Optimal control problems with delays in state and control variables subject to mixed control-state constraints

Optimal control problems with delays in state and control variables are studied. Constraints are imposed as mixed control–state inequality constraints. Necessary optimality conditions in the form of Pontryagin's minimum principle are established. The proof proceeds by augmenting the delayed con...

Full description

Saved in:
Bibliographic Details
Published in:Optimal control applications & methods Vol. 30; no. 4; pp. 341 - 365
Main Authors: Göllmann, L., Kern, D., Maurer, H.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01.07.2009
Subjects:
ISSN:0143-2087, 1099-1514
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Optimal control problems with delays in state and control variables are studied. Constraints are imposed as mixed control–state inequality constraints. Necessary optimality conditions in the form of Pontryagin's minimum principle are established. The proof proceeds by augmenting the delayed control problem to a nondelayed problem with mixed terminal boundary conditions to which Pontryagin's minimum principle is applicable. Discretization methods are discussed by which the delayed optimal control problem is transformed into a large‐scale nonlinear programming problem. It is shown that the Lagrange multipliers associated with the programming problem provide a consistent discretization of the advanced adjoint equation for the delayed control problem. An analytical example and numerical examples from chemical engineering and economics illustrate the results. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList Optimal control problems with delays in state and control variables are studied. Constraints are imposed as mixed control-state inequality constraints. Necessary optimality conditions in the form of Pontryagin's minimum principle are established. The proof proceeds by augmenting the delayed control problem to a nondelayed problem with mixed terminal boundary conditions to which Pontryagin's minimum principle is applicable. Discretization methods are discussed by which the delayed optimal control problem is transformed into a large-scale nonlinear programming problem. It is shown that the Lagrange multipliers associated with the programming problem provide a consistent discretization of the advanced adjoint equation for the delayed control problem. An analytical example and numerical examples from chemical engineering and economics illustrate the results.
Optimal control problems with delays in state and control variables are studied. Constraints are imposed as mixed control–state inequality constraints. Necessary optimality conditions in the form of Pontryagin's minimum principle are established. The proof proceeds by augmenting the delayed control problem to a nondelayed problem with mixed terminal boundary conditions to which Pontryagin's minimum principle is applicable. Discretization methods are discussed by which the delayed optimal control problem is transformed into a large‐scale nonlinear programming problem. It is shown that the Lagrange multipliers associated with the programming problem provide a consistent discretization of the advanced adjoint equation for the delayed control problem. An analytical example and numerical examples from chemical engineering and economics illustrate the results. Copyright © 2008 John Wiley & Sons, Ltd.
Author Kern, D.
Maurer, H.
Göllmann, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Göllmann
  fullname: Göllmann, L.
  email: goellmann@fh-muenster.de
  organization: Department of Mechanical Engineering, Münster University of Applied Sciences, Münster, Germany
– sequence: 2
  givenname: D.
  surname: Kern
  fullname: Kern, D.
  organization: Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany
– sequence: 3
  givenname: H.
  surname: Maurer
  fullname: Maurer, H.
