Zeroth-order single-loop algorithms for nonconvex-linear minimax problems
Nonconvex minimax problems have attracted significant interest in machine learning and many other fields in recent years. In this paper, we propose a new zeroth-order alternating randomized gradient projection algorithm to solve smooth nonconvex-linear problems and its iteration complexity to find a...
Uloženo v:
| Vydáno v: | Journal of global optimization Ročník 87; číslo 2-4; s. 551 - 580 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
01.11.2023
Springer |
| Témata: | |
| ISSN: | 0925-5001, 1573-2916 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Nonconvex minimax problems have attracted significant interest in machine learning and many other fields in recent years. In this paper, we propose a new zeroth-order alternating randomized gradient projection algorithm to solve smooth nonconvex-linear problems and its iteration complexity to find an
ε
-first-order Nash equilibrium is
O
ε
-
3
and the number of function value estimation per iteration is bounded by
O
d
x
ε
-
2
. Furthermore, we propose a zeroth-order alternating randomized proximal gradient algorithm for block-wise nonsmooth nonconvex-linear minimax problems and its corresponding iteration complexity is
O
K
3
2
ε
-
3
and the number of function value estimation is bounded by
O
d
x
ε
-
2
per iteration. The numerical results indicate the efficiency of the proposed algorithms. |
|---|---|
| ISSN: | 0925-5001 1573-2916 |
| DOI: | 10.1007/s10898-022-01169-5 |