithms least squares approximations dual-rate rational systems recursive estimation particle filtering (numerical methods) unbiased parameter estimation bias compensation recursive algorithm particle filter bias compensation RLS algorithm correlated noise |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3314-2d74479200fdb417f5e317be926b982a6f057ba9a47decc4fe0d2c125107c0c03 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1049_iet_cta_2018_5368 wiley_primary_10_1049_iet_cta_2018_5368_CTH22184 crossref_primary_10_1049_iet_cta_2018_5368 iet_journals_10_1049_iet_cta_2018_5368 |
| ProviderPackageCode | RUI |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-06 |
| PublicationDateYYYYMMDD | 2018-11-06 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationTitle | IET control theory & applications |
| PublicationYear | 2018 |
| Publisher | The Institution of Engineering and Technology |
| Publisher_xml | – name: The Institution of Engineering and Technology |
| References | Ding, F.; Wang, F.F.; Xu, L. (C7) 2017; 354 Zhu, Q.M.; Yu, D.L.; Zhao, D.Y. (C27) 2017; 48 Yang, T.; Laugesen, R.S.; Mehta, P.G. (C34) 2016; 71 Wang, F.L.; Zhen, Y.; Zhong, B. (C35) 2015; 301 Liu, F.; Xue, Q.Y.; Yabuta, K. (C44) 2018; 171 Li, M.H.; Liu, X.M. (C14) 2018; 147 Ding, F.; Wang, X.H.; Mao, L. (C4) 2017; 62 Ding, F.; Wang, F.F.; Xu, L. (C32) 2017; 11 Chen, J.; Ding, R. (C33) 2013; 32 Li, M.H.; Liu, X.M.; Ding, F. (C39) 2017; 36 Wang, Y.; Zhao, D.; Li, Y. (C1) 2017; 62 Wang, D.Q.; Zhang, Z.; Yuan, J.Y. (C31) 2017; 15 Zhang, X.; Ding, F.; Alsaadi, A. (C19) 2017; 89 Ding, F.; Xu, L.; Zhu, Q.M. (C16) 2016; 10 Calvet, L.E.; Czellar, V. (C40) 2015; 13 Ding, F.; Xu, L.; Guo, L.J. (C42) 2018; 12 (C3) 2018; 39 Zhu, Q.M.; Ma, Z.; Warwick, K. (C20) 1999; 146 Billings, S.A.; Zhu, Q.M. (C17) 1991; 54 Gong, P.C.; Wang, W.Q.; Li, F.C. (C46) 2018; 144 Wang, X.H.; Ding, F.; Hayat, T. (C11) 2016; 10 Wang, Y.; Zhang, H.; Wei, S. (C2) 2018; 48 Lin, Y.; Zhang, W. (C3) Chen, F.Y.; Ding, F. (C8) 2016; 40 Zhu, Q.M.; Wang, Y.J.; Zhao, D.Y. (C23) 2015; 46 Mu, B.Q.; Bai, E.W.; Zheng, W.X. (C26) 2017; 77 Li, M.H.; Liu, X.M.; Ding, F. (C12) 2017; 354 Li, M.H.; Liu, X.M.; Ding, F. (C15) 2017; 89 Li, D.; Shah, S.; Chen, T. (C30) 2002; 38 Deng, J.; Huang, B. (C36) 2012; 58 Ding, F.; Wang, X.H. (C5) 2017; 36 Kamenski, D.I.; Dimitrov, S.D. (C18) 1993; 17 Chen, M.T.; Ding, F.; Xu, L. (C38) 2017; 354 Billings, S.A.; Mao, K.Z. (C22) 1998; 29 Sarmadi, H.; Karamodin, A.; Entezami, A. (C6) 2016; 40 Ding, F.; Wang, Y.J.; Dai, J.Y. (C13) 2017; 354 Zhu, Q.M. (C24) 2003; 27 Lu, Y.J.; Huang, B.; Khatibisepehr, S. (C9) 2016; 46 Zhu, Q.M. (C25) 2005; 29 Chen, J. (C29) 2014; 351 Zhao, N.; Chen, Y.; Liu, R. (C45) 2017; 60 Jin, Q.B.; Wang, Z.; Liu, X.P. (C28) 2015; 35 Ji, Y.; Ding, F. (C43) 2017; 36 Wang, D.Q.; Mao, L.; Ding, F. (C10) 2017; 11 2017; 62 2015; 35 2002; 38 2015; 13 1998; 29 2018; 144 2017; 60 2017; 48 1991; 54 2015; 301 2018; 147 2017; 89 2016; 10 2007 2006 1999; 146 2016; 71 2012; 58 2017; 354 2005; 29 2014; 351 2018; 48 2015; 46 2018; 39 2018; 171 1993; 17 2017; 15 2017; 36 2013; 32 2017; 11 2017; 77 2016; 40 2003; 27 2018; 12 2016; 46 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Bates D.M. (e_1_2_8_22_1) 2007 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Qi L. (e_1_2_8_42_1) 2007 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 147 start-page: 23 year: 2018 end-page: 34 ident: C14 article-title: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique publication-title: Signal Process. – volume: 40 start-page: 2106 issue: 3 year: 2016 end-page: 2118 ident: C8 article-title: The filtering based maximum likelihood recursive least squares estimation for multiple-input single-output systems publication-title: Appl. Math. Model. – volume: 17 start-page: 643 issue: 7 year: 1993 end-page: 651 ident: C18 article-title: Parameter estimation in differential equations by application of rational functions publication-title: Comput. Chem. Eng. – volume: 36 start-page: 2558 issue: 6 year: 2017 end-page: 2573 ident: C43 article-title: Multiperiodicity and exponential attractivity of neural networks with mixed delays publication-title: Circuits Syst. Signal Process. – volume: 13 start-page: 798 issue: 4 year: 2015 end-page: 838 ident: C40 article-title: Accurate methods for approximate Bayesian computation filtering publication-title: J. Financial Eco. – volume: 46 start-page: 2122 issue: 12 year: 2015 end-page: 2133 ident: C23 article-title: Review of rational (total) nonlinear dynamic system modelling, identification and control publication-title: Int. J. Syst. Sci. – volume: 301 start-page: 215 year: 2015 end-page: 226 ident: C35 article-title: Robust infrared target tracking based on particle filter with embedded saliency detection publication-title: Inf. Sci – volume: 11 start-page: 476 issue: 4 year: 2017 end-page: 485 ident: C10 article-title: Recasted models based hierarchical extended stochastic gradient method for MIMO nonlinear systems publication-title: IET Control Theory Appl. – volume: 27 start-page: 169 issue: 3 year: 2003 end-page: 187 ident: C24 article-title: A back propagation algorithm to estimate the parameters of nonlinear dynamic rational models publication-title: Appl. Math. Model. – volume: 35 start-page: 154 issue: 11 year: 2015 end-page: 168 ident: C28 article-title: Auxiliary model-based interval-varying multi-innovation least squares identification for multivariable OE-like systems with scarce measurements publication-title: J. Process Control – volume: 354 start-page: 7885 issue: 17 year: 2017 end-page: 7898 ident: C38 article-title: Iterative identification algorithms for bilinear-in-parameter systems with autoregressive moving average noise publication-title: J. Franklin Inst. – volume: 354 start-page: 4861 issue: 12 year: 2017 end-page: 4881 ident: C12 article-title: The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise publication-title: J. Franklin Inst. – volume: 48 start-page: 1493 issue: 9 year: 2018 end-page: 1504 ident: C2 article-title: Control performance assessment for ILC-controlled batch processes in two-dimensional system framework publication-title: IEEE Trans. Syst. Man Cybern., Syst. – volume: 354 start-page: 1321 issue: 3 year: 2017 end-page: 1339 ident: C7 article-title: Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering publication-title: J. Franklin Inst. – volume: 32 start-page: 2475 issue: 5 year: 2013 end-page: 2485 ident: C33 article-title: An auxiliary-model-based stochastic gradient algorithm for dual-rate sampled-data Box-Jenkins systems publication-title: Circuits Syst. Signal Process. – volume: 29 start-page: 223 issue: 3 year: 1998 end-page: 231 ident: C22 article-title: Structure detection for nonlinear rational models using genetic algorithms publication-title: Int. J. Syst. Sci. – volume: 10 start-page: 2506 issue: 18 year: 2016 end-page: 2514 ident: C16 article-title: Performance analysis of the generalized projection identification for time-varying