  organization: Department of Numerical Analysis and Applied Mathematics, University of Münster, Münster, Germany
BookMark eNp10E1PAjEQBuDGaCKg8S_05sEsttv9PBIiaILiQaO3ZrbMxmLZxbYo_HtL1uBFT5NOnk5m3j45btoGCbngbMgZi69bBcMiEUekx1lZRjzlyTHpMZ6IKGZFfkr6zi0ZYzkXcY8087XXKzBUtY23raFr21YGV45-af9GF2hg56huqPPgkUKzOMhPsBqCddRtqiUqT31LV3qLBxJ1n8LLeQu68e6MnNRgHJ7_1AF5ntw8jW-j2Xx6Nx7NIiUEFxEUKRcizxYQJ1UqFlUNAuskK2NUdVLWAnldFGVSFZDFGJpYKVHEJatiUAyZGJDLbm4452ODzsuVdgqNgQbbjZN5KrIyy0IoAxJ1UtnWOYu1VDpsrfcXgDaSM7mPVYZYZYj1d_LBr20I0O7-kFed_NIGd_8xOR-POv2zh3YetwcN9l1muchT-fIwlU-z15fZYzaR9-IbPOOaBQ
CitedBy_id crossref_primary_10_1016_j_matcom_2018_08_009
crossref_primary_10_1177_0142331218819048
crossref_primary_10_1002_oca_2087
crossref_primary_10_1002_oca_2482
crossref_primary_10_1093_imamci_dnw018
crossref_primary_10_3390_math11194025
crossref_primary_10_1016_j_automatica_2021_109981
crossref_primary_10_1007_s10441_015_9244_1
crossref_primary_10_1016_j_amc_2019_02_002
crossref_primary_10_1016_j_neucom_2014_08_060
crossref_primary_10_1007_s12190_022_01766_3
crossref_primary_10_12677_AAM_2023_122081
crossref_primary_10_3390_math11092113
crossref_primary_10_1002_oca_70005
crossref_primary_10_1016_j_nonrwa_2012_10_017
crossref_primary_10_1080_1726037X_2011_10698595
crossref_primary_10_1093_imamci_dnw020
crossref_primary_10_1017_S1446181114000352
crossref_primary_10_1016_j_chaos_2021_110869
crossref_primary_10_1155_2019_9596253
crossref_primary_10_1016_j_apm_2017_08_025
crossref_primary_10_1016_j_cam_2023_115106
crossref_primary_10_1080_17513758_2019_1629031
crossref_primary_10_1002_mma_70046
crossref_primary_10_1016_j_apm_2021_08_024
crossref_primary_10_1002_oca_2351
crossref_primary_10_1080_00036811_2020_1820995
crossref_primary_10_1109_TMC_2013_96
crossref_primary_10_1140_epjs_s11734_024_01221_3
crossref_primary_10_1007_s40314_014_0184_1
crossref_primary_10_1007_s40435_016_0231_4
crossref_primary_10_3389_fncom_2022_931121
crossref_primary_10_1137_17M1143563
crossref_primary_10_1007_s10957_015_0783_z
crossref_primary_10_1007_s12190_024_02053_z
crossref_primary_10_1007_s40435_016_0287_1
crossref_primary_10_1080_0954898X_2022_2059117
crossref_primary_10_1080_02331934_2020_1786568
crossref_primary_10_1115_1_4023060
crossref_primary_10_1016_j_euroecorev_2020_103439
crossref_primary_10_1093_imamci_dnv044
crossref_primary_10_1007_s12591_022_00593_z
crossref_primary_10_1007_s40435_015_0221_y
crossref_primary_10_1016_j_compbiomed_2024_108682
crossref_primary_10_1016_j_matcom_2015_03_002
crossref_primary_10_1140_epjp_s13360_024_04911_y
crossref_primary_10_1016_j_automatica_2018_12_036
crossref_primary_10_1155_2024_3253724
crossref_primary_10_3390_pr10102070
crossref_primary_10_1140_epjs_s11734_024_01294_0
crossref_primary_10_1016_j_jedc_2025_105122
crossref_primary_10_1007_s11786_018_0333_9
crossref_primary_10_1016_j_ejcon_2023_100824
crossref_primary_10_1007_s13278_020_00685_0
crossref_primary_10_1007_s40435_016_0270_x
crossref_primary_10_1093_imamci_dnw044
crossref_primary_10_1155_2014_250419
crossref_primary_10_1007_s40313_020_00586_9
crossref_primary_10_1016_j_rico_2025_100528
crossref_primary_10_1155_2014_982978
crossref_primary_10_1080_00207721_2024_2392822
crossref_primary_10_1007_s12190_022_01776_1
crossref_primary_10_1016_j_ifacol_2018_07_208
crossref_primary_10_3390_fractalfract3030046
crossref_primary_10_1049_iet_syb_2013_0012
crossref_primary_10_1080_00207179_2011_641158
crossref_primary_10_1002_oca_2407
crossref_primary_10_1016_j_jprocont_2019_04_013
crossref_primary_10_1016_j_jprocont_2024_103234
crossref_primary_10_1155_2014_602641
crossref_primary_10_1016_j_jfranklin_2020_09_002
crossref_primary_10_1155_2013_403549
crossref_primary_10_1002_oca_2163
crossref_primary_10_1002_mma_10351
