Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease

Background: Coronary heart disease (CHD) remains a prominent cause of mortality globally, necessitating early and accurate detection methods. Traditional diagnostic approaches can be invasive, costly, and time-consuming, necessitating the need for more efficient alternatives. This aimed to optimize...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Informatics and Health Ročník 1; číslo 2; s. 70 - 81
Hlavní autoři: Omotehinwa, Temidayo Oluwatosin, Oyewola, David Opeoluwa, Moung, Ervin Gubin
Médium: Journal Article
Jazyk:angličtina
Vydáno: KeAi Communications Co., Ltd 01.09.2024
Témata:
ISSN:2949-9534, 2949-9534
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Background: Coronary heart disease (CHD) remains a prominent cause of mortality globally, necessitating early and accurate detection methods. Traditional diagnostic approaches can be invasive, costly, and time-consuming, necessitating the need for more efficient alternatives. This aimed to optimize the Light Gradient-Boosting Machine (LightGBM) algorithm to enhance its performance and accuracy in the early detection of CHD, providing a reliable, cost-effective, and non-invasive diagnostic tool. Methods: The Framingham Heart Study (FHS) dataset publicly available on Kaggle was used in this study. Multiple Imputations by Chained Equations (MICE) were applied separately to the training and testing sets to handle missing data. Borderline-SMOTE (Synthetic Minority Over-sampling Technique) was used on the training set to balance the dataset. The LightGBM algorithm was selected for its efficiency in classification tasks, and Bayesian Optimization with Tree-structured Parzen Estimator (TPE) was employed to fine-tune its hyperparameters. The optimized LightGBM model was trained and evaluated using metrics such as accuracy, precision, and AUC-ROC on the test set, with cross-validation to ensure robustness and generalizability. Findings: The optimized LightGBM model showed significant improvement in early CHD detection. The baseline LightGBM model with dropped missing values had an accuracy of 0.8333, sensitivity of 0.1081, precision of 0.3429, F1 score of 0.1644, and AUC of 0.6875. With MICE imputation, performance improved to an accuracy of 0.9399, sensitivity of 0.6693, precision of 0.9043, F1 score of 0.7692, and AUC of 0.9457. The combined approach of Borderline-SMOTE, MICE imputation, and TPE for LightGBM achieved an accuracy of 0.9882, sensitivity of 0.9370, precision of 0.9835, F1 score of 0.9597, and AUC of 0.9963, indicating a highly effective and robust model. Interpretation: The optimized model demonstrated outstanding performance in early CHD detection. The study's strengths include its comprehensive approach to addressing missing data and class imbalance and the fine-tuning of hyperparameters through Bayesian Optimization. However, there is a need to test with other datasets for its generalizability to be well-established. This study provides a strong framework for early CHD detection, improving clinical practice by allowing for more precise and dependable diagnostics and effective interventions.
AbstractList Background: Coronary heart disease (CHD) remains a prominent cause of mortality globally, necessitating early and accurate detection methods. Traditional diagnostic approaches can be invasive, costly, and time-consuming, necessitating the need for more efficient alternatives. This aimed to optimize the Light Gradient-Boosting Machine (LightGBM) algorithm to enhance its performance and accuracy in the early detection of CHD, providing a reliable, cost-effective, and non-invasive diagnostic tool. Methods: The Framingham Heart Study (FHS) dataset publicly available on Kaggle was used in this study. Multiple Imputations by Chained Equations (MICE) were applied separately to the training and testing sets to handle missing data. Borderline-SMOTE (Synthetic Minority Over-sampling Technique) was used on the training set to balance the dataset. The LightGBM algorithm was selected for its efficiency in classification tasks, and Bayesian Optimization with Tree-structured Parzen Estimator (TPE) was employed to fine-tune its hyperparameters. The optimized LightGBM model was trained and evaluated using metrics such as accuracy, precision, and AUC-ROC on the test set, with cross-validation to ensure robustness and generalizability. Findings: The optimized LightGBM model showed significant improvement in early CHD detection. The baseline LightGBM model with dropped missing values had an accuracy of 0.8333, sensitivity of 0.1081, precision of 0.3429, F1 score of 0.1644, and AUC of 0.6875. With MICE imputation, performance improved to an accuracy of 0.9399, sensitivity of 0.6693, precision of 0.9043, F1 score of 0.7692, and AUC of 0.9457. The combined approach of Borderline-SMOTE, MICE imputation, and TPE for LightGBM achieved an accuracy of 0.9882, sensitivity of 0.9370, precision of 0.9835, F1 score of 0.9597, and AUC of 0.9963, indicating a highly effective and robust model. Interpretation: The optimized model demonstrated outstanding performance in early CHD detection. The study's strengths include its comprehensive approach to addressing missing data and class imbalance and the fine-tuning of hyperparameters through Bayesian Optimization. However, there is a need to test with other datasets for its generalizability to be well-established. This study provides a strong framework for early CHD detection, improving clinical practice by allowing for more precise and dependable diagnostics and effective interventions.
