Establishment of CNN and Encoder–Decoder Models for the Prediction of Characteristics of Flow and Heat Transfer around NACA Sections

The present study established two different models based on the convolutional neural network (CNN) and the encoder–decoder (ED) to predict the characteristics of the flow and heat transfer around the NACA sections. The established CNN predicts the aerodynamic coefficients and the Nusselt number. The...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Energies (Basel) Ročník 15; číslo 23; s. 9204
Hlavní autori: Seo, Janghoon, Yoon, Hyun-Sik, Kim, Min-Il
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.12.2022
Predmet:
ISSN:1996-1073, 1996-1073
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The present study established two different models based on the convolutional neural network (CNN) and the encoder–decoder (ED) to predict the characteristics of the flow and heat transfer around the NACA sections. The established CNN predicts the aerodynamic coefficients and the Nusselt number. The established ED model predicts the velocity, pressure and thermal fields to explain the performances of the aerodynamics and heat transfer. These two models were trained and tested by the dataset extracted from the computational fluid dynamics (CFD) simulations. The predictions mostly matched well with the true data. The contours of the velocity components and the pressure coefficients reasonably explained the variation of the aerodynamic coefficients according to the geometric parameter of the NACA section. In order to physically interpret the heat transfer performance, more quantitative and qualitative information are needed owing to the lack of the correlation and the resolution of the thermal fields. Consequently, the present approaches will be useful to design the NACA section-based shape giving higher aerodynamic and heat transfer performances by quickly predicting the force and heat transfer coefficients. In addition, the predicted flow and thermal fields will provide the physical interpretation of the aerodynamic and heat transfer performances.
AbstractList The present study established two different models based on the convolutional neural network (CNN) and the encoder–decoder (ED) to predict the characteristics of the flow and heat transfer around the NACA sections. The established CNN predicts the aerodynamic coefficients and the Nusselt number. The established ED model predicts the velocity, pressure and thermal fields to explain the performances of the aerodynamics and heat transfer. These two models were trained and tested by the dataset extracted from the computational fluid dynamics (CFD) simulations. The predictions mostly matched well with the true data. The contours of the velocity components and the pressure coefficients reasonably explained the variation of the aerodynamic coefficients according to the geometric parameter of the NACA section. In order to physically interpret the heat transfer performance, more quantitative and qualitative information are needed owing to the lack of the correlation and the resolution of the thermal fields. Consequently, the present approaches will be useful to design the NACA section-based shape giving higher aerodynamic and heat transfer performances by quickly predicting the force and heat transfer coefficients. In addition, the predicted flow and thermal fields will provide the physical interpretation of the aerodynamic and heat transfer performances.
Audience Academic
Author Kim, Min-Il
Seo, Janghoon
Yoon, Hyun-Sik
Author_xml – sequence: 1
  givenname: Janghoon
  surname: Seo
  fullname: Seo, Janghoon
– sequence: 2
  givenname: Hyun-Sik
  surname: Yoon
  fullname: Yoon, Hyun-Sik
– sequence: 3
  givenname: Min-Il
  surname: Kim
  fullname: Kim, Min-Il
BookMark eNptkd1qVDEQxw_SgrX2xicIeCdszcf5yuWybm2hroW212FOMulmOZvUJIt451VfoG_ok5g9qyhiApnhz_x_TGZeVUc-eKyqN4yeCyHpe_Ss4UJyWr-oTpiU7YzRThz9lb-szlLa0HKEYEKIk-ppmTIMo0vrLfpMgiWL1YqAN2TpdTAYf3x__oBTRj6Vd0zEhkjyGslNRON0dsFPtjVE0BmjS9nptJcuxvB1Ql0iZHIXwSdbMBDDroir-WJObnECpNfVsYUx4dmveFrdXyzvFpez688frxbz65kWguaZRWuGQTMEqSVqVuvOdtCZTkDTWt4KUw896zXjBkwvgTHLQXJLWU35wLU4ra4OXBNgox6j20L8pgI4NQkhPiiIpf8RFZV9j61pOdO85n1TqKYFCRQECK73rLcH1mMMX3aYstqEXfSlfcW7um8Eb7umVJ0fqh6gQJ23IZc5lWtw63RZoHVFn3d109JiqIuBHgw6hpQiWqVdhv2UitGNilG137b6s-1iefeP5ffP_lP8E732rNI