crossref_primary_10_1007_s12064_016_0234_x
crossref_primary_10_1007_s10640_017_0204_x
crossref_primary_10_1080_17513758_2017_1381280
crossref_primary_10_1007_s11071_019_05304_y
crossref_primary_10_1016_j_rineng_2025_104450
crossref_primary_10_1007_s40819_015_0051_9
crossref_primary_10_1155_2021_8673020
crossref_primary_10_1007_s10957_023_02288_z
crossref_primary_10_1016_j_amc_2022_127448
crossref_primary_10_1080_00036811_2012_762090
crossref_primary_10_1080_00036811_2016_1192136
crossref_primary_10_1080_00207179_2018_1463456
crossref_primary_10_1109_TAC_2022_3207865
crossref_primary_10_1016_j_jfranklin_2020_02_051
crossref_primary_10_1016_j_physa_2019_121544
crossref_primary_10_1186_s13662_025_03947_3
crossref_primary_10_1016_j_jfranklin_2013_09_027
crossref_primary_10_1016_j_jfranklin_2018_08_003
crossref_primary_10_3390_math10132188
crossref_primary_10_1016_j_amc_2010_03_075
crossref_primary_10_1016_j_biosystems_2020_104321
crossref_primary_10_1016_j_cnsns_2023_107500
crossref_primary_10_1155_2014_945158
crossref_primary_10_1002_oca_2549
crossref_primary_10_1007_s40314_013_0089_4
crossref_primary_10_1016_j_sysconle_2014_07_001
crossref_primary_10_1088_1751_8121_aa8a92
crossref_primary_10_1137_18M119121X
crossref_primary_10_1007_s10957_016_0957_3
crossref_primary_10_1002_rnc_4003
crossref_primary_10_1093_imamci_dnw057
crossref_primary_10_1002_mma_4926
crossref_primary_10_1002_aic_17777
crossref_primary_10_1155_2021_5525857
crossref_primary_10_1016_j_amc_2016_07_009
crossref_primary_10_1093_imamci_dnu058
crossref_primary_10_1093_imamci_dnv025
crossref_primary_10_1002_oca_2187
crossref_primary_10_1080_00036811_2018_1538500
crossref_primary_10_1109_TWC_2014_2366136
crossref_primary_10_5402_2012_215124
crossref_primary_10_1016_j_cnsns_2023_107615
crossref_primary_10_1080_00207179_2012_715752
crossref_primary_10_1016_j_apm_2020_07_051
crossref_primary_10_1080_00207160_2024_2366908
crossref_primary_10_1155_ijmm_3238188
crossref_primary_10_1016_j_apm_2018_09_039
crossref_primary_10_1007_s12190_020_01369_w
crossref_primary_10_1177_1077546314550698
crossref_primary_10_1155_2018_6710575
crossref_primary_10_1016_j_apnum_2015_12_008
crossref_primary_10_1016_j_ins_2014_08_020
crossref_primary_10_1016_j_heliyon_2022_e12274
crossref_primary_10_1155_2014_940819
crossref_primary_10_1007_s12190_024_02335_6
crossref_primary_10_1093_imamci_dnv032
crossref_primary_10_1002_oca_2572
crossref_primary_10_1177_09596518211067476
crossref_primary_10_1002_oca_2295
crossref_primary_10_1155_2021_5545551
crossref_primary_10_1177_10775463211053182
crossref_primary_10_1007_s10957_022_02046_7
crossref_primary_10_1080_01630563_2018_1489415
crossref_primary_10_3390_app6080219
crossref_primary_10_3390_fractalfract7070533
crossref_primary_10_1109_TAC_2020_2982862
crossref_primary_10_1016_j_cnsns_2024_108156
crossref_primary_10_1016_j_ins_2021_02_047
crossref_primary_10_1007_s12591_021_00570_y
crossref_primary_10_1007_s11071_021_06841_1
crossref_primary_10_1016_j_ifacol_2018_09_235
crossref_primary_10_1016_j_ecosta_2022_03_004
Cites_doi 10.1007/s10107-004-0559-y
10.1007/BF00933818
10.1007/s002110000178
10.1002/oca.4660130103
10.1080/00207177208932327
10.1016/0005-1098(71)90006-9
10.1137/0306016
10.1137/0316060
10.1007/BF01447323
10.1137/0306002
10.1090/mmono/180
10.2307/1934339
10.1007/BF00952825
10.1016/0009-2509(70)87009-9
10.1023/A:1008677427361
10.1002/aic.690220117
10.1137/0329063
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1002/oca.843
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1514
EndPage 365
ExternalDocumentID 10_1002_oca_843
OCA843
ark_67375_WNG_TLXWLP6F_M
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMVHM
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AEUQT
AFPWT
ALUQN
RWI
UCJ
WRC
WWI
AAYXX
CITATION
