Prediction for Coastal Wind Speed Based on Improved Variational Mode Decomposition and Recurrent Neural Network

Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) Jg. 18; H. 3; S. 542
Hauptverfasser: Du, Muyuan, Zhang, Zhimeng, Ji, Chunning
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.02.2025
Schlagworte:
ISSN:1996-1073, 1996-1073
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic framework, termed VMD-RUN-Seq2Seq-Attention, for noise reduction, outlier detection, and wind speed prediction by integrating Variational Mode Decomposition (VMD), the Runge–Kutta optimization algorithm (RUN), and a Sequence-to-Sequence model with an Attention mechanism (Seq2Seq-Attention). Using wind speed data from the Shidao, Xiaomaidao, and Lianyungang stations as case studies, a fitness function based on the Pearson correlation coefficient was developed to optimize the VMD mode count and penalty factor. A comparative analysis of different Intrinsic Mode Function (IMF) selection ratios revealed that selecting a 50% IMF ratio effectively retains the intrinsic information of the raw data while minimizing noise. For outlier detection, statistical methods were employed, followed by a comparative evaluation of three models—LSTM, LSTM-KAN, and Seq2Seq-Attention—for multi-step wind speed forecasting over horizons ranging from 1 to 12 h. The results consistently showed that the Seq2Seq-Attention model achieved superior predictive accuracy across all forecast horizons, with the correlation coefficient of its prediction results greater than 0.9 in all cases. The proposed VMD-RUN-Seq2Seq-Attention framework outperformed other methods in the denoising, data cleansing, and reconstruction of the original wind speed dataset, with a maximum improvement of 21% in accuracy, producing highly accurate and reliable results. This approach offers a robust methodology for improving data quality and enhancing wind speed forecasting accuracy in coastal environments.
AbstractList Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic framework, termed VMD-RUN-Seq2Seq-Attention, for noise reduction, outlier detection, and wind speed prediction by integrating Variational Mode Decomposition (VMD), the Runge–Kutta optimization algorithm (RUN), and a Sequence-to-Sequence model with an Attention mechanism (Seq2Seq-Attention). Using wind speed data from the Shidao, Xiaomaidao, and Lianyungang stations as case studies, a fitness function based on the Pearson correlation coefficient was developed to optimize the VMD mode count and penalty factor. A comparative analysis of different Intrinsic Mode Function (IMF) selection ratios revealed that selecting a 50% IMF ratio effectively retains the intrinsic information of the raw data while minimizing noise. For outlier detection, statistical methods were employed, followed by a comparative evaluation of three models—LSTM, LSTM-KAN, and Seq2Seq-Attention—for multi-step wind speed forecasting over horizons ranging from 1 to 12 h. The results consistently showed that the Seq2Seq-Attention model achieved superior predictive accuracy across all forecast horizons, with the correlation coefficient of its prediction results greater than 0.9 in all cases. The proposed VMD-RUN-Seq2Seq-Attention framework outperformed other methods in the denoising, data cleansing, and reconstruction of the original wind speed dataset, with a maximum improvement of 21% in accuracy, producing highly accurate and reliable results. This approach offers a robust methodology for improving data quality and enhancing wind speed forecasting accuracy in coastal environments.