systems publication-title: IET Control Theory Appl. – volume: 39 issue: 2 year: 2018 ident: C3 – volume: 10 start-page: 1503 issue: 13 year: 2016 end-page: 1512 ident: C11 article-title: Combined state and multi-innovation parameter estimation for an input nonlinear state space system using the key term separation publication-title: IET Control Theory Appl. – volume: 15 start-page: 698 issue: 2 year: 2017 end-page: 705 ident: C31 article-title: Maximum likelihood estimation method for dual-rate Hammerstein systems publication-title: Int. J. Control Autom. Syst. – volume: 46 start-page: 3195 issue: 12 year: 2016 end-page: 3208 ident: C9 article-title: A variational Bayesian approach to robust identification of switched ARX models publication-title: IEEE Trans. Cybern. – volume: 89 start-page: 2415 issue: 4 year: 2017 end-page: 2429 ident: C19 article-title: Recursive parameter identification of the dynamical models for bilinear state space systems publication-title: Nonlinear Dyn. – volume: 60 start-page: 14 year: 2017 end-page: 29 ident: C45 article-title: Monitoring strategy for relay incentive mechanism in cooperative communication networks publication-title: Comput. Electr. Eng. – volume: 38 start-page: 1053 issue: 6 year: 2002 end-page: 1059 ident: C30 article-title: Analysis of dual-rate inferential control systems publication-title: Automatica – volume: 48 start-page: 451 issue: 3 year: 2017 end-page: 461 ident: C27 article-title: An enhanced linear Kalman filter (EnLKF) algorithm for parameter estimation of nonlinear rational models publication-title: Int. J. Syst. Sci. – volume: 171 start-page: 41 year: 2018 end-page: 72 ident: C44 article-title: Rough maximal singular integral and maximal operators supported by subvarieties on Triebel-Lizorkin spaces publication-title: Nonlinear Anal. – volume: 11 start-page: 390 issue: 3 year: 2017 end-page: 400 ident: C32 article-title: Parameter estimation for pseudo-linear systems using the auxiliary model and the decomposition technique publication-title: IET Control Theory Appl. – volume: 36 start-page: 4541 issue: 11 year: 2017 end-page: 4568 ident: C39 article-title: The gradient based iterative estimation algorithms for bilinear systems with autoregressive noise publication-title: Circuits Syst. Signal Process. – volume: 146 start-page: 319 issue: 4 year: 1999 end-page: 326 ident: C20 article-title: Neural network enhanced generalised minimum variance self-tuning controller for nonlinear discrete time systems publication-title: IEE. Proc. Control Theory Appl. – volume: 40 start-page: 10323 issue: 23-24 year: 2016 end-page: 10341 ident: C6 article-title: A new iterative model updating technique based on least squares minimal residual method using measured modal data publication-title: Appl. Math. Model. – ident: C3 article-title: Necessary/sufficient conditions for pareto optimum in cooperative difference game publication-title: Opt. Control, Appl. Methods – volume: 54 start-page: 529 issue: 3 year: 1991 end-page: 546 ident: C17 article-title: Rational model identification using extended least squares algorithm publication-title: Int. J. Control – volume: 12 start-page: 892 issue: 7 year: 2018 end-page: 899 ident: C42 article-title: Parameter identification for pseudo-linear systems with ARMA noise using the filtering technique publication-title: IET Control Theory Appl. – volume: 62 start-page: 5463 issue: 10 year: 2017 end-page: 5469 ident: C1 article-title: Unbiased minimum variance fault