O8X
7SP
8FD
L7M
ID FETCH-LOGICAL-c3313-a8513376da24b53dbfa3ef4692ecf49f3e1f8894b8a62e2ecebc38290b2ac0e03
IEDL.DBID DRFUL
ISICitedReferencesCount 204
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000268706700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0143-2087
IngestDate Thu Jul 10 23:49:06 EDT 2025
Sat Nov 29 04:09:48 EST 2025
Tue Nov 18 22:22:52 EST 2025
Wed Jan 22 16:19:20 EST 2025
Tue Nov 11 03:32:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3313-a8513376da24b53dbfa3ef4692ecf49f3e1f8894b8a62e2ecebc38290b2ac0e03
Notes ArticleID:OCA843
ark:/67375/WNG-TLXWLP6F-M
istex:9438DBB367800C0EA4083C2D025DCD0B3C52B56E
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 753696614
PQPubID 23500
PageCount 25
ParticipantIDs proquest_miscellaneous_753696614
crossref_citationtrail_10_1002_oca_843
crossref_primary_10_1002_oca_843
wiley_primary_10_1002_oca_843_OCA843
istex_primary_ark_67375_WNG_TLXWLP6F_M
PublicationCentury 2000
PublicationDate 2009-07
July/August 2009
2009-07-00
20090701
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: 2009-07
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Optimal control applications & methods
PublicationTitleAlternate Optim. Control Appl. Meth
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Halanay A. Optimal controls for systems with time lag. SIAM Journal on Control 1968; 6:215-234.
Hestenes MR. Calculus of Variations and Optimal Control Theory. Wiley: New York, 1966.
Colonius F, Hinrichsen D. Optimal control of functional differential systems. SIAM Journal on Control and Optimization 1978; 16(6):861-879.
Vanderbei RJ, Shanno DF. An interior-point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications 1999; 13:231-252.
Angell TS, Kirsch A. On the necessary conditions for optimal control of retarded systems. Applied Mathematics and Optimization 1990; 22:117-145.
Kharatishvili GL. Maximum principle in the theory of optimal time-delay processes. Doklady Akademii Nauk USSR 1961; 136:39-42.
Fourer R, Gay DM, Kernighan BW. AMPL: A Modeling Language for Mathematical Programming. The Scientific Press: South San Francisco, CA, 1993.
Hager W. Runge-Kutta methods in optimal control and the transformed adjoint system. Numerische Mathematik 2000; 87:247-282.
Kharatishvili GL. A Maximum Principle in External Problems with Delays. Mathematical Theory on Control. Academic Press: New York, 1967.
Banks HT. Necessary conditions for control problems with variable time lags. SIAM Journal on Control 1968; 8(1):9-47.
Soliman MA, Ray WH. Optimal control of multivariable systems with pure time delays. Automatica 1971; 7:681-689.
Guinn T. Reduction of delayed optimal control problems to nondelayed problems. Journal of Optimization Theory and Applications 1976; 18:371-377.
May RM. Time-delay versus stability in population models with two and three tropic levels. Ecology 1973; 54:315-325.
May RM. Stability and Complexity in Model Ecosystems (2nd edn). Princeton University Press: Princeton, NJ, 1975.
Neustadt LW. Optimization-A Theory of Necessary Conditions. Princeton University Press: Princeton, NJ, 1976.
Ray WH, Soliman MA. The optimal control of processes containing pure time delays-I, necessary conditions for an optimum. Chemical Engineering Science 1970; 25:1911-1925.
Soliman MA, Ray WH. On the optimal control of systems having pure time delays and singular arcs. International Journal of Control 1972; 16(5):963-976.
Oh SH, Luus R. Optimal feedback control of time-delay systems. AIChE Journal 1976; 22(1):140-147.
Oğuztöreli MN. Time-Lag Control Systems. Academic Press: New York, 1966.
Chan WL, Yung SP. Sufficient conditions for variational problems with delayed argument. Journal of Optimization Theory and Applications 1993; 76:131-144.