CitedBy_id crossref_primary_10_1063_5_0187783
crossref_primary_10_1016_j_oceaneng_2024_119116
crossref_primary_10_3390_app14114611
crossref_primary_10_1016_j_icheatmasstransfer_2025_109455
crossref_primary_10_1016_j_ast_2024_109605
Cites_doi 10.1063/5.0075784
10.1002/(SICI)1097-0363(19981215)28:9<1281::AID-FLD759>3.0.CO;2-#
10.2514/6.2017-3660
10.1007/s00521-020-05461-x
10.1007/s10973-020-09875-6
10.1007/s00466-019-01740-0
10.1038/323533a0
10.2514/1.C034415
10.1016/j.ijthermalsci.2016.12.016
10.1115/1.483224
10.2514/1.C033621
10.1016/j.ijheatmasstransfer.2021.121333
10.1016/j.applthermaleng.2016.11.187
10.1063/1.5086884
10.1016/j.ijmecsci.2021.106701
10.1016/j.tsep.2021.101011
10.1016/j.applthermaleng.2021.117908
10.1260/1756-8293.7.3.301
10.1016/0017-9310(72)90054-3
10.1038/nature14539
10.1038/s41598-022-12157-w
10.2514/6.2018-1903
10.3390/sym12040544
10.2514/1.J057894
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/en15239204
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_0988e6d621c242858c1d6a9a0a3a32cc
A745602674
10_3390_en15239204
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c330t-fefdbbc1ea9c9ec14c7f7a7d73a56f263d4b818c12dad89a11f2a92f01402b2c3
IEDL.DBID PIMPY
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000896099800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Fri Oct 03 12:51:15 EDT 2025
Mon Jun 30 11:15:35 EDT 2025
Tue Nov 04 18:16:17 EST 2025
Sat Nov 29 07:14:23 EST 2025
Tue Nov 18 22:38:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-fefdbbc1ea9c9ec14c7f7a7d73a56f263d4b818c12dad89a11f2a92f01402b2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/publiccontent/docview/2748532675?pq-origsite=%requestingapplication%
PQID 2748532675
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_0988e6d621c242858c1d6a9a0a3a32cc
proquest_journals_2748532675
gale_infotracacademiconefile_A745602674
crossref_citationtrail_10_3390_en15239204
crossref_primary_10_3390_en15239204
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Du (ref_20) 2022; 34
ref_11
ref_10
Edalatifar (ref_18) 2021; 146
Patankar (ref_21) 1972; 15
ref_15
Kim (ref_19) 2022; 202
Meng (ref_5) 2019; 31
Winslow (ref_4) 2018; 55
Ho (ref_8) 2017; 114
LeCun (ref_28) 2015; 521
Shrestha (ref_1) 2016; 53
Seo (ref_17) 2021; 209
Chu (ref_9) 2017; 114
Sekar (ref_12) 2019; 57
Breuer (ref_23) 1998; 28
Kurtulus (ref_25) 2015; 7
Zulueta (ref_16) 2022; 12
ref_22
Cheriet (ref_6) 2021; 25
Duru (ref_14) 2021; 33
ref_3
Zhang (ref_7) 2021; 175
Sohankar (ref_24) 2000; 122
ref_2
ref_29
Bhatnagar (ref_13) 2019; 64
ref_27
ref_26
Rumelhart (ref_30) 1986; 323
References_xml – volume: 34
  start-page: 015111
  year: 2022
  ident: ref_20
  article-title: Airfoil design and surrogate modeling for performance prediction based on deep learning method
  publication-title: Phys. Fluids
  doi: 10.1063/5.0075784
– ident: ref_3
– volume: 28
  start-page: 1281
  year: 1998
  ident: ref_23
  article-title: Large eddy simulation of the subcritical flow past a circular cylinder: Numerical and modeling aspects
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/(SICI)1097-0363(19981215)28:9<1281::AID-FLD759>3.0.CO;2-#
– ident: ref_26
– ident: ref_10
  doi: 10.2514/6.2017-3660
– volume: 33
  start-page: 6835
  year: 2021
  ident: ref_14
  article-title: CNNFOIL: Convolutional encoder decoder modeling for pressure fields around airfoils
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05461-x
– volume: 146
  start-page: 1435
  year: 2021
  ident: ref_18
  article-title: Using deep learning to learn physics of conduction heat transfer
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09875-6
– volume: 64
  start-page: 525
  year: 2019
  ident: ref_13
  article-title: Prediction of aerodynamic flow fields using convolutional neural networks
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-019-01740-0
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_30
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 55
  start-page: 1050
  year: 2018
  ident: ref_4
  article-title: Basic Understanding of Airfoil Characteristics at Low Reynolds Numbers (104–105)
  publication-title: J. Aircr.