Audience Academic
Author Du, Muyuan
Zhang, Zhimeng
Ji, Chunning
Author_xml – sequence: 1
  givenname: Muyuan
  surname: Du
  fullname: Du, Muyuan
– sequence: 2
  givenname: Zhimeng
  orcidid: 0000-0002-6453-4269
  surname: Zhang
  fullname: Zhang, Zhimeng
– sequence: 3
  givenname: Chunning
  orcidid: 0000-0003-0376-8309
  surname: Ji
  fullname: Ji, Chunning
BookMark eNptUVuPUyEQJmZNXNd98RecxDeT7g5ngB4e13prsq7G6yPhwLChtocKVOO_X9oaNUZIYDJ8FybfQ3YypYkYe8zhAlHDJU18AAQp-nvslGutZhzmePJX_YCdl7KCthA5Ip6y9C6Tj67GNHUh5W6RbKl23X2Jk-8-bIl898yWdrb35Wab0_dWf7Y52j2lAd8kT91zcmmzTSUedGyjvie3y5mm2t3QLjfcDdUfKX99xO4Huy50_us-Y59evvi4eD27fvtqubi6njlEqDMKEiT2QWsBPVgtvRghuFE6pb3wgnOh9chJzZ0fXUCAwZKj3kqPyjqJZ2x51PXJrsw2x43NP02y0RwaKd8am2t0azJaaCkGC1IqFCPvm4mbDwjaKyVgdE3ryVGrjf9tR6WaVdrlNnwxyJUchh7E3vHiiLq1TTROIdVsXdueNtG1pEJs_asBewkKQTTC0yPB5VRKpvD7mxzMPlDzJ9AGhn_ALtZDBs0lrv9HuQMzsaNw
CitedBy_id crossref_primary_10_3390_en18071612
Cites_doi 10.1016/j.future.2019.02.028
10.1016/j.energy.2022.124250
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2016.01.008
10.1016/j.future.2020.03.055
10.1007/s40095-021-00408-x
10.1109/TSP.2013.2288675
10.1002/tee.23669
10.1016/j.oceaneng.2023.115229
10.1016/j.energy.2022.123595
10.3390/en16052457
10.1016/j.renene.2021.10.034
10.1109/ICAIGE62696.2024.10776744
10.1162/neco.1997.9.8.1735
10.1080/21642583.2019.1708830
10.1016/j.jhydrol.2021.126477
10.1016/j.asoc.2020.106996
10.1016/j.energy.2021.121981
10.3390/en16031374
10.1016/j.enconman.2021.114919
10.3390/en15114067
10.1016/j.cie.2024.110477
10.1016/j.energy.2022.125231
10.1016/j.eswa.2023.119878
10.1016/j.energy.2024.132228
10.1214/aoms/1177730256
10.1016/j.enconman.2021.114136
10.1016/j.energy.2024.130726
10.1016/j.eswa.2021.115079
10.1016/j.renene.2024.121938
10.1016/j.energy.2024.131332
10.1126/science.aav9527
10.1016/j.renene.2022.09.114
10.1016/j.dsp.2024.104590
10.1016/j.energy.2022.123848
10.1177/0309524X211010758
10.3390/su151914320
10.3390/en17236155
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/en18030542
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Download PDF from ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1073
ExternalDocumentID oai_doaj_org_article_949548a055634b12b5cc78309d6640bc
A832506304
10_3390_en18030542
GeographicLocations United States
United Kingdom
Yellow Sea
GeographicLocations_xml – name: United Kingdom
– name: United States
– name: Yellow Sea
GroupedDBID 29G
2WC
2XV
5GY
5VS
7XC
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
CITATION
CS3
DU5
EBS
ESX
FRP
GROUPED_DOAJ
GX1
I-F
IAO
ITC
KQ8
L6V
L8X
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PROAC
TR2
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c330t-ef50532f994020a95d4b0fcb5c69d4d411499b1e67cdbcf3008aece2a5d36ac53
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418502500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1996-1073
IngestDate Tue Oct 14 15:08:23 EDT 2025
Mon Jun 30 12:38:20 EDT 2025
Tue Nov 04 18:17:44 EST 2025
Sat Nov 29 07:13:21 EST 2025
Tue Nov 18 22:29:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-ef50532f994020a95d4b0fcb5c69d4d411499b1e67cdbcf3008aece2a5d36ac53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6453-4269
0000-0003-0376-8309
OpenAccessLink https://doaj.org/article/949548a055634b12b5cc78309d6640bc
PQID 3165882045
PQPubID 2032402
ParticipantIDs doaj_primary_oai_doaj_org_article_949548a055634b12b5cc78309d6640bc
proquest_journals_3165882045
gale_infotracacademiconefile_A832506304
crossref_primary_10_3390_en18030542
crossref_citationtrail_10_3390_en18030542
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Energies (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Young (ref_44) 2019; 364
Sasser (ref_6) 2022; 183
Mirjalili (ref_36) 2016; 95
Liu (ref_12) 2021; 238
Dragomiretskiy (ref_29) 2014; 62
Wu (ref_17) 2022; 261
ref_33
ref_32
Heidari (ref_37) 2019; 97
ref_31
ref_30
Zhao (ref_4) 2024; 196
Dai (ref_15) 2024; 298
Li (ref_16) 2022; 238
Jiang (ref_23) 2021; 250
ref_19
Sari (ref_14) 2022; 17
Smirnov (ref_41) 1948; 19
Mohammed (ref_25) 2023; 2023
Sun (ref_18) 2024; 305
Tao (ref_28) 2021; 598
Domala (ref_21) 2023; 285
Du (ref_34) 2024; 153
Xue (ref_38) 2020; 8
Dokur (ref_3) 2022; 248
Tao (ref_2) 2025; 238
Zhang (ref_27) 2022; 254
Duan (ref_13) 2022; 200
Mirjalili (ref_35) 2014; 69
Li (ref_39) 2020; 111
ref_43
Wang (ref_10) 2021; 55
ref_42
ref_1
Fotso (ref_7) 2022; 13
Liu (ref_20) 2024; 294
Ahmadianfar (ref_40) 2021; 181
Altan (ref_9) 2021; 100
Shang (ref_22) 2023; 223
Li (ref_24) 2022; 251
ref_26
ref_8
ref_5
Groch (ref_11) 2022; 46
References_xml – volume: 97
  start-page: 849
  year: 2019
  ident: ref_37
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 254
  start-page: 124250
  year: 2022
  ident: ref_27
  article-title: An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction
  publication-title: Energy
  doi: 10.1016/j.energy.2022.124250
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_35
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 95
  start-page: 51
  year: 2016
  ident: ref_36
  article-title: The Whale Optimization Algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 111
  start-page: 300
  year: 2020
  ident: ref_39
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 13
  start-page: 43
  year: 2022
  ident: ref_7
  article-title: A novel hybrid model based on weather variables relationships improving applied for wind speed forecasting
  publication-title: Int. J. Energy Environ. Eng.