Milyutin AA, Osmolovskii NP. Calculus of Variations and Optimal Control. Translations of Mathematical Monographs, vol. 180. American Mathematical Society: Providence, RI, 1998.
Clarke FH, Wolenski PR. The sensitivity of optimal control problems to time delay. SIAM Journal on Control and Optimization 1991; 29(5):1176-1215.
Dadebo S, Luus R. Optimal control of time-delay systems by dynamic programming. Optimal Control Applications and Methods 1992; 13:29-41.
Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 2006; 106:25-57.
1968; 8
1976; 22
1973; 54
2000; 87
1968; 6
1998
1976
1975
1996
1961; 136
1978; 16
1992; 13
2005
1993
2002
1991; 29
1971; 7
1990; 22
1993; 76
1999; 13
1983
1976; 18
2006; 106
1967
1972; 16
1970; 25
1966
May RM (e_1_2_1_28_2) 1975
Kharatishvili GL (e_1_2_1_4_2) 1967
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
Oğuztöreli MN (e_1_2_1_2_2) 1966
e_1_2_1_29_2
Hestenes MR (e_1_2_1_18_2) 1966
Neustadt LW (e_1_2_1_19_2) 1976
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
Fourer R (e_1_2_1_20_2) 1993
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_12_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
Kharatishvili GL (e_1_2_1_3_2) 1961; 136
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_8_2
e_1_2_1_9_2
Milyutin AA (e_1_2_1_17_2) 1998
References_xml – reference: Oğuztöreli MN. Time-Lag Control Systems. Academic Press: New York, 1966.
– reference: Colonius F, Hinrichsen D. Optimal control of functional differential systems. SIAM Journal on Control and Optimization 1978; 16(6):861-879.
– reference: Ray WH, Soliman MA. The optimal control of processes containing pure time delays-I, necessary conditions for an optimum. Chemical Engineering Science 1970; 25:1911-1925.
– reference: Clarke FH, Wolenski PR. The sensitivity of optimal control problems to time delay. SIAM Journal on Control and Optimization 1991; 29(5):1176-1215.
– reference: Hager W. Runge-Kutta methods in optimal control and the transformed adjoint system. Numerische Mathematik 2000; 87:247-282.
– reference: May RM. Time-delay versus stability in population models with two and three tropic levels. Ecology 1973; 54:315-325.
– reference: Halanay A. Optimal controls for systems with time lag. SIAM Journal on Control 1968; 6:215-234.
– reference: Soliman MA, Ray WH. Optimal control of multivariable systems with pure time delays. Automatica 1971; 7:681-689.
– reference: Angell TS, Kirsch A. On the necessary conditions for optimal control of retarded systems. Applied Mathematics and Optimization 1990; 22:117-145.
– reference: Oh SH, Luus R. Optimal feedback control of time-delay systems. AIChE Journal 1976; 22(1):140-147.
– reference: Soliman MA, Ray WH. On the optimal control of systems having pure time delays and singular arcs. International Journal of Control 1972; 16(5):963-976.
– reference: Guinn T. Reduction of delayed optimal control problems to nondelayed problems. Journal of Optimization Theory and Applications 1976; 18:371-377.
– reference: Chan WL, Yung SP. Sufficient conditions for variational problems with delayed argument. Journal of Optimization Theory and Applications 1993; 76:131-144.
– reference: Kharatishvili GL. A Maximum Principle in External Problems with Delays. Mathematical Theory on Control. Academic Press: New York, 1967.
– reference: May RM. Stability and Complexity in Model Ecosystems (2nd edn). Princeton University Press: Princeton, NJ, 1975.
– reference: Kharatishvili GL. Maximum principle in the theory of optimal time-delay processes. Doklady Akademii Nauk USSR 1961; 136:39-42.
– reference: Hestenes MR. Calculus of Variations and Optimal Control Theory. Wiley: New York, 1966.
– reference: Dadebo S, Luus R. Optimal control of time-delay systems by dynamic programming. Optimal Control Applications and Methods 1992; 13:29-41.
– reference: Wächter A, Biegler LT. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 2006; 106:25-57.
– reference: Fourer R, Gay DM, Kernighan BW. AMPL: A Modeling Language for Mathematical Programming. The Scientific Press: South San Francisco, CA, 1993.
