Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease
Background: Coronary heart disease (CHD) remains a prominent cause of mortality globally, necessitating early and accurate detection methods. Traditional diagnostic approaches can be invasive, costly, and time-consuming, necessitating the need for more efficient alternatives. This aimed to optimize...
Uloženo v:
| Vydáno v: | Informatics and Health Ročník 1; číslo 2; s. 70 - 81 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
KeAi Communications Co., Ltd
01.09.2024
|
| Témata: | |
| ISSN: | 2949-9534, 2949-9534 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Background: Coronary heart disease (CHD) remains a prominent cause of mortality globally, necessitating early and accurate detection methods. Traditional diagnostic approaches can be invasive, costly, and time-consuming, necessitating the need for more efficient alternatives. This aimed to optimize the Light Gradient-Boosting Machine (LightGBM) algorithm to enhance its performance and accuracy in the early detection of CHD, providing a reliable, cost-effective, and non-invasive diagnostic tool. Methods: The Framingham Heart Study (FHS) dataset publicly available on Kaggle was used in this study. Multiple Imputations by Chained Equations (MICE) were applied separately to the training and testing sets to handle missing data. Borderline-SMOTE (Synthetic Minority Over-sampling Technique) was used on the training set to balance the dataset. The LightGBM algorithm was selected for its efficiency in classification tasks, and Bayesian Optimization with Tree-structured Parzen Estimator (TPE) was employed to fine-tune its hyperparameters. The optimized LightGBM model was trained and evaluated using metrics such as accuracy, precision, and AUC-ROC on the test set, with cross-validation to ensure robustness and generalizability. Findings: The optimized LightGBM model showed significant improvement in early CHD detection. The baseline LightGBM model with dropped missing values had an accuracy of 0.8333, sensitivity of 0.1081, precision of 0.3429, F1 score of 0.1644, and AUC of 0.6875. With MICE imputation, performance improved to an accuracy of 0.9399, sensitivity of 0.6693, precision of 0.9043, F1 score of 0.7692, and AUC of 0.9457. The combined approach of Borderline-SMOTE, MICE imputation, and TPE for LightGBM achieved an accuracy of 0.9882, sensitivity of 0.9370, precision of 0.9835, F1 score of 0.9597, and AUC of 0.9963, indicating a highly effective and robust model. Interpretation: The optimized model demonstrated outstanding performance in early CHD detection. The study's strengths include its comprehensive approach to addressing missing data and class imbalance and the fine-tuning of hyperparameters through Bayesian Optimization. However, there is a need to test with other datasets for its generalizability to be well-established. This study provides a strong framework for early CHD detection, improving clinical practice by allowing for more precise and dependable diagnostics and effective interventions. |
|---|---|