  doi: 10.2514/1.C034415
– volume: 114
  start-page: 213
  year: 2017
  ident: ref_8
  article-title: Convective heat transfer performance of airfoil heat sinks fabricated by selective laser melting
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2016.12.016
– volume: 122
  start-page: 39
  year: 2000
  ident: ref_24
  article-title: Large eddy simulation of flow past a square cylinder: Comparison of different subgrid scale models
  publication-title: J. Fluids Eng. Trans.
  doi: 10.1115/1.483224
– volume: 53
  start-page: 1160
  year: 2016
  ident: ref_1
  article-title: Hover Performance of a Small-Scale Helicopter Rotor for Flying on Mars
  publication-title: J. Aircr.
  doi: 10.2514/1.C033621
– volume: 175
  start-page: 121333
  year: 2021
  ident: ref_7
  article-title: Experimental and numerical investigations of thermal-hydraulic characteristics in a novel airfoil fin heat exchanger
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2021.121333
– volume: 114
  start-page: 1309
  year: 2017
  ident: ref_9
  article-title: Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.187
– volume: 31
  start-page: 037103
  year: 2019
  ident: ref_5
  article-title: Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing
  publication-title: Phys. Fluids
  doi: 10.1063/1.5086884
– volume: 209
  start-page: 106701
  year: 2021
  ident: ref_17
  article-title: Prediction of heat transfer distribution induced by the variation in vertical location of circular cylinder on Rayleigh-Bénard convection using artificial neural network
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2021.106701
– volume: 25
  start-page: 101011
  year: 2021
  ident: ref_6
  article-title: Conjugate heat transfer enhancement over heated blocks using airfoil deflectors
  publication-title: Therm. Sci. Eng. Prog.
  doi: 10.1016/j.tsep.2021.101011
– volume: 202
  start-page: 117908
  year: 2022
  ident: ref_19
  article-title: Thermal simulation trained deep neural networks for fast and accurate prediction of thermal distribution and heat losses of building structures
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117908
– volume: 7
  start-page: 301
  year: 2015
  ident: ref_25
  article-title: On the unsteady behaviour of the flow around NACA 0012 airfoil with steady external conditions at Re = 1000
  publication-title: Int. J. Micro Air Veh.
  doi: 10.1260/1756-8293.7.3.301
– ident: ref_29
– ident: ref_27
– ident: ref_2
– volume: 15
  start-page: 1787
  year: 1972
  ident: ref_21
  article-title: A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/0017-9310(72)90054-3
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_28
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 12
  start-page: 8205
  year: 2022
  ident: ref_16
  article-title: CNN-based flow control device modelling on aerodynamic airfoils
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-12157-w
– ident: ref_11
  doi: 10.2514/6.2018-1903
– ident: ref_15
  doi: 10.3390/sym12040544
– volume: 57
  start-page: 933
  year: 2019
  ident: ref_12
  article-title: Inverse Design of Airfoil Using a Deep Convolutional Neural Network
  publication-title: AIAA J.