– reference: Banks HT. Necessary conditions for control problems with variable time lags. SIAM Journal on Control 1968; 8(1):9-47.
– reference: Milyutin AA, Osmolovskii NP. Calculus of Variations and Optimal Control. Translations of Mathematical Monographs, vol. 180. American Mathematical Society: Providence, RI, 1998.
– reference: Neustadt LW. Optimization-A Theory of Necessary Conditions. Princeton University Press: Princeton, NJ, 1976.
– reference: Vanderbei RJ, Shanno DF. An interior-point algorithm for nonconvex nonlinear programming. Computational Optimization and Applications 1999; 13:231-252.
– year: 1983
– volume: 136
  start-page: 39
  year: 1961
  end-page: 42
  article-title: Maximum principle in the theory of optimal time‐delay processes
  publication-title: Doklady Akademii Nauk USSR
– year: 1966
– volume: 22
  start-page: 117
  year: 1990
  end-page: 145
  article-title: On the necessary conditions for optimal control of retarded systems
  publication-title: Applied Mathematics and Optimization
– year: 2005
– volume: 8
  start-page: 9
  issue: 1
  year: 1968
  end-page: 47
  article-title: Necessary conditions for control problems with variable time lags
  publication-title: SIAM Journal on Control
– volume: 87
  start-page: 247
  year: 2000
  end-page: 282
  article-title: Runge–Kutta methods in optimal control and the transformed adjoint system
  publication-title: Numerische Mathematik
– year: 1996
– year: 1975
– volume: 29
  start-page: 1176
  issue: 5
  year: 1991
  end-page: 1215
  article-title: The sensitivity of optimal control problems to time delay
  publication-title: SIAM Journal on Control and Optimization
– year: 1998
– volume: 13
  start-page: 231
  year: 1999
  end-page: 252
  article-title: An interior–point algorithm for nonconvex nonlinear programming
  publication-title: Computational Optimization and Applications
– volume: 54
  start-page: 315
  year: 1973
  end-page: 325
  article-title: Time‐delay versus stability in population models with two and three tropic levels
  publication-title: Ecology
– volume: 18
  start-page: 371
  year: 1976
  end-page: 377
  article-title: Reduction of delayed optimal control problems to nondelayed problems
  publication-title: Journal of Optimization Theory and Applications
– volume: 25
  start-page: 1911
  year: 1970
  end-page: 1925
  article-title: The optimal control of processes containing pure time delays—I, necessary conditions for an optimum
  publication-title: Chemical Engineering Science
– volume: 6
  start-page: 215
  year: 1968
  end-page: 234
  article-title: Optimal controls for systems with time lag
  publication-title: SIAM Journal on Control
– volume: 22
  start-page: 140
  issue: 1
  year: 1976
  end-page: 147
  article-title: Optimal feedback control of time‐delay systems
  publication-title: AIChE Journal
– year: 1967
– year: 2002
– volume: 106
  start-page: 25
  year: 2006
  end-page: 57
  article-title: On the implementation of an interior–point filter line‐search algorithm for large‐scale nonlinear programming
  publication-title: Mathematical Programming
– volume: 76
  start-page: 131
  year: 1993
  end-page: 144
  article-title: Sufficient conditions for variational problems with delayed argument
  publication-title: Journal of Optimization Theory and Applications
– volume: 16