| AbstractList | Background: Coronary heart disease (CHD) remains a prominent cause of mortality globally, necessitating early and accurate detection methods. Traditional diagnostic approaches can be invasive, costly, and time-consuming, necessitating the need for more efficient alternatives. This aimed to optimize the Light Gradient-Boosting Machine (LightGBM) algorithm to enhance its performance and accuracy in the early detection of CHD, providing a reliable, cost-effective, and non-invasive diagnostic tool. Methods: The Framingham Heart Study (FHS) dataset publicly available on Kaggle was used in this study. Multiple Imputations by Chained Equations (MICE) were applied separately to the training and testing sets to handle missing data. Borderline-SMOTE (Synthetic Minority Over-sampling Technique) was used on the training set to balance the dataset. The LightGBM algorithm was selected for its efficiency in classification tasks, and Bayesian Optimization with Tree-structured Parzen Estimator (TPE) was employed to fine-tune its hyperparameters. The optimized LightGBM model was trained and evaluated using metrics such as accuracy, precision, and AUC-ROC on the test set, with cross-validation to ensure robustness and generalizability. Findings: The optimized LightGBM model showed significant improvement in early CHD detection. The baseline LightGBM model with dropped missing values had an accuracy of 0.8333, sensitivity of 0.1081, precision of 0.3429, F1 score of 0.1644, and AUC of 0.6875. With MICE imputation, performance improved to an accuracy of 0.9399, sensitivity of 0.6693, precision of 0.9043, F1 score of 0.7692, and AUC of 0.9457. The combined approach of Borderline-SMOTE, MICE imputation, and TPE for LightGBM achieved an accuracy of 0.9882, sensitivity of 0.9370, precision of 0.9835, F1 score of 0.9597, and AUC of 0.9963, indicating a highly effective and robust model. Interpretation: The optimized model demonstrated outstanding performance in early CHD detection. The study's strengths include its comprehensive approach to addressing missing data and class imbalance and the fine-tuning of hyperparameters through Bayesian Optimization. However, there is a need to test with other datasets for its generalizability to be well-established. This study provides a strong framework for early CHD detection, improving clinical practice by allowing for more precise and dependable diagnostics and effective interventions. |
| Author | Omotehinwa, Temidayo Oluwatosin Moung, Ervin Gubin Oyewola, David Opeoluwa |
| Author_xml | – sequence: 1 givenname: Temidayo Oluwatosin surname: Omotehinwa fullname: Omotehinwa, Temidayo Oluwatosin – sequence: 2 givenname: David Opeoluwa surname: Oyewola fullname: Oyewola, David Opeoluwa – sequence: 3 givenname: Ervin Gubin surname: Moung fullname: Moung, Ervin Gubin |
| BookMark | eNp9kc1O3TAQha0KpFLgCbrxCySdiZPc62WF-JOQ2MDa8s848VWujWxv4OmbAKpQF13NaGbOp6M5P9hJTJEY-4nQIuD469CG6NPcdtD1LYwtAH5jZ53sZSMH0Z986b-zy1IOACBEhwDyjJXHlxqO4S3EideZ-BKmufIpaxco1sakVOq2O2o7h0hcL1PKoc5H7lPmOnLyPtjtlpPOyyt3VMnWkCJPntuUU9T5lc_rsnIXCulCF-zU66XQ5Wc9Z883109Xd83D4-391e-HxgqB2Dgn934wO4l21xP4_eAAB0Bw3poRhew8jlpr2RuDw2ANgUO9l8J3BjtH4pzdf3Bd0gf1ksNxtaKSDup9kPKkVlfBLqQcSPJkYOe978fBGW2tQwO9BbRi6FeW-GDZnErJ5P_yENQWgzqo9xjUFoOCUa0xrCr5j8qGqrfv1KzD8l_tH85-lSU |
| CitedBy_id | crossref_primary_10_59395_ijadis_v6i2_1405 crossref_primary_10_3390_diagnostics15080976 crossref_primary_10_1016_j_fuel_2025_136803 crossref_primary_10_1016_j_procs_2025_04_107 crossref_primary_10_1007_s10278_024_01343_z crossref_primary_10_1016_j_wasman_2025_02_034 crossref_primary_10_1002_cre2_70115 crossref_primary_10_1080_10255842_2025_2501634 crossref_primary_10_3390_diagnostics14232675 crossref_primary_10_1007_s13042_025_02719_5 crossref_primary_10_1007_s40030_025_00914_9 crossref_primary_10_1007_s40815_024_01888_9 crossref_primary_10_1038_s41598_025_00804_x crossref_primary_10_1109_TIM_2025_3588969 crossref_primary_10_1109_ACCESS_2024_3470537 crossref_primary_10_1016_j_comnet_2025_111577 crossref_primary_10_3389_fpubh_2025_1510456 |