and state estimation for linear discrete time-varying two-dimensional systems publication-title: IEEE Trans. Autom. Control – volume: 351 start-page: 543 issue: 1 year: 2014 end-page: 554 ident: C29 article-title: Several gradient parameter estimation algorithms for dual-rate sampled systems publication-title: J. Franklin Inst. – volume: 29 start-page: 673 issue: 7 year: 2005 end-page: 689 ident: C25 article-title: An implicit least squares algorithm for nonlinear rational model parameter estimation publication-title: Appl. Math. Model. – volume: 62 start-page: 211 year: 2017 end-page: 223 ident: C4 article-title: Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering publication-title: Digit. Signal Process. – volume: 58 start-page: 3454 year: 2012 end-page: 3467 ident: C36 article-title: Identification of nonlinear parameter varying systems with missing output data publication-title: AIChE J. – volume: 89 start-page: 197 issue: 1 year: 2017 end-page: 211 ident: C15 article-title: Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems publication-title: Nonlinear Dyn. – volume: 77 start-page: 322 year: 2017 end-page: 335 ident: C26 article-title: A globally consistent nonlinear least squares estimator for identification of nonlinear rational systems publication-title: Automatica – volume: 71 start-page: 10 year: 2016 end-page: 23 ident: C34 article-title: Multivariable feedback particle filter publication-title: Automatica – volume: 354 start-page: 6938 issue: 15 year: 2017 end-page: 6955 ident: C13 article-title: A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input-output data filtering publication-title: J. Franklin Inst. – volume: 36 start-page: 1393 issue: 4 year: 2017 end-page: 1405 ident: C5 article-title: Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear-in-parameter systems publication-title: Circuits, Syst. Signal Process. – volume: 144 start-page: 99 year: 2018 end-page: 103 ident: C46 article-title: Sparsity-aware transmit beamspace design for FDA-MIMO radar publication-title: Signal Process. – volume: 71 start-page: 10 year: 2016 end-page: 23 article-title: Multivariable feedback particle filter publication-title: Automatica – volume: 48 start-page: 451 issue: 3 year: 2017 end-page: 461 article-title: An enhanced linear Kalman filter (EnLKF) algorithm for parameter estimation of nonlinear rational models publication-title: Int. J. Syst. Sci. – volume: 351 start-page: 543 issue: 1 year: 2014 end-page: 554 article-title: Several gradient parameter estimation algorithms for dual‐rate sampled systems publication-title: J. Franklin Inst. – volume: 13 start-page: 798 issue: 4 year: 2015 end-page: 838 article-title: Accurate methods for approximate Bayesian computation filtering publication-title: J. Financial Eco. – volume: 171 start-page: 41 year: 2018 end-page: 72 article-title: Rough maximal singular integral and maximal operators supported by subvarieties on Triebel‐Lizorkin spaces publication-title: Nonlinear Anal. – volume: 147 start-page: 23 year: 2018 end-page: 34 article-title: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique publication-title: Signal Process. – volume: 46 start-page: 2122 issue: 12 year: 2015 end-page: 2133 article-title: Review of rational (total) nonlinear dynamic system modelling, identification and control publication-title: Int. J. Syst. Sci. – volume: 11 start-page: 390 issue: 3 year: 2017 end-page: 400 article-title: Parameter estimation for pseudo‐linear systems using the auxiliary