  start-page: 963
  issue: 5
  year: 1972
  end-page: 976
  article-title: On the optimal control of systems having pure time delays and singular arcs
  publication-title: International Journal of Control
– volume: 16
  start-page: 861
  issue: 6
  year: 1978
  end-page: 879
  article-title: Optimal control of functional differential systems
  publication-title: SIAM Journal on Control and Optimization
– volume: 13
  start-page: 29
  year: 1992
  end-page: 41
  article-title: Optimal control of time‐delay systems by dynamic programming
  publication-title: Optimal Control Applications and Methods
– year: 1976
– year: 1993
– volume: 7
  start-page: 681
  year: 1971
  end-page: 689
  article-title: Optimal control of multivariable systems with pure time delays
  publication-title: Automatica
– ident: e_1_2_1_11_2
– ident: e_1_2_1_23_2
  doi: 10.1007/s10107-004-0559-y
– volume-title: Time‐Lag Control Systems
  year: 1966
  ident: e_1_2_1_2_2
– volume-title: AMPL: A Modeling Language for Mathematical Programming
  year: 1993
  ident: e_1_2_1_20_2
– ident: e_1_2_1_7_2
  doi: 10.1007/BF00933818
– volume-title: Optimization—A Theory of Necessary Conditions
  year: 1976
  ident: e_1_2_1_19_2
– ident: e_1_2_1_22_2
– ident: e_1_2_1_25_2
  doi: 10.1007/s002110000178
– volume-title: Stability and Complexity in Model Ecosystems
  year: 1975
  ident: e_1_2_1_28_2
– volume-title: Calculus of Variations and Optimal Control Theory
  year: 1966
  ident: e_1_2_1_18_2
– ident: e_1_2_1_14_2
  doi: 10.1002/oca.4660130103
– ident: e_1_2_1_6_2
  doi: 10.1080/00207177208932327
– ident: e_1_2_1_12_2
  doi: 10.1016/0005-1098(71)90006-9
– ident: e_1_2_1_5_2
  doi: 10.1137/0306016
– volume: 136
  start-page: 39
  year: 1961
  ident: e_1_2_1_3_2
  article-title: Maximum principle in the theory of optimal time‐delay processes
  publication-title: Doklady Akademii Nauk USSR
– ident: e_1_2_1_9_2
  doi: 10.1137/0316060
– ident: e_1_2_1_10_2
  doi: 10.1007/BF01447323
– ident: e_1_2_1_8_2
  doi: 10.1137/0306002
– volume-title: Calculus of Variations and Optimal Control
  year: 1998
  ident: e_1_2_1_17_2
  doi: 10.1090/mmono/180
– ident: e_1_2_1_21_2
– ident: e_1_2_1_27_2
  doi: 10.2307/1934339
– ident: e_1_2_1_24_2
– ident: e_1_2_1_32_2
  doi: 10.1007/BF00952825
– ident: e_1_2_1_16_2
– ident: e_1_2_1_26_2
  doi: 10.1016/0009-2509(70)87009-9
– ident: e_1_2_1_29_2
– ident: e_1_2_1_31_2
  doi: 10.1023/A:1008677427361
– volume-title: A Maximum Principle in External Problems with Delays
  year: 1967
  ident: e_1_2_1_4_2
– ident: e_1_2_1_15_2
– ident: e_1_2_1_13_2
  doi: 10.1002/aic.690220117
– ident: e_1_2_1_30_2
  doi: 10.1137/0329063
SSID ssj0007132
Score 2.2990172
Snippet Optimal control problems with delays in state and control variables are studied. Constraints are imposed as mixed control–state inequality constraints....
Optimal control problems with delays in state and control variables are studied. Constraints are imposed as mixed control-state inequality constraints....
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 341
SubjectTerms Chemical engineering
Delay
delays in state and control
Discretization
discretization methods
Mathematical analysis
Mathematical models
mixed control-state inequality constraints
Nonlinear programming
Optimal control
optimal control of a CSTR reactor
optimal fishing