| Cites_doi | 10.17762/turcomat.v12i6.5765 10.1063/5.0030579 10.3390/diagnostics13061081 10.1038/s41569-019-0202-5 10.3390/app13031971 10.31887/DCNS.2018.20.1/mdehert 10.1002/jcu.23433 10.3390/en15134751 10.1016/j.jacl.2008.02.006 10.1016/j.imu.2021.100655 10.1109/ACCESS.2023.3253885 10.1080/0951192X.2021.1972466 10.1109/ACCESS.2021.3068316 10.1088/1757-899X/1085/1/012028 10.1007/s10796-020-10031-6 10.3390/ijms23063346 10.1016/j.imu.2020.100402 10.3390/s22197227 10.1007/978-981-15-1097-7_76 10.1007/s12553-020-00509-3 10.21037/jtd-22-933 10.1002/mpr.329 10.3390/diagnostics12061466 10.1007/11538059_91 10.1016/0002-9149(76)90061-8 10.3390/app121910166 10.1007/s42600-022-00253-9 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1016/j.infoh.2024.06.001 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2949-9534 |
| EndPage | 81 |
| ExternalDocumentID | oai_doaj_org_article_d09efeb07fff465dbaccd1b04c01c354 10_1016_j_infoh_2024_06_001 |
| GroupedDBID | 0R~ AALRI AAXUO AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ CITATION FDB GROUPED_DOAJ M41 M~E ROL |
| ID | FETCH-LOGICAL-c3311-dd98f5b791c74e0f85d015010dfcb61392f16aaa94bb155cbe0d1a893f2b12de3 |
| IEDL.DBID | DOA |
| ISSN | 2949-9534 |
| IngestDate | Fri Oct 03 12:44:04 EDT 2025 Sat Nov 29 05:12:52 EST 2025 Tue Nov 18 21:12:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3311-dd98f5b791c74e0f85d015010dfcb61392f16aaa94bb155cbe0d1a893f2b12de3 |
| OpenAccessLink | https://doaj.org/article/d09efeb07fff465dbaccd1b04c01c354 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d09efeb07fff465dbaccd1b04c01c354 crossref_primary_10_1016_j_infoh_2024_06_001 crossref_citationtrail_10_1016_j_infoh_2024_06_001 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-00 2024-09-01 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Informatics and Health |
| PublicationYear | 2024 |
| Publisher | KeAi Communications Co., Ltd |
| Publisher_xml | – name: KeAi Communications Co., Ltd |
| References | Han (10.1016/j.infoh.2024.06.001_bib16) 2005; 3644 Oyewola (10.1016/j.infoh.2024.06.001_bib36) 2022; 12 Adel Mahmoud (10.1016/j.infoh.2024.06.001_bib1) 2021; 12 Omotehinwa (10.1016/j.infoh.2024.06.001_bib35) 2023; 4 Hasan (10.1016/j.infoh.2024.06.001_bib17) 2021; 4 De Hert (10.1016/j.infoh.2024.06.001_bib11) 2018; 20 Khan (10.1016/j.infoh.2024.06.001_bib23) 2020; 12 Gonsalves (10.1016/j.infoh.2024.06.001_bib15) 2019 Kuruvilla (10.1016/j.infoh.2024.06.001_bib25) 2021; 1085 Mienye (10.1016/j.infoh.2024.06.001_bib31) 2021; 10 Akiba (10.1016/j.infoh.2024.06.001_bib2) 2019 Bhutta (10.1016/j.infoh.2024.06.001_bib9) 2023 Azur (10.1016/j.infoh.2024.06.001_bib6) 2011; 20 Sun (10.1016/j.infoh.2024.06.001_bib41) 2022; 15 Latifah (10.1016/j.infoh.2024.06.001_bib26) 2020; 2296 Mienye (10.1016/j.infoh.2024.06.001_bib32) 2020; 20 Ambrews (10.1016/j.infoh.2024.06.001_bib4) 2022; 2022 Goguelin (10.1016/j.infoh.2024.06.001_bib14) 2021; 34 Nalluri (10.1016/j.infoh.2024.06.001_bib33) 2020; 1079 Saurabh Pal (10.1016/j.infoh.2024.06.001_bib38) 2021; 12 Andersson (10.1016/j.infoh.2024.06.001_bib5) 2019; 16 Xi (10.1016/j.infoh.2024.06.001_bib44) 2023 Masih (10.1016/j.infoh.2024.06.001_bib27) 2021; 11 Turner (10.1016/j.infoh.2024.06.001_bib42) 2021; 133 Smiti (10.1016/j.infoh.2024.06.001_bib40) 2020; 22 Devi (10.1016/j.infoh.2024.06.001_bib12) 2022 Bergstra (10.1016/j.infoh.2024.06.001_bib7) 2011; 24 10.1016/j.infoh.2024.06.001_bib43 McMahan (10.1016/j.infoh.2024.06.001_bib28) 