Author Omotehinwa, Temidayo Oluwatosin
Moung, Ervin Gubin
Oyewola, David Opeoluwa
Author_xml – sequence: 1
  givenname: Temidayo Oluwatosin
  surname: Omotehinwa
  fullname: Omotehinwa, Temidayo Oluwatosin
– sequence: 2
  givenname: David Opeoluwa
  surname: Oyewola
  fullname: Oyewola, David Opeoluwa
– sequence: 3
  givenname: Ervin Gubin
  surname: Moung
  fullname: Moung, Ervin Gubin
BookMark eNp9kc1O3TAQha0KpFLgCbrxCySdiZPc62WF-JOQ2MDa8s848VWujWxv4OmbAKpQF13NaGbOp6M5P9hJTJEY-4nQIuD469CG6NPcdtD1LYwtAH5jZ53sZSMH0Z986b-zy1IOACBEhwDyjJXHlxqO4S3EideZ-BKmufIpaxco1sakVOq2O2o7h0hcL1PKoc5H7lPmOnLyPtjtlpPOyyt3VMnWkCJPntuUU9T5lc_rsnIXCulCF-zU66XQ5Wc9Z883109Xd83D4-391e-HxgqB2Dgn934wO4l21xP4_eAAB0Bw3poRhew8jlpr2RuDw2ANgUO9l8J3BjtH4pzdf3Bd0gf1ksNxtaKSDup9kPKkVlfBLqQcSPJkYOe978fBGW2tQwO9BbRi6FeW-GDZnErJ5P_yENQWgzqo9xjUFoOCUa0xrCr5j8qGqrfv1KzD8l_tH85-lSU
CitedBy_id crossref_primary_10_59395_ijadis_v6i2_1405
crossref_primary_10_3390_diagnostics15080976
crossref_primary_10_1016_j_fuel_2025_136803
crossref_primary_10_1016_j_procs_2025_04_107
crossref_primary_10_1007_s10278_024_01343_z
crossref_primary_10_1016_j_wasman_2025_02_034
crossref_primary_10_1002_cre2_70115
crossref_primary_10_1080_10255842_2025_2501634
crossref_primary_10_3390_diagnostics14232675
crossref_primary_10_1007_s13042_025_02719_5
crossref_primary_10_1007_s40030_025_00914_9
crossref_primary_10_1007_s40815_024_01888_9
crossref_primary_10_1038_s41598_025_00804_x
crossref_primary_10_1109_TIM_2025_3588969
crossref_primary_10_1109_ACCESS_2024_3470537
crossref_primary_10_1016_j_comnet_2025_111577
crossref_primary_10_3389_fpubh_2025_1510456
Cites_doi 10.17762/turcomat.v12i6.5765
10.1063/5.0030579
10.3390/diagnostics13061081
10.1038/s41569-019-0202-5
10.3390/app13031971
10.31887/DCNS.2018.20.1/mdehert
10.1002/jcu.23433
10.3390/en15134751
10.1016/j.jacl.2008.02.006
10.1016/j.imu.2021.100655
10.1109/ACCESS.2023.3253885
10.1080/0951192X.2021.1972466
10.1109/ACCESS.2021.3068316
10.1088/1757-899X/1085/1/012028
10.1007/s10796-020-10031-6
10.3390/ijms23063346
10.1016/j.imu.2020.100402
10.3390/s22197227
10.1007/978-981-15-1097-7_76
10.1007/s12553-020-00509-3
10.21037/jtd-22-933
10.1002/mpr.329
10.3390/diagnostics12061466
10.1007/11538059_91
10.1016/0002-9149(76)90061-8
10.3390/app121910166
10.1007/s42600-022-00253-9
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1016/j.infoh.2024.06.001
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2949-9534
EndPage 81
ExternalDocumentID oai_doaj_org_article_d09efeb07fff465dbaccd1b04c01c354
10_1016_j_infoh_2024_06_001
GroupedDBID 0R~
AALRI
AAXUO
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
CITATION
FDB
GROUPED_DOAJ
M41
M~E
ROL
ID FETCH-LOGICAL-c3311-dd98f5b791c74e0f85d015010dfcb61392f16aaa94bb155cbe0d1a893f2b12de3
IEDL.DBID DOA
ISSN 2949-9534
IngestDate Fri Oct 03 12:44:04 EDT 2025
Sat Nov 29 05:12:52 EST 2025
Tue Nov 18 21:12:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3311-dd98f5b791c74e0f85d015010dfcb61392f16aaa94bb155cbe0d1a893f2b12de3
OpenAccessLink https://doaj.org/article/d09efeb07fff465dbaccd1b04c01c354
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_d09efeb07fff465dbaccd1b04c01c354
crossref_primary_10_1016_j_infoh_2024_06_001