  doi: 10.1007/s40095-021-00408-x
– ident: ref_32
– volume: 62
  start-page: 531
  year: 2014
  ident: ref_29
  article-title: Variational Mode Decomposition
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2013.2288675
– volume: 17
  start-page: 1620
  year: 2022
  ident: ref_14
  article-title: Short-Term Wind Speed and Direction Forecasting by 3DCNN and Deep Convolutional LSTM
  publication-title: IEEJ Trans. Electr. Electron. Eng.
  doi: 10.1002/tee.23669
– volume: 285
  start-page: 115229
  year: 2023
  ident: ref_21
  article-title: Application of Empirical Mode Decomposition and Hodrick Prescot filter for the prediction single step and multistep significant wave height with LSTM
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.115229
– volume: 248
  start-page: 123595
  year: 2022
  ident: ref_3
  article-title: Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123595
– ident: ref_5
  doi: 10.3390/en16052457
– volume: 183
  start-page: 491
  year: 2022
  ident: ref_6
  article-title: Improvement of wind power prediction from meteorological characterization with machine learning models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2021.10.034
– ident: ref_43
  doi: 10.1109/ICAIGE62696.2024.10776744
– ident: ref_30
  doi: 10.1162/neco.1997.9.8.1735
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_38
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– ident: ref_42
– volume: 598
  start-page: 126477
  year: 2021
  ident: ref_28
  article-title: River water level prediction in coastal catchment using hybridized relevance vector machine model with improved grasshopper optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126477
– volume: 100
  start-page: 106996
  year: 2021
  ident: ref_9
  article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106996
– volume: 2023
  start-page: 9947603
  year: 2023
  ident: ref_25
  article-title: Application of Metaheuristic Algorithms and ANN Model for Univariate Water Level Forecasting
  publication-title: Adv. Civ. Eng.
– volume: 238
  start-page: 121981
  year: 2022
  ident: ref_16
  article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121981
– ident: ref_8
  doi: 10.3390/en16031374
– volume: 250
  start-page: 114919
  year: 2021
  ident: ref_23
  article-title: Ultra-short-term wind speed forecasting based on EMD-VAR model and spatial correlation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114919
– ident: ref_19
  doi: 10.3390/en15114067
– ident: ref_31
– volume: 196
  start-page: 110477
  year: 2024
  ident: ref_4
  article-title: A new short-term wind power prediction methodology based on linear and nonlinear hybrid models
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.110477
– ident: ref_33
– volume: 261
  start-page: 125231
  year: 2022
  ident: ref_17
  article-title: Multistep short-term wind speed forecasting using transformer
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125231
– volume: 223
  start-page: 119878
  year: 2023
  ident: ref_22
  article-title: Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.119878
– volume: 305
  start-page: 132228
  year: 2024
  ident: ref_18
  article-title: Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132228
– volume: 19
  start-page: 279
  year: 1948
  ident: ref_41
  article-title: Table for estimating the goodness of fit of empirical distributions
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177730256
– volume: 238
  start-page: 114136
  year: 2021
  ident: ref_12
  article-title: Hybrid forecasting system based on data area division and deep learning neural network for short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114136
– volume: 294
  start-page: 130726
  year: 2024
  ident: ref_20
  article-title: A wind speed forcasting model based on rime optimization based VMD and multi-headed self-attention-LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130726
– volume: 181
  start-page: 115079
  year: 2021
  ident: ref_40
  article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115079
– volume: 238
  start-page: 121938
  year: 2025
  ident: ref_2
  article-title: An investment game model for offshore power grid multi-stage expansion planning
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2024.121938
– volume: 298
  start-page: 131332
  year: 2024
  ident: ref_15
  article-title: A wind speed forecasting model using nonlinear auto-regressive model optimized by the hybrid chaos-cloud salp swarm algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131332
– volume: 55
  start-page: 1080
  year: 2021
  ident: ref_10
  article-title: Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network
  publication-title: J. Shanghai Jiaotong Univ.