Pontryagin's minimum principle
retarded optimal control problems
Terminals
Title Optimal control problems with delays in state and control variables subject to mixed control-state constraints
URI https://api.istex.fr/ark:/67375/WNG-TLXWLP6F-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Foca.843
https://www.proquest.com/docview/753696614
Volume 30
WOSCitedRecordID wos000268706700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1099-1514
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007132
  issn: 0143-2087
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTuMwEB6xLYflwM_uIgrsygfELUsbp4l9RECXQyloBaI3y3ZsqQJS1LQIbrwDb8iTMJOEUIRWQtpTJGcmsTzj8Yw9_gZgx7gkxGXCBF4mPIhSHQcy9SawBNQSeWvbXV8Um0gGAzEcyrO5Ul8lPkS94UYzo7DXNMG1yffeQEPR1P8WEf8CzRC1NmpA8_Bv76Jfm2GMvsIyf5GjKoikvDFLzHsV67ulqEmjev_Oz5z3VovlprfyHx1dheXKx2T7pVKswYLLvsHSHPLgd7g9RVNxg0RVqjqrCsvkjDZmGUFHPuRslLHiwhHTWVpT3mF0TfetcpbPDO3isOmY3YzuXU3y_PhUsllyPqkGxTT_ARe9o_OD46AqvhBYzjs80IIqvyRxqsPIdHlqvObOYzAdOusj6bnreCFkZISOQ4eNzlhOp7Im1Lbt2nwdGtk4cxvAkJOLWMeOext1pJepk1RAT0vbllqYFuy-ykHZCpmcOnetSkzlUOEQKhzCFrCa8LYE4_hIslsIsn6vJ1eUu5Z01eXgjzrvDy_7Z3FPneC3XiWtcEbRMYnO3HiWKwzgYkluSwt2Crn-61_q9GAfH5ufI9uCr-VJFKX6bkNjOpm5n7Bo76ajfPKr0t4XLYL4Pg
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9BiwQ8jL8ThQF-mPYW1sZpYj9O28oQWVuhVu2bZTu2VLGlU9NO423fYd-QT8JdkoVNCAmJp0jJXRL5zufz-e53ALvGJSEuEybwMuFBlOk4kJk3gSWglshb2-37stlEMhyK-VyO66xKqoWp8CGagBvNjNJe0wSngPT-b9RQtPWfRMQfQjtCJeq3oH30bTBNGzuM26-wSmDkqAsiqUpmiXm_Zr23FrVpWK_uOZp33dVyvRk8-58_fQ5btZfJDiq1eAEPXP4Snt7BHnwFFyM0FudIVCers7q1TMEoNMsIPPJHwRY5K0uOmM6zhvIS99dUcVWwYmMojsPWS3a-uHINyc_rm4rNkvtJXSjWxWuYDo4nhydB3X4hsJz3eKAF9X5J4kyHkenzzHjNncftdOisj6TnrueFkJEROg4d3nTGcjqXNaG2Xdfl29DKl7l7Aww5uYh17Li3UU96mTlJLfS0tF2phenA3q0glK2xyennzlSFqhwqHEKFQ9gB1hBeVHAcf5LslZJsnuvVd8peS_pqNvysJul8lo7jgTrFd92KWuGcooMSnbvlplC4hYslOS4d2C0F-7dvqdHhAV7e_hvZR3h8MjlNVfpl-PUdPKnOpSjxdwda69XGvYdH9nK9KFYfalX-Bfbg_C4
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swED8NitB42AZjovuHHxBvgTZOE_sRwbJNdKVCIPpm2Y4tVRtp1bQI3vgO-4b7JLtLQgZCk5B4ipTcJZHPd76z734HsGNcEuIyYQIvEx5EmY4DmXkTWAJqiby1nZ4vm00kg4EYjeSwzqqkWpgKH6LZcCPNKO01KbibZn7_H2oo2vo9EfElaEU9GaNSto5O0_N-Y4cx_AqrBEaOc0EkVcksMe_XrA_WohYN6_UDR_O-u1quN-nr5_zpG3hVe5nsoJoW6_DC5Ruwdg978C1MT9BYXCJRnazO6tYyBaOtWUbgkTcFG-esLDliOs8ayiuMr6niqmDFwtA-DptP2OX42jUkf25_V2yW3E_qQjEvNuE8_XJ2-C2o2y8ElvMuD7Sg3i9JnOkwMj2eGa-58xhOh876SHruul4IGRmh49DhTWcsp3NZE2rbcR3-DpbzSe62gCEnF7GOHfc26kovMyephZ6WtiO1MG3YvROEsjU2Of3cL1WhKocKh1DhELaBNYTTCo7jMcluKcnmuZ79pOy1pKcuBl_VWX900R_GqfqB77oTtUKdooMSnbvJolAYwsWSHJc27JSC_d-31MnhAV7eP41sG1aHR6nqfx8cf4CX1bEU5f1-hOX5bOE-wYq9mo-L2ed6Jv8Fip_7qQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control+problems+with+delays+in+state+and+control+variables+subject+to+mixed+control%E2%80%93state+constraints&rft.jtitle=Optimal+control+applications+%26+methods&rft.au=G%C3%B6llmann%2C+L.&rft.au=Kern%2C+D.&rft.au=Maurer%2C+H.&rft.date=2009-07-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0143-2087&rft.eissn=1099-1514&rft.volume=30&rft.issue=4&rft.spage=341&rft.epage=365&rft_id=info:doi/10.1002%2Foca.843&rft.externalDBID=10.1002%252Foca.843&rft.externalDocID=OCA843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-2087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-2087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-2087&client=summon