crossref_citationtrail_10_1016_j_infoh_2024_06_001
PublicationCentury 2000
PublicationDate 2024-09-00
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-00
PublicationDecade 2020
PublicationTitle Informatics and Health
PublicationYear 2024
Publisher KeAi Communications Co., Ltd
Publisher_xml – name: KeAi Communications Co., Ltd
References Han (10.1016/j.infoh.2024.06.001_bib16) 2005; 3644
Oyewola (10.1016/j.infoh.2024.06.001_bib36) 2022; 12
Adel Mahmoud (10.1016/j.infoh.2024.06.001_bib1) 2021; 12
Omotehinwa (10.1016/j.infoh.2024.06.001_bib35) 2023; 4
Hasan (10.1016/j.infoh.2024.06.001_bib17) 2021; 4
De Hert (10.1016/j.infoh.2024.06.001_bib11) 2018; 20
Khan (10.1016/j.infoh.2024.06.001_bib23) 2020; 12
Gonsalves (10.1016/j.infoh.2024.06.001_bib15) 2019
Kuruvilla (10.1016/j.infoh.2024.06.001_bib25) 2021; 1085
Mienye (10.1016/j.infoh.2024.06.001_bib31) 2021; 10
Akiba (10.1016/j.infoh.2024.06.001_bib2) 2019
Bhutta (10.1016/j.infoh.2024.06.001_bib9) 2023
Azur (10.1016/j.infoh.2024.06.001_bib6) 2011; 20
Sun (10.1016/j.infoh.2024.06.001_bib41) 2022; 15
Latifah (10.1016/j.infoh.2024.06.001_bib26) 2020; 2296
Mienye (10.1016/j.infoh.2024.06.001_bib32) 2020; 20
Ambrews (10.1016/j.infoh.2024.06.001_bib4) 2022; 2022
Goguelin (10.1016/j.infoh.2024.06.001_bib14) 2021; 34
Nalluri (10.1016/j.infoh.2024.06.001_bib33) 2020; 1079
Saurabh Pal (10.1016/j.infoh.2024.06.001_bib38) 2021; 12
Andersson (10.1016/j.infoh.2024.06.001_bib5) 2019; 16
Xi (10.1016/j.infoh.2024.06.001_bib44) 2023
Masih (10.1016/j.infoh.2024.06.001_bib27) 2021; 11
Turner (10.1016/j.infoh.2024.06.001_bib42) 2021; 133
Smiti (10.1016/j.infoh.2024.06.001_bib40) 2020; 22
Devi (10.1016/j.infoh.2024.06.001_bib12) 2022
Bergstra (10.1016/j.infoh.2024.06.001_bib7) 2011; 24
10.1016/j.infoh.2024.06.001_bib43
McMahan (10.1016/j.infoh.2024.06.001_bib28) 2008; 2
Yancy (10.1016/j.infoh.2024.06.001_bib46) 2013; 62
Xu (10.1016/j.infoh.2024.06.001_bib45) 2023
Chen (10.1016/j.infoh.2024.06.001_bib10) 2021; 9
Jebari-Benslaiman (10.1016/j.infoh.2024.06.001_bib19) 2022; 23
Kigka (10.1016/j.infoh.2024.06.001_bib24) 2022; 12
Shorewala (10.1016/j.infoh.2024.06.001_bib39) 2021; 26
Miao (10.1016/j.infoh.2024.06.001_bib29) 2020
Hassan (10.1016/j.infoh.2024.06.001_bib18) 2022; 22
Ebiaredoh-Mienye (10.1016/j.infoh.2024.06.001_bib13) 2020; 9
10.1016/j.infoh.2024.06.001_bib30
Yang (10.1016/j.infoh.2024.06.001_bib47) 2023; 11
Albert (10.1016/j.infoh.2024.06.001_bib3) 2023; 39
Ke (10.1016/j.infoh.2024.06.001_bib22) 2017; 30
Kannel (10.1016/j.infoh.2024.06.001_bib21) 1976; 38
Beunza (10.1016/j.infoh.2024.06.001_bib8) 2019; Vol. 97
Yilmaz (10.1016/j.infoh.2024.06.001_bib49) 2021; 4
Özbilgin (10.1016/j.infoh.2024.06.001_bib37) 2023; 13
Omotehinwa (10.1016/j.infoh.2024.06.001_bib34) 2023; 13
10.1016/j.infoh.2024.06.001_bib20
Yi (10.1016/j.infoh.2024.06.001_bib48) 2022; 14
References_xml – volume: 62
  issue: 16
  year: 2013
  ident: 10.1016/j.infoh.2024.06.001_bib46
  article-title: 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology foundation/american heart association task force on practice guidelines
  publication-title: J Am Coll Cardiol
– year: 2023
  ident: 10.1016/j.infoh.2024.06.001_bib9