model and the decomposition technique publication-title: IET Control Theory Appl. – volume: 58 start-page: 3454 year: 2012 end-page: 3467 article-title: Identification of nonlinear parameter varying systems with missing output data publication-title: AIChE J. – volume: 89 start-page: 197 issue: 1 year: 2017 end-page: 211 article-title: Least‐squares‐based iterative and gradient‐based iterative estimation algorithms for bilinear systems publication-title: Nonlinear Dyn. – volume: 11 start-page: 476 issue: 4 year: 2017 end-page: 485 article-title: Recasted models based hierarchical extended stochastic gradient method for MIMO nonlinear systems publication-title: IET Control Theory Appl. – volume: 17 start-page: 643 issue: 7 year: 1993 end-page: 651 article-title: Parameter estimation in differential equations by application of rational functions publication-title: Comput. Chem. Eng. – volume: 54 start-page: 529 issue: 3 year: 1991 end-page: 546 article-title: Rational model identification using extended least squares algorithm publication-title: Int. J. Control – volume: 60 start-page: 14 year: 2017 end-page: 29 article-title: Monitoring strategy for relay incentive mechanism in cooperative communication networks publication-title: Comput. Electr. Eng. – year: 2007 – volume: 10 start-page: 1503 issue: 13 year: 2016 end-page: 1512 article-title: Combined state and multi‐innovation parameter estimation for an input nonlinear state space system using the key term separation publication-title: IET Control Theory Appl. – volume: 29 start-page: 223 issue: 3 year: 1998 end-page: 231 article-title: Structure detection for nonlinear rational models using genetic algorithms publication-title: Int. J. Syst. Sci. – volume: 354 start-page: 4861 issue: 12 year: 2017 end-page: 4881 article-title: The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise publication-title: J. Franklin Inst. – volume: 29 start-page: 673 issue: 7 year: 2005 end-page: 689 article-title: An implicit least squares algorithm for nonlinear rational model parameter estimation publication-title: Appl. Math. Model. – volume: 12 start-page: 892 issue: 7 year: 2018 end-page: 899 article-title: Parameter identification for pseudo‐linear systems with ARMA noise using the filtering technique publication-title: IET Control Theory Appl. – volume: 354 start-page: 6938 issue: 15 year: 2017 end-page: 6955 article-title: A recursive least squares parameter estimation algorithm for output nonlinear autoregressive systems using the input‐output data filtering publication-title: J. Franklin Inst. – volume: 354 start-page: 1321 issue: 3 year: 2017 end-page: 1339 article-title: Decomposition based least squares iterative identification algorithm for multivariate pseudo‐linear ARMA systems using the data filtering publication-title: J. Franklin Inst. – volume: 32 start-page: 2475 issue: 5 year: 2013 end-page: 2485 article-title: An auxiliary‐model‐based stochastic gradient algorithm for dual‐rate sampled‐data Box‐Jenkins systems publication-title: Circuits Syst. Signal Process. – volume: 62 start-page: 211 year: 2017 end-page: 223 article-title: Joint state and multi‐innovation parameter estimation for time‐delay linear systems and its convergence based on the Kalman filtering publication-title: Digit. Signal Process. – volume: 146 start-page: 319 issue: 4 year: 1999 end-page: 326 article-title: Neural network enhanced generalised minimum variance self‐tuning controller for nonlinear discrete time