– volume: 364
  start-page: 548
  year: 2019
  ident: ref_44
  article-title: Multiplatform evaluation of global trends in wind speed and wave height
  publication-title: Science
  doi: 10.1126/science.aav9527
– volume: 200
  start-page: 788
  year: 2022
  ident: ref_13
  article-title: A combined short-term wind speed forecasting model based on CNN-RNN and linear regression optimization considering error
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2022.09.114
– volume: 153
  start-page: 104590
  year: 2024
  ident: ref_34
  article-title: Rotating machinery fault diagnosis based on parameter-optimized variational mode decomposition
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2024.104590
– volume: 251
  start-page: 123848
  year: 2022
  ident: ref_24
  article-title: A novel offshore wind farm typhoon wind speed prediction model based on PSOeBi-LSTM improved by VMD
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123848
– volume: 46
  start-page: 102
  year: 2022
  ident: ref_11
  article-title: Forecasting wind speed events at a utility-scale wind farm using a WRF-ANN model
  publication-title: Wind Eng.
  doi: 10.1177/0309524X211010758
– ident: ref_26
  doi: 10.3390/su151914320
– ident: ref_1
  doi: 10.3390/en17236155
SSID ssj0000331333
Score 2.392108
Snippet Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 542
SubjectTerms Accuracy
Algorithms
Analysis
Buildings
Case studies
Cost analysis
data cleaning
data imputation
Data integrity
Datasets
Decision trees
Deep learning
Efficiency
Forecasting
Green technology
Information management
Machine learning
Mathematical optimization
Neural networks
Noise control
Optimization algorithms
Performance evaluation
Remodeling, restoration, etc
Seq2Seq with attention
Time series
variational mode decomposition
Water levels
Wind power
wind prediction
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFH9sSQ_bofssS5cNQQejBxM7kmzrNJJsZYM1hH6k2UnIkjwGJU6TdH__3rOVpIVup92MJYPEe35fevr9AD4kMnNZbjDJ8SKNhDQ8UsLFkUk4Omebp6pmiZh-z8bjfDZTk3A9ehXaKjc2sTbUDdoz9W2jEe65ylLFvMcT9Jw5Qal_WtxExCFFZ62BUOMxtOmKd96C9uTb6eTHtuYSc44pGW9QSjlm-z0_T3JSedG_55dq-P6_Gena85w8-79rfg77IQJlg0ZlXsAjP38JT-_gEr6CarKk8xuSGcOglo0qg0HkNbvCBJ6dL9DhsSF6P8dwvKlK4PMUs-5QWWTEsMY-e-pXD01hzOCnZ1TcJzgoRpggOG_cNKG_hsuTLxejr1FgZogs5_E68qUkRolSKUo_jZJOFHFpC2lT5YQTmGQpVSQ-zawrbMkx0DCeqMek46mxkh9Aa17N_RtgMS8NxlB5aawSqVOmTIp-wZ0sMVbF8LEDxxu5aBtgy4k941pj-kIy1DsZduBoO3fRgHU8OGtI4t3OIIDt-kW1_KnD_6qVICQ8U-OniSLp49ZslvNYuTQVcWE78JGUQ5MZwOVYE24z4KYIUEsP0FJKwjMTHehulEMH-7DSO104_PfwW3jSJ8bhuk-8C6318ta_gz37e_1rtXwfFPwPO-oLWA
  priority: 102
  providerName: ProQuest
Title Prediction for Coastal Wind Speed Based on Improved Variational Mode Decomposition and Recurrent Neural Network
URI https://www.proquest.com/docview/3165882045
https://doaj.org/article/949548a055634b12b5cc78309d6640bc
Volume 18
WOSCitedRecordID wos001418502500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Download PDF from ProQuest Central
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1996-1073
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331333
  issn: 1996-1073
  databaseCode: PIMPY
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPehBfOL6IqAgHsq2m6Rtjq7