2008; 2 Yancy (10.1016/j.infoh.2024.06.001_bib46) 2013; 62 Xu (10.1016/j.infoh.2024.06.001_bib45) 2023 Chen (10.1016/j.infoh.2024.06.001_bib10) 2021; 9 Jebari-Benslaiman (10.1016/j.infoh.2024.06.001_bib19) 2022; 23 Kigka (10.1016/j.infoh.2024.06.001_bib24) 2022; 12 Shorewala (10.1016/j.infoh.2024.06.001_bib39) 2021; 26 Miao (10.1016/j.infoh.2024.06.001_bib29) 2020 Hassan (10.1016/j.infoh.2024.06.001_bib18) 2022; 22 Ebiaredoh-Mienye (10.1016/j.infoh.2024.06.001_bib13) 2020; 9 10.1016/j.infoh.2024.06.001_bib30 Yang (10.1016/j.infoh.2024.06.001_bib47) 2023; 11 Albert (10.1016/j.infoh.2024.06.001_bib3) 2023; 39 Ke (10.1016/j.infoh.2024.06.001_bib22) 2017; 30 Kannel (10.1016/j.infoh.2024.06.001_bib21) 1976; 38 Beunza (10.1016/j.infoh.2024.06.001_bib8) 2019; Vol. 97 Yilmaz (10.1016/j.infoh.2024.06.001_bib49) 2021; 4 Özbilgin (10.1016/j.infoh.2024.06.001_bib37) 2023; 13 Omotehinwa (10.1016/j.infoh.2024.06.001_bib34) 2023; 13 10.1016/j.infoh.2024.06.001_bib20 Yi (10.1016/j.infoh.2024.06.001_bib48) 2022; 14 |
| References_xml | – volume: 62 issue: 16 year: 2013 ident: 10.1016/j.infoh.2024.06.001_bib46 article-title: 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology foundation/american heart association task force on practice guidelines publication-title: J Am Coll Cardiol – year: 2023 ident: 10.1016/j.infoh.2024.06.001_bib9 article-title: Lightweight real-time WiFi-based intrusion detection system using LightGBM publication-title: Wirel Netw – volume: 4 start-page: 26 issue: 2(112 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib17 article-title: Development of heart attack prediction model based on ensemble learning publication-title: East-Eur J Enterp Technol – volume: 12 start-page: 2650 issue: 6 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib38 article-title: Elimination and Backward Selection of Features (P-Value Technique) In Prediction of Heart Disease by Using Machine Learning Algorithms publication-title: Turk J Comput Math Educ (TURCOMAT) doi: 10.17762/turcomat.v12i6.5765 – volume: 2296 issue: 1 year: 2020 ident: 10.1016/j.infoh.2024.06.001_bib26 article-title: Comparison of heart disease classification with logistic regression algorithm and random forest algorithm publication-title: AIP Conf Proc doi: 10.1063/5.0030579 – volume: 13 start-page: 1081 issue: 6 year: 2023 ident: 10.1016/j.infoh.2024.06.001_bib37 article-title: Prediction of coronary artery disease using machine learning techniques with iris analysis publication-title: Diagnostics doi: 10.3390/diagnostics13061081 – volume: 16 start-page: 687 issue: 11 year: 2019 ident: 10.1016/j.infoh.2024.06.001_bib5 article-title: 70-year legacy of the Framingham Heart Study publication-title: Nat Rev Cardiol doi: 10.1038/s41569-019-0202-5 – volume: 9 start-page: 1 issue: 11 year: 2020 ident: 10.1016/j.infoh.2024.06.001_bib13 article-title: Integrating enhanced sparse autoencoder-based artificial neural network technique and softmax regression for medical diagnosis publication-title: Electron (Switz) – volume: 13 start-page: 1971 issue: 3 year: 2023 ident: 10.1016/j.infoh.2024.06.001_bib34 article-title: Hyperparameter Optimization of Ensemble Models for Spam Email Detection publication-title: Appl Sci (Switz) doi: 10.3390/app13031971 – ident: 10.1016/j.infoh.2024.06.001_bib30 – volume: 20 start-page: 31 issue: 1 year: 2018 ident: 10.1016/j.infoh.2024.06.001_bib11 article-title: The intriguing relationship between coronary heart disease and mental disorders publication-title: Dialog- Clin