systems publication-title: IEE. Proc. Control Theory Appl. – volume: 10 start-page: 2506 issue: 18 year: 2016 end-page: 2514 article-title: Performance analysis of the generalized projection identification for time‐varying systems publication-title: IET Control Theory Appl. – volume: 77 start-page: 322 year: 2017 end-page: 335 article-title: A globally consistent nonlinear least squares estimator for identification of nonlinear rational systems publication-title: Automatica – volume: 40 start-page: 2106 issue: 3 year: 2016 end-page: 2118 article-title: The filtering based maximum likelihood recursive least squares estimation for multiple‐input single‐output systems publication-title: Appl. Math. Model. – volume: 48 start-page: 1493 issue: 9 year: 2018 end-page: 1504 article-title: Control performance assessment for ILC‐controlled batch processes in two‐dimensional system framework publication-title: IEEE Trans. Syst. Man Cybern., Syst. – volume: 39 issue: 2 year: 2018 article-title: Necessary/sufficient conditions for pareto optimum in cooperative difference game publication-title: Opt. Control, Appl. Methods – volume: 38 start-page: 1053 issue: 6 year: 2002 end-page: 1059 article-title: Analysis of dual‐rate inferential control systems publication-title: Automatica – year: 2006 – volume: 36 start-page: 1393 issue: 4 year: 2017 end-page: 1405 article-title: Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear‐in‐parameter systems publication-title: Circuits, Syst. Signal Process. – volume: 36 start-page: 4541 issue: 11 year: 2017 end-page: 4568 article-title: The gradient based iterative estimation algorithms for bilinear systems with autoregressive noise publication-title: Circuits Syst. Signal Process. – volume: 46 start-page: 3195 issue: 12 year: 2016 end-page: 3208 article-title: A variational Bayesian approach to robust identification of switched ARX models publication-title: IEEE Trans. Cybern. – volume: 35 start-page: 154 issue: 11 year: 2015 end-page: 168 article-title: Auxiliary model‐based interval‐varying multi‐innovation least squares identification for multivariable OE‐like systems with scarce measurements publication-title: J. Process Control – volume: 144 start-page: 99 year: 2018 end-page: 103 article-title: Sparsity‐aware transmit beamspace design for FDA‐MIMO radar publication-title: Signal Process. – volume: 89 start-page: 2415 issue: 4 year: 2017 end-page: 2429 article-title: Recursive parameter identification of the dynamical models for bilinear state space systems publication-title: Nonlinear Dyn. – volume: 15 start-page: 698 issue: 2 year: 2017 end-page: 705 article-title: Maximum likelihood estimation method for dual‐rate Hammerstein systems publication-title: Int. J. Control Autom. Syst. – volume: 36 start-page: 2558 issue: 6 year: 2017 end-page: 2573 article-title: Multiperiodicity and exponential attractivity of neural networks with mixed delays publication-title: Circuits Syst. Signal Process. – volume: 301 start-page: 215 year: 2015 end-page: 226 article-title: Robust infrared target tracking based on particle filter with embedded saliency detection publication-title: Inf. Sci – volume: 354 start-page: 7885 issue: 17 year: 2017 end-page: 7898 article-title: Iterative identification algorithms for bilinear‐in‐parameter systems with autoregressive moving average noise publication-title: J. Franklin Inst. – volume: 62 start-page: 5463 issue: 10 year: 2017 end-page: 5469 article-title: Unbiased minimum variance fault