  doi: 10.2514/1.J057894
– ident: ref_22
SSID ssj0000331333
Score 2.3573987
Snippet The present study established two different models based on the convolutional neural network (CNN) and the encoder–decoder (ED) to predict the characteristics...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9204
SubjectTerms Aerodynamics
Analysis
Boundary conditions
computational fluid dynamics
convolutional neural network
Datasets
Deep learning
Design optimization
encoder–decoder
Heat transfer
NACA section
Neural networks
Reynolds number
Simulation methods
Velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl5NAeQtIH2eaBoIXQg4ktrS3rmMcuORQTaAK5CWkkQWDxBu82ufbUP9B_2F-SGdmbbiCll96MPJYlzWgeenzD2GcZoKqj95l1JWTj0sfMjUXIZLAaSufRgiV0_a-qaeqbG325luqLzoT18MD9wB3nuq5D5StRAFqTuqyh8JXVNrfSSgFA2jdXei2YSjpYSgy-ZI9HKjGuPw4tWip0BoaMbCsLlID6_6aOk42ZbrOtwTnkJ32jdtir0L5lb9YgA9-xnxN059LKES3r8XnkZ03Dbev5pKXr6d3vH7_OQ3rilOdstuDolnJ08_hlR5syxIj02XOkZiqazuYPqaoLVNA8WbGI1diOUi_xBrnGv6WTW-3iPbueTq7OLrIhl0IGUubLLIbonYOCWKADFGNQUVnllbRlFUUl_dih7YZCeOtrbYsiCqtFpABMOAHyA9to523YZRxySZurgPSE5ydrp5zKNTic_ViLGrEvq_E1MACNU76LmcGAg3hh_vBixD490d718BovUp0Sm54oCBI7FaCgmEFQzL8EZcSOiMmGJi42B-xw_wA7RRBY5kShL0n5uPB3-ys5MMOMXhiM3tGzwdflx__Rmj32WtBFinQwZp9tLLvv4YBtwv3ydtEdJmF-BPqf-p4
  priority: 102
  providerName: Directory of Open Access Journals
Title Establishment of CNN and Encoder–Decoder Models for the Prediction of Characteristics of Flow and Heat Transfer around NACA Sections
URI https://www.proquest.com/docview/2748532675
https://doaj.org/article/0988e6d621c242858c1d6a9a0a3a32cc
Volume 15
WOSCitedRecordID wos000896099800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELag5cAeeCMKS2UJJMQhamI3rxPaXVItEhtFPKTlFNljGyFV6W5S4IY48Qf4h_wSZly3CxJw4hJFieM4msnMN2P7G8YeSwtZ4YyJlE4hmqfGRXoubCStKiHVBj2YZ9d_mdd1cXpaNmF79BCWVW5tojfUG7ZnWreNRnhmVkAZ8xnGUuhnBKLdZ2fnEdWQornWUFDjMhsT8VY8YuPmxUnzbpdziaXEkExuWEolRvsz26H_QogQ6rRt_ZKn7_-bkfaeZ3H9_475BrsWECg_2KjMTXbJdrfY3i-8hLfZtwoxo09PUe6Qrxw_qmuuOsOrjvbA9z--fn9u_RmnYmrLgSP25YgledPTzA9J2z_2Ox00XVosV599V8foBbh3lQ67UT3Vd-I1qgZ_7ZeHdcMd9nZRvTk6jkLBhgikjNeRs85oDQnJubSQzCF3ucpNLlWaOZFJM9cIECARRpmiVEnihCqFoyhPaAHyLht1q87eYxxiSTO4gO2JNFAWOtd5XIJGE4O95BP2dCuuFgKbORXVWLYY1ZBo2wvRTtijXduzDYfHH1sdktR3LYh3219Y9e_b8Bu3cVkUNjOZSACxTZHit5hMlSpWUkkBMGFPSGdasg44HFBhkwN-FPFstQc5AlYq-oWv29_qTBvMxtBeqMj9f99-wK4K2ofh19Xss9G6_2gfsivwaf1h6KdsfFjVzaupTzDg8eRLNQ3_wk9FtxnW