Neurosci doi: 10.31887/DCNS.2018.20.1/mdehert – year: 2023 ident: 10.1016/j.infoh.2024.06.001_bib45 article-title: Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease publication-title: J Clin Ultrasound doi: 10.1002/jcu.23433 – volume: 15 start-page: 4751 issue: 13 year: 2022 ident: 10.1016/j.infoh.2024.06.001_bib41 article-title: Borderline SMOTE Algorithm and Feature Selection‐Based Network Anomalies Detection Strategy publication-title: Energies doi: 10.3390/en15134751 – ident: 10.1016/j.infoh.2024.06.001_bib20 – volume: 12 issue: 7 year: 2020 ident: 10.1016/j.infoh.2024.06.001_bib23 article-title: Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study publication-title: Cureus – volume: 30 year: 2017 ident: 10.1016/j.infoh.2024.06.001_bib22 article-title: LightGBM: A Highly Efficient Gradient Boosting Decision Tree publication-title: Adv Neural Inf Process Syst – volume: 2 start-page: 118 issue: 3 year: 2008 ident: 10.1016/j.infoh.2024.06.001_bib28 article-title: Coronary heart disease risk factors and atherosclerosis in young people publication-title: J Clin Lipidol doi: 10.1016/j.jacl.2008.02.006 – start-page: 1029 year: 2022 ident: 10.1016/j.infoh.2024.06.001_bib12 article-title: Coronary artery disease prediction using machine learning techniques publication-title: 8th Int Conf Adv Comput Commun Syst, ICACCS 2022 – volume: 26 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib39 article-title: Early detection of coronary heart disease using ensemble techniques publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2021.100655 – volume: 11 start-page: 23366 year: 2023 ident: 10.1016/j.infoh.2024.06.001_bib47 article-title: Predicting coronary heart disease using an improved LightGBM model: Performance analysis and comparison publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3253885 – volume: 34 start-page: 1263 issue: 12 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib14 article-title: Bayesian optimisation of part orientation in additive manufacturing publication-title: Int J Comput Integr Manuf doi: 10.1080/0951192X.2021.1972466 – volume: 10 start-page: 2347 issue: 19 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib31 article-title: Improved Heart Disease Prediction Using Particle Swarm Optimization Based Stacked Sparse Autoencoder publication-title: Electronics 2021 – volume: Vol. 97 year: 2019 ident: 10.1016/j.infoh.2024.06.001_bib8 article-title: Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease) – volume: 9 start-page: 47491 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib10 article-title: Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3068316 – volume: 1085 issue: 1 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib25 article-title: Heart disease prediction system using Correlation Based Feature Selection with Multilayer Perceptron approach publication-title: IOP Conf Ser: Mater Sci Eng doi: 10.1088/1757-899X/1085/1/012028 – volume: 12 start-page: 4864 issue: 14 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib1 article-title: Heart disease prediction using machine learning and data mining techniques: application of framingham dataset publication-title: Turk J Comput Math Educ (TURCOMAT) – volume: 22 start-page: 1067 issue: 5 year: 2020 ident: 10.1016/j.infoh.2024.06.001_bib40 article-title: Bankruptcy prediction using deep learning approach based on borderline SMOTE publication-title: Inf Syst Front doi: 10.1007/s10796-020-10031-6 – start-page: 2623 year: 2019 ident: 10.1016/j.infoh.2024.06.001_bib2 