  article-title: Lightweight real-time WiFi-based intrusion detection system using LightGBM
  publication-title: Wirel Netw
– volume: 4
  start-page: 26
  issue: 2(112
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib17
  article-title: Development of heart attack prediction model based on ensemble learning
  publication-title: East-Eur J Enterp Technol
– volume: 12
  start-page: 2650
  issue: 6
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib38
  article-title: Elimination and Backward Selection of Features (P-Value Technique) In Prediction of Heart Disease by Using Machine Learning Algorithms
  publication-title: Turk J Comput Math Educ (TURCOMAT)
  doi: 10.17762/turcomat.v12i6.5765
– volume: 2296
  issue: 1
  year: 2020
  ident: 10.1016/j.infoh.2024.06.001_bib26
  article-title: Comparison of heart disease classification with logistic regression algorithm and random forest algorithm
  publication-title: AIP Conf Proc
  doi: 10.1063/5.0030579
– volume: 13
  start-page: 1081
  issue: 6
  year: 2023
  ident: 10.1016/j.infoh.2024.06.001_bib37
  article-title: Prediction of coronary artery disease using machine learning techniques with iris analysis
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13061081
– volume: 16
  start-page: 687
  issue: 11
  year: 2019
  ident: 10.1016/j.infoh.2024.06.001_bib5
  article-title: 70-year legacy of the Framingham Heart Study
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-019-0202-5
– volume: 9
  start-page: 1
  issue: 11
  year: 2020
  ident: 10.1016/j.infoh.2024.06.001_bib13
  article-title: Integrating enhanced sparse autoencoder-based artificial neural network technique and softmax regression for medical diagnosis
  publication-title: Electron (Switz)
– volume: 13
  start-page: 1971
  issue: 3
  year: 2023
  ident: 10.1016/j.infoh.2024.06.001_bib34
  article-title: Hyperparameter Optimization of Ensemble Models for Spam Email Detection
  publication-title: Appl Sci (Switz)
  doi: 10.3390/app13031971
– ident: 10.1016/j.infoh.2024.06.001_bib30
– volume: 20
  start-page: 31
  issue: 1
  year: 2018
  ident: 10.1016/j.infoh.2024.06.001_bib11
  article-title: The intriguing relationship between coronary heart disease and mental disorders
  publication-title: Dialog- Clin Neurosci
  doi: 10.31887/DCNS.2018.20.1/mdehert
– year: 2023
  ident: 10.1016/j.infoh.2024.06.001_bib45
  article-title: Diagnostic value of peripheral blood miR-296 combined with vascular endothelial growth factor B on the degree of coronary artery stenosis in patients with coronary heart disease
  publication-title: J Clin Ultrasound
  doi: 10.1002/jcu.23433
– volume: 15
  start-page: 4751
  issue: 13
  year: 2022
  ident: 10.1016/j.infoh.2024.06.001_bib41
  article-title: Borderline SMOTE Algorithm and Feature Selection‐Based Network Anomalies Detection Strategy
  publication-title: Energies
  doi: 10.3390/en15134751
– ident: 10.1016/j.infoh.2024.06.001_bib20
– volume: 12
  issue: 7
  year: 2020
  ident: 10.1016/j.infoh.2024.06.001_bib23
  article-title: Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study
  publication-title: Cureus
– volume: 30
  year: 2017
  ident: 10.1016/j.infoh.2024.06.001_bib22