and state estimation for linear discrete time‐varying two‐dimensional systems publication-title: IEEE Trans. Autom. Control – volume: 40 start-page: 10323 issue: 23‐24 year: 2016 end-page: 10341 article-title: A new iterative model updating technique based on least squares minimal residual method using measured modal data publication-title: Appl. Math. Model. – volume: 27 start-page: 169 issue: 3 year: 2003 end-page: 187 article-title: A back propagation algorithm to estimate the parameters of nonlinear dynamic rational models publication-title: Appl. Math. Model. – ident: e_1_2_8_9_1 doi: 10.1016/j.apm.2015.08.015 – ident: e_1_2_8_12_1 doi: 10.1049/iet-cta.2015.1056 – ident: e_1_2_8_26_1 doi: 10.1016/j.apm.2004.10.008 – ident: e_1_2_8_14_1 doi: 10.1016/j.jfranklin.2017.08.009 – ident: e_1_2_8_7_1 doi: 10.1016/j.apm.2016.07.015 – ident: e_1_2_8_38_1 doi: 10.1002/0470045345 – ident: e_1_2_8_10_1 doi: 10.1109/TCYB.2015.2499771 – volume-title: Nonlinear regression analysis and its applications year: 2007 ident: e_1_2_8_22_1 – ident: e_1_2_8_32_1 doi: 10.1007/s12555-015-0371-x – ident: e_1_2_8_41_1 doi: 10.1093/jjfinec/nbu019 – ident: e_1_2_8_40_1 doi: 10.1007/s00034-017-0527-4 – ident: e_1_2_8_33_1 doi: 10.1049/iet-cta.2016.0491 – ident: e_1_2_8_34_1 doi: 10.1007/s00034-013-9563-x – ident: e_1_2_8_21_1 doi: 10.1049/ip-cta:19990364 – ident: e_1_2_8_37_1 doi: 10.1002/aic.13735 – ident: e_1_2_8_8_1 doi: 10.1016/j.jfranklin.2016.11.030 – ident: e_1_2_8_18_1 doi: 10.1080/00207179108934174 – ident: e_1_2_8_29_1 doi: 10.1016/j.jprocont.2015.09.001 – ident: e_1_2_8_19_1 doi: 10.1016/0098-1354(93)80052-O – ident: e_1_2_8_24_1 doi: 10.1080/00207721.2013.849774 – ident: e_1_2_8_6_1 doi: 10.1007/s00034-016-0367-7 – ident: e_1_2_8_11_1 doi: 10.1049/iet-cta.2016.0017 – volume-title: Nonparametric econometrics: theory and practice year: 2007 ident: e_1_2_8_42_1 – ident: e_1_2_8_15_1 doi: 10.1016/j.sigpro.2018.01.012 – ident: e_1_2_8_27_1 doi: 10.1016/j.automatica.2016.11.009 – ident: e_1_2_8_13_1 doi: 10.1016/j.jfranklin.2017.05.017 – ident: e_1_2_8_44_1 doi: 10.1007/s00034-016-0420-6 – ident: e_1_2_8_36_1 doi: 10.1016/j.ins.2014.12.022 – ident: e_1_2_8_20_1 doi: 10.1007/s11071-017-3594-y – ident: e_1_2_8_25_1 doi: 10.1016/S0307-904X(02)00097-5 – ident: e_1_2_8_28_1 doi: 10.1080/00207721.2016.1186243 – ident: e_1_2_8_3_1 doi: 10.1109/TSMC.2017.2672563 – ident: e_1_2_8_31_1 doi: 10.1016/S0005-1098(01)00295-3 – ident: e_1_2_8_5_1 doi: 10.1016/j.dsp.2016.11.010 – ident: e_1_2_8_16_1 doi: 10.1007/s11071-017-3445-x – ident: e_1_2_8_47_1 doi: 10.1016/j.sigpro.2017.10.008 – ident: e_1_2_8_45_1 doi: 10.1016/j.na.2018.01.014 – ident: e_1_2_8_43_1 doi: 10.1049/iet-cta.2017.0821 – ident: e_1_2_8_30_1 doi: 10.1016/j.jfranklin.2013.08.016 – ident: e_1_2_8_39_1 doi: 10.1016/j.jfranklin.2017.09.014 – ident: e_1_2_8_23_1 doi: 10.1080/00207729808929516 – ident: e_1_2_8_2_1 doi: 10.1109/TAC.2017.2697210 – ident: e_1_2_8_4_1 doi: 10.1002/oca.2395 – ident: e_1_2_8_35_1 doi: 10.1016/j.automatica.2016.04.019 – ident: e_1_2_8_46_1 doi: 10.1016/j.compeleceng.2017.04.025 – ident: e_1_2_8_17_1 doi: 10.1049/iet-cta.2016.0202 |
| SSID | ssj0055645 |
| Score | 2.280963 |
| Snippet | In dual-rate rational systems, some output data are missing (unmeasurable) to make the traditional recursive least squares (RLS) parameter estimation... In dual‐rate rational systems, some output data are missing (unmeasurable) to make the traditional recursive least squares (RLS) parameter estimation... |