article-title: Optuna: a next-generation hyperparameter optimization framework publication-title: Proc ACM SIGKDD Int Conf Knowl Discov Data Min – volume: 23 issue: 6 year: 2022 ident: 10.1016/j.infoh.2024.06.001_bib19 article-title: Pathophysiology of Atherosclerosis publication-title: Int J Mol Sci doi: 10.3390/ijms23063346 – volume: 4 year: 2023 ident: 10.1016/j.infoh.2024.06.001_bib35 article-title: A Light Gradient-Boosting Machine algorithm with Tree-Structured Parzen Estimator for breast cancer diagnosis publication-title: Healthc Anal – volume: 20 year: 2020 ident: 10.1016/j.infoh.2024.06.001_bib32 article-title: An improved ensemble learning approach for the prediction of heart disease risk publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100402 – start-page: 51 year: 2019 ident: 10.1016/j.infoh.2024.06.001_bib15 – volume: 22 start-page: 7227 issue: 19 year: 2022 ident: 10.1016/j.infoh.2024.06.001_bib18 article-title: Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers publication-title: Sensors doi: 10.3390/s22197227 – start-page: 1 year: 2020 ident: 10.1016/j.infoh.2024.06.001_bib29 article-title: Using Machine Learning to Predict the Future Development of Disease publication-title: 2020 Int Conf UK-China Emerg Technol, UCET 2020 – year: 2023 ident: 10.1016/j.infoh.2024.06.001_bib44 article-title: The role of LightGBM model in management efficiency enhancement of listed agricultural companies publication-title: Appl Math Nonlinear Sci – volume: 1079 start-page: 903 year: 2020 ident: 10.1016/j.infoh.2024.06.001_bib33 article-title: Chronic Heart Disease Prediction Using Data Mining Techniques publication-title: Adv Intell Syst Comput doi: 10.1007/978-981-15-1097-7_76 – volume: 4 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib49 article-title: Early detection of coronary heart disease based on machine learning methods publication-title: Med Rec – volume: 24 start-page: 2546 year: 2011 ident: 10.1016/j.infoh.2024.06.001_bib7 article-title: Algorithms for Hyper-Parameter Optimization publication-title: 24th Int Conf Neural Inf Process Syst – volume: 11 start-page: 127 issue: 1 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib27 article-title: Multilayer perceptron based deep neural network for early detection of coronary heart disease publication-title: Health Technol doi: 10.1007/s12553-020-00509-3 – volume: 133 start-page: 3 year: 2021 ident: 10.1016/j.infoh.2024.06.001_bib42 article-title: Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020. NeurIPS 2020 Competition and Demonstration Track publication-title: Proc Mach Learn Res – volume: 14 start-page: 3438 issue: 9 year: 2022 ident: 10.1016/j.infoh.2024.06.001_bib48 article-title: The association of coronary non-calcified plaque loading based on coronary computed tomography angiogram and adverse cardiovascular events in patients with unstable coronary heart disease-a retrospective cohort study publication-title: J Thorac Dis doi: 10.21037/jtd-22-933 – volume: 20 start-page: 40 issue: 1 year: 2011 ident: 10.1016/j.infoh.2024.06.001_bib6 article-title: Multiple imputation by chained equations: What is it and how does it work? publication-title: Int J Methods Psychiatr Res doi: 10.1002/mpr.329 – ident: 10.1016/j.infoh.2024.06.001_bib43 – volume: 12 issue: 6 year: 2022 ident: 10.1016/j.infoh.2024.06.001_bib24 article-title: Machine Learning Coronary Artery Disease Prediction Based on Imaging and Non-Imaging Data publication-title: Diagnostics doi: 10.3390/diagnostics12061466 – volume: 3644 start-page: 878 issue: PART I year: 2005 ident: 10.1016/j.infoh.2024.06.001_bib16 article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning publication-title: Lect Notes Comput Sci doi: 10.1007/11538059_91 – volume: 38 start-page: 46 issue: 1 year: 1976 ident: 10.1016/j.infoh.2024.06.001_bib21 article-title: A general cardiovascular risk profile: The Framingham study publication-title: Am J Cardiol doi: 10.1016/0002-9149(76)90061-8 – volume: 12 start-page: 10166 issue: 19 year: 2022 ident: 10.1016/j.infoh.2024.06.001_bib36 article-title: Application of deep learning techniques and bayesian optimization with tree parzen estimator in the classification of supply chain pricing datasets of health medications publication-title: Appl Sci (Switz) doi: 10.3390/app121910166 – volume: 2022 year: 2022 ident: 10.1016/j.infoh.2024.06.001_bib4 article-title: Ensemble Based Machine Learning Model for Heart Disease Prediction publication-title: Int Conf Commun, Inf, Electron Energy Syst, CIEES 2022 - Proc – volume: 39 start-page: 99 issue: 1 year: 2023 ident: 10.1016/j.infoh.2024.06.001_bib3 article-title: Diagnosis of heart disease using oversampling methods and decision tree classifier in cardiology publication-title: Res Biomed Eng doi: 10.1007/s42600-022-00253-9 |
| SSID | ssj0003321009 |
| Score | 2.420417 |
| Snippet | Background: Coronary heart disease (CHD) remains a prominent cause of mortality globally, necessitating early and accurate detection methods. Traditional... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 70 |
| SubjectTerms | Clinical decision making Coronary heart disease Light gradient-boosting machine Machine learning MICE Tree-structured Parzen estimator |
| Title | Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease |
| URI | https://doaj.org/article/d09efeb07fff465dbaccd1b04c01c354 |
| Volume | 1 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2949-9534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003321009 issn: 2949-9534 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2949-9534 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003321009 issn: 2949-9534 databaseCode: M~E dateStart: 20240101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIECUlzwwYvArdT0CasVCYQCpW-RnKWpT1AYkGPjt-JFWZYGFJUN0iazzJfdd7st3AJyFnOo1IR5RagTigimkmTTItRlRwmBNdB42Ifr9zmAgH1ZGfUVOWJYHzo67tFg67zQW3nveLqxWxliiMTeYGFYkJVAs5EoxFd_BLP6aguVCZigRuuKOxfYD5Re5A_EjFa0o9qfU0tsGWw0mhFd5LTtgzVW7YH4fHubJ6DOkFhhAGhzHKhoOZ4miVaMAjueRsQwniQ3poBoPp6HQf57AAEOhqqBL4hDBFrooYgytqxPtqoJTD00ULlCzDxgHWtewadPsgade9_HmFjUTEpBhjBBkrez4QgtJjOAO-05h4xcMgq03OiRqST1pK6Uk1zoAB6MdtkQFiOKpJtQ6tg_Wq2nlDgBkSgteWK8KpbjiVEvLKHPM-QA4Cq9bgC6cVZpGPjxOsRiXC57YS5k8XEYPl5kt1wLny4tes3rG7-bXcReWplH6Op0IAVE2AVH-FRCH_3GTI7AZ15XJZMdgvZ69uROwYd7r0Xx2mmItHO--ut-teeAT |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+light+gradient-boosting+machine+algorithm+for+an+efficient+early+detection+of+coronary+heart+disease&rft.jtitle=Informatics+and+Health&rft.au=Temidayo+Oluwatosin+Omotehinwa&rft.au=David+Opeoluwa+Oyewola&rft.au=Ervin+Gubin+Moung&rft.date=2024-09-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-9534&rft.volume=1&rft.issue=2&rft.spage=70&rft.epage=81&rft_id=info:doi/10.1016%2Fj.infoh.2024.06.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d09efeb07fff465dbaccd1b04c01c354 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9534&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9534&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9534&client=summon |