  article-title: LightGBM: A Highly Efficient Gradient Boosting Decision Tree
  publication-title: Adv Neural Inf Process Syst
– volume: 2
  start-page: 118
  issue: 3
  year: 2008
  ident: 10.1016/j.infoh.2024.06.001_bib28
  article-title: Coronary heart disease risk factors and atherosclerosis in young people
  publication-title: J Clin Lipidol
  doi: 10.1016/j.jacl.2008.02.006
– start-page: 1029
  year: 2022
  ident: 10.1016/j.infoh.2024.06.001_bib12
  article-title: Coronary artery disease prediction using machine learning techniques
  publication-title: 8th Int Conf Adv Comput Commun Syst, ICACCS 2022
– volume: 26
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib39
  article-title: Early detection of coronary heart disease using ensemble techniques
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2021.100655
– volume: 11
  start-page: 23366
  year: 2023
  ident: 10.1016/j.infoh.2024.06.001_bib47
  article-title: Predicting coronary heart disease using an improved LightGBM model: Performance analysis and comparison
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3253885
– volume: 34
  start-page: 1263
  issue: 12
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib14
  article-title: Bayesian optimisation of part orientation in additive manufacturing
  publication-title: Int J Comput Integr Manuf
  doi: 10.1080/0951192X.2021.1972466
– volume: 10
  start-page: 2347
  issue: 19
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib31
  article-title: Improved Heart Disease Prediction Using Particle Swarm Optimization Based Stacked Sparse Autoencoder
  publication-title: Electronics 2021
– volume: Vol. 97
  year: 2019
  ident: 10.1016/j.infoh.2024.06.001_bib8
  article-title: Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease)
– volume: 9
  start-page: 47491
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib10
  article-title: Effects of Data Augmentation Method Borderline-SMOTE on Emotion Recognition of EEG Signals Based on Convolutional Neural Network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3068316
– volume: 1085
  issue: 1
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib25
  article-title: Heart disease prediction system using Correlation Based Feature Selection with Multilayer Perceptron approach
  publication-title: IOP Conf Ser: Mater Sci Eng
  doi: 10.1088/1757-899X/1085/1/012028
– volume: 12
  start-page: 4864
  issue: 14
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib1
  article-title: Heart disease prediction using machine learning and data mining techniques: application of framingham dataset
  publication-title: Turk J Comput Math Educ (TURCOMAT)
– volume: 22
  start-page: 1067
  issue: 5
  year: 2020
  ident: 10.1016/j.infoh.2024.06.001_bib40
  article-title: Bankruptcy prediction using deep learning approach based on borderline SMOTE
  publication-title: Inf Syst Front
  doi: 10.1007/s10796-020-10031-6
– start-page: 2623
  year: 2019
  ident: 10.1016/j.infoh.2024.06.001_bib2
  article-title: Optuna: a next-generation hyperparameter optimization framework
  publication-title: Proc ACM SIGKDD Int Conf Knowl Discov Data Min
– volume: 23
  issue: 6
  year: 2022
  ident: 10.1016/j.infoh.2024.06.001_bib19
  article-title: Pathophysiology of Atherosclerosis
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms23063346
– volume: 4
  year: 2023
  ident: 10.1016/j.infoh.2024.06.001_bib35
  article-title: A Light Gradient-Boosting Machine algorithm with Tree-Structured Parzen Estimator for breast cancer diagnosis
  publication-title: Healthc Anal
– volume: 20
  year: 2020
  ident: 10.1016/j.infoh.2024.06.001_bib32
  article-title: An improved ensemble learning approach for the prediction of heart disease risk
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100402
– start-page: 51
  year: 2019
  ident: 10.1016/j.infoh.2024.06.001_bib15
– volume: 22
  start-page: 7227
  issue: 19
  year: 2022
  ident: 10.1016/j.infoh.2024.06.001_bib18
  article-title: Effectively Predicting the Presence of Coronary Heart Disease Using Machine Learning Classifiers
  publication-title: Sensors
  doi: 10.3390/s22197227
– start-page: 1
  year: 2020
  ident: 10.1016/j.infoh.2024.06.001_bib29
  article-title: Using Machine Learning to Predict the Future Development of Disease
  publication-title: 2020 Int Conf UK-China Emerg Technol, UCET 2020
– year: 2023
  ident: 10.1016/j.infoh.2024.06.001_bib44
  article-title: The role of LightGBM model in management efficiency enhancement of listed agricultural companies
  publication-title: Appl Math Nonlinear Sci
– volume: 1079
  start-page: 903
  year: 2020
  ident: 10.1016/j.infoh.2024.06.001_bib33
  article-title: Chronic Heart Disease Prediction Using Data Mining Techniques
  publication-title: Adv Intell Syst Comput
  doi: 10.1007/978-981-15-1097-7_76
– volume: 4
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib49
  article-title: Early detection of coronary heart disease based on machine learning methods
  publication-title: Med Rec
– volume: 24
  start-page: 2546
  year: 2011
  ident: 10.1016/j.infoh.2024.06.001_bib7
  article-title: Algorithms for Hyper-Parameter Optimization
  publication-title: 24th Int Conf Neural Inf Process Syst
– volume: 11
  start-page: 127
  issue: 1
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib27
  article-title: Multilayer perceptron based deep neural network for early detection of coronary heart disease
  publication-title: Health Technol
  doi: 10.1007/s12553-020-00509-3
– volume: 133
  start-page: 3
  year: 2021
  ident: 10.1016/j.infoh.2024.06.001_bib42
  article-title: Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020. NeurIPS 2020 Competition and Demonstration Track
  publication-title: Proc Mach Learn Res
– volume: 14
  start-page: 3438
  issue: 9
  year: 2022
  ident: 10.1016/j.infoh.2024.06.001_bib48
  article-title: The association of coronary non-calcified plaque loading based on coronary computed tomography angiogram and adverse cardiovascular events in patients with unstable coronary heart disease-a retrospective cohort study
  publication-title: J Thorac Dis
  doi: 10.21037/jtd-22-933
– volume: 20
  start-page: 40
  issue: 1
  year: 2011
  ident: 10.1016/j.infoh.2024.06.001_bib6
  article-title: Multiple imputation by chained equations: What is it and how does it work?
