Posynomial geometric programming problem subject to max–min fuzzy relation equations

We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max–min composition. By introducing auxiliary variables, we convert the PGPF into an equivalent programming problem whose objective function is a non-decr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 328; s. 15 - 25
Hlavní autoři: Zhou, Xue-Gang, Yang, Xiao-Peng, Cao, Bing-Yuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 20.01.2016
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We discuss a class of posynomial geometric programming problem(PGPF), aimed at minimizing a posynomial subject to fuzzy relational equations with max–min composition. By introducing auxiliary variables, we convert the PGPF into an equivalent programming problem whose objective function is a non-decreasing function with an auxiliary variable. We show that an optimal solution consists of a maximum feasible solution and one of the minimal feasible solutions by an equivalent programming problem. In addition, we introduce some rules for simplifying the problem. Then by using a branch and bound method and fuzzy relational equations (FRE) path, we present an algorithm to obtain an optimal solution to the PGPF. Finally, numerical examples are provided to illustrate the steps of the procedure.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2015.07.058