| SourceID | crossref wiley iet |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 2184 |
| SubjectTerms | bias compensation recursive algorithm bias compensation RLS algorithm correlated noise dual‐rate rational systems least squares approximations particle filter particle filtering (numerical methods) recursive estimation recursive least squares parameter estimation algorithms Research Article unbiased parameter estimation |
| Title | Bias compensation recursive algorithm for dual-rate rational models |
| URI | http://digital-library.theiet.org/content/journals/10.1049/iet-cta.2018.5368 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cta.2018.5368 |
| Volume | 12 |
| WOSCitedRecordID | wos000447560100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: WIN dateStart: 20130101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1751-8652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0055645 issn: 1751-8644 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA61etCDb7G-yEE8CKvZPDa7Ry2KgpQe6uO2JNmsFmor29WzP8Hf6C8xk26LRagIXvaQTUKYySRfJplvEDqMiLU0Y1kgtGABV5oFCXNAjknK3YlIaupTJ9zdyFYrfnhI2jXUHMfCjPghJg43sAy_XoOBKz3KQuJArVNi15aBKYE6KIxPBIviOTQfhkzC1Ka8PV6OBdCl-KhIEQax2_0nV5vJ6Y8upjanOfd7GrL6Pedy5V9Gu4qWK8iJz0ZzZA3VbH8dLX0jItxAF-ddNcTwvNydar2ucAGOeHjbjlXvcVB0y6dn7AAuhtitz_cPYJjAReVJxD6fznAT3V5edJpXQZVgITCMhTygmeRcJs5Q8kzzUObCOjihbUIjncRURblDc1olisvMqZrnlmTUACQi0hBD2Baq9wd9u40wk9IhAS4UAYY4qmKTicgQJXLLiY5NA5GxZFNTsY9DEoxe6m_BeZI6CaVOQilIKAUJNdDxpMnLiHpjVuUjKKsMcDirIvF6-r3LtNm5onAC3vl7k120CIU-aDHaQ_WyeLX7aMG8ld1hceAnqPveX7e-APu16RY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB58gXrwLb7NQTwI1WweTXv0yYrr4mEVbyVNU11YV-lWz_4Ef6O_xEy2uyiCInhtHpRJJvPNJPMNwE5IrWUZzwKZSh4InfIg5g7IccWE84hUynzphJuGajaj29v4agROBrkwfX6IYcANNcOf16jgGJDuO5wCSTLbtgxMidxBtWhf8jAahXHhrA3WMWDianAeS-RL8WmRshZEzvwP7zbjg29TfLFOo675K2b1Ruds9n9-dw5mKtBJDvu7ZB5GbHcBpj9RES7C6VFb9wg-MHd-rV8tUmAoHl-3E925eyza5f0DcRCXYPbW--sbckyQooolEl9Rp7cE12enreN6UJVYCAznNRGwTAmhYqcqeZaKmsqldYAitTEL0zhiOswdnkt1rIXK3GKL3NKMGQRFVBlqKF-Gse5j164A4Uo5LCCkpsgRx3RkMhkaqmVuBU0jswp0INrEVPzjWAajk_h7cBEnTkKJk1CCEkpQQquwNxzy1Cff-KnzLn6rVLD3U0fqF-r3KZPjVp2hD7z29yHbMFlvXTaSxnnzYh2msINPYQw3YKwsnu0mTJiXst0rtvxu_QBS0-vp |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB50FdGDb3F95iAehGo2j6Y9-loUZdmDireSpqkurKt0q2d_gr_RX2Im210UQRG8Ng_KJJP5ZpL5BmAnpNayjGeBTCUPhE55EHMH5LhiwnlEKmW-dMLNpWq1otvbuD0GJ8NcmAE_xCjghprhz2tUcPuU5QOHUyBJZseWgSmRO6gR7UseRuMwIaQ7a5HfWbSH57FEvhSfFikbQeTM_-huMz74NsUX6zTumr9iVm90mnP_87vzMFuBTnI42CULMGZ7izDziYpwCU6POrpP8IG582v9apECQ_H4up3o7t1j0SnvH4iDuASzt95f35BjghRVLJH4ijr9Zbhunl4dnwVViYXAcN4QAcuUECp2qpJnqWioXFoHKFIbszCNI6bD3OG5VMdaqMwttsgtzZhBUESVoYbyFaj1Hnt2FQhXymEBITVFjjimI5PJ0FAtcytoGpk60KFoE1Pxj2MZjG7i78FFnDgJJU5CCUooQQnVYW805GlAvvFT5138Vqlg_6eO1C_U71Mmx1dnDH3gtb8P2Yap9kkzuTxvXazDNLb7DMZwA2pl8Ww3YdK8lJ1-seU36wcS5Ott |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bias+compensation+recursive+algorithm+for+dual-rate+rational+models&rft.jtitle=IET+control+theory+%26+applications&rft.au=Chen%2C+Jing&rft.au=Liu%2C+Yanjun&rft.au=Zhu%2C+Quanmin&rft.date=2018-11-06&rft.pub=The+Institution+of+Engineering+and+Technology&rft.issn=1751-8644&rft.eissn=1751-8652&rft.volume=12&rft.issue=16&rft.spage=2184&rft.epage=2193&rft_id=info:doi/10.1049%2Fiet-cta.2018.5368&rft.externalDocID=10_1049_iet_cta_2018_5368 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-8644&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-8644&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-8644&client=summon |