  publication-title: Int J Methods Psychiatr Res
  doi: 10.1002/mpr.329
– ident: 10.1016/j.infoh.2024.06.001_bib43
– volume: 12
  issue: 6
  year: 2022
  ident: 10.1016/j.infoh.2024.06.001_bib24
  article-title: Machine Learning Coronary Artery Disease Prediction Based on Imaging and Non-Imaging Data
  publication-title: Diagnostics
  doi: 10.3390/diagnostics12061466
– volume: 3644
  start-page: 878
  issue: PART I
  year: 2005
  ident: 10.1016/j.infoh.2024.06.001_bib16
  article-title: Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/11538059_91
– volume: 38
  start-page: 46
  issue: 1
  year: 1976
  ident: 10.1016/j.infoh.2024.06.001_bib21
  article-title: A general cardiovascular risk profile: The Framingham study
  publication-title: Am J Cardiol
  doi: 10.1016/0002-9149(76)90061-8
– volume: 12
  start-page: 10166
  issue: 19
  year: 2022
  ident: 10.1016/j.infoh.2024.06.001_bib36
  article-title: Application of deep learning techniques and bayesian optimization with tree parzen estimator in the classification of supply chain pricing datasets of health medications
  publication-title: Appl Sci (Switz)
  doi: 10.3390/app121910166
– volume: 2022
  year: 2022
  ident: 10.1016/j.infoh.2024.06.001_bib4
  article-title: Ensemble Based Machine Learning Model for Heart Disease Prediction
  publication-title: Int Conf Commun, Inf, Electron Energy Syst, CIEES 2022 - Proc
– volume: 39
  start-page: 99
  issue: 1
  year: 2023
  ident: 10.1016/j.infoh.2024.06.001_bib3
  article-title: Diagnosis of heart disease using oversampling methods and decision tree classifier in cardiology
  publication-title: Res Biomed Eng
  doi: 10.1007/s42600-022-00253-9
SSID ssj0003321009
Score 2.420417
Snippet Background: Coronary heart disease (CHD) remains a prominent cause of mortality globally, necessitating early and accurate detection methods. Traditional...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 70
SubjectTerms Clinical decision making
Coronary heart disease
Light gradient-boosting machine
Machine learning
MICE
Tree-structured Parzen estimator
Title Optimizing the light gradient-boosting machine algorithm for an efficient early detection of coronary heart disease
URI https://doaj.org/article/d09efeb07fff465dbaccd1b04c01c354
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2949-9534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003321009
  issn: 2949-9534
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2949-9534
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003321009
  issn: 2949-9534
  databaseCode: M~E
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQYmBBIECUlzwwYvArdT0CasVCYQCpW-RnKWpT1AYkGPjt-JFWZYGFJUN0iazzJfdd7st3AJyFnOo1IR5RagTigimkmTTItRlRwmBNdB42Ifr9zmAgH1ZGfUVOWJYHzo67tFg67zQW3nveLqxWxliiMTeYGFYkJVAs5EoxFd_BLP6aguVCZigRuuKOxfYD5Re5A_EjFa0o9qfU0tsGWw0mhFd5LTtgzVW7YH4fHubJ6DOkFhhAGhzHKhoOZ4miVaMAjueRsQwniQ3poBoPp6HQf57AAEOhqqBL4hDBFrooYgytqxPtqoJTD00ULlCzDxgHWtewadPsgade9_HmFjUTEpBhjBBkrez4QgtJjOAO-05h4xcMgq03OiRqST1pK6Uk1zoAB6MdtkQFiOKpJtQ6tg_Wq2nlDgBkSgteWK8KpbjiVEvLKHPM-QA4Cq9bgC6cVZpGPjxOsRiXC57YS5k8XEYPl5kt1wLny4tes3rG7-bXcReWplH6Op0IAVE2AVH-FRCH_3GTI7AZ15XJZMdgvZ69uROwYd7r0Xx2mmItHO--ut-teeAT
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+light+gradient-boosting+machine+algorithm+for+an+efficient+early+detection+of+coronary+heart+disease&rft.jtitle=Informatics+and+Health&rft.au=Temidayo+Oluwatosin+Omotehinwa&rft.au=David+Opeoluwa+Oyewola&rft.au=Ervin+Gubin+Moung&rft.date=2024-09-01&rft.pub=KeAi+Communications+Co.%2C+Ltd&rft.eissn=2949-9534&rft.volume=1&rft.issue=2&rft.spage=70&rft.epage=81&rft_id=info:doi/10.1016%2Fj.infoh.2024.06.001&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d09efeb07fff465dbaccd1b04c01c354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2949-9534&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2949-9534&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2949-9534&client=summon