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VFAlY8EYECowECLGwas_4uUCotIkSNbUiUaSyms4TIUV2sQMVO1b8AP_BR_El3DuxU5CAXRfsImcyfuT4nnvncQ4hT7jVae6MCaRKdBAnxgUqZjbgVhY6UQYYzKvrz7KyzI-OivkG-d7vhcFllX1M9IHa1BrHyLehegJmYZDfvjz5EKBrFM6u9hYaK1js28-nULK1L6Z78P8-ZWw8OtydBJ2rQKChdl8GzjqjlI7wYgqro1hnLpOZybhMUsdSbmIFLKYjZqTJCxlFjsmCOSxFmGKaQ78XyGYMYA8HZHM-PZi_XY_qhJxD0cdXOqicF-G2rYAhIQnpnOB65vMGAX-jAc9t42v_21O5Tq52WTTdWcH-Btmw1U1y5RdtxVvk6wjyXj_EhuOftHZ0tyyprAwdVbiPv_nx5due9Z8oGsItWgr5O4V8mM4bnL1CxPqf_S5pjYfGi_rUdzUBJqOe7h10Ixv0qKIlwJu-9kvcqvY2eXMuD-IOGVR1Ze8SqkOOs9Aa2qPwIc9VprKw0ArCJPSSDcnzHhBCd4rsaAyyEFCZIXjEGXiG5PG67clKh-SPrV4hrtYtUDvcH6ibd6ILRSIs8tymJmWRhvwsT-BeTCoLGUouOdN6SJ4hKgVGOLgcLbuNGnBTqBUmdjJIutG4DE631aNSdKGvFWeQvPfvrx-RS5PDg5mYTcv9--Qyw30lfp3QFhksm4_2AbmoPy3ft83D7i2j5Pi8IfwTUbBqXw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFB2VFCFY8EYECowECLGwYs_EHnuBUNskatXKinhI3U3niZAiu9iBih0rfoC_4XP4Eu6d2ClIwK4LdpEzmfhxfO-58ziHkCfcmSz31kZKpyYap9ZHesxcxJ0qTKotZLCgrn8oyjI_OirmG-R7vxcGl1X2MTEEalsbHCMfQfUEmYUBvx35blnEfDJ7efIhQgcpnGnt7TRWEDlwn0-hfGtf7E_gWT9lbDZ9s7sXdQ4DkYE6fhl5563WJsETK5xJxkZ4oYQVXKWZZxm3Yw0ZzSTMKpsXKkk8UwXzWJYwzQyHfi-QTcGh6BmQzZ1pOX-1HuGJOYcCkK80UTkv4pGrIFsCIelc4fosGMwC_pYSQp6bXfuf79B1crVj13R79TrcIBuuukmu_KK5eIt8nQIfDkNvOC5Ka093y5KqytJphfv7mx9fvk1c-ETRKG7RUuD1FHgynTc4q4VIDj_7XeoaD80W9Wnoag8yHA00wEM3qkHvKloC7OnrsPStam-Tt-dyI-6QQVVX7i6hJuY4O22gPQoi8lwLLeLCaAif0IsYkuc9OKTplNrRMGQhoWJDIMkzIA3J43Xbk5U-yR9b7SDG1i1QUzwcqJt3sgtRMi7y3GU2Y4kB3pancC02U4WKFVecGTMkzxChEiMfnI5R3QYOuCjUEJPbAsg4GprB3231CJVdSGzlGTzv_fvrR-QS4FYe7pcH98llhttNwvKhLTJYNh_dA3LRfFq-b5uH3QtHyfF5I_gnHP9y-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishment+of+CNN+and+Encoder%E2%80%93Decoder+Models+for+the+Prediction+of+Characteristics+of+Flow+and+Heat+Transfer+around+NACA+Sections&rft.jtitle=Energies+%28Basel%29&rft.au=Seo%2C+Janghoon&rft.au=Yoon%2C+Hyun-Sik&rft.au=Min-Il%2C+Kim&rft.date=2022-12-01&rft.pub=MDPI+AG&rft.eissn=1996-1073&rft.volume=15&rft.issue=23&rft.spage=9204&rft_id=info:doi/10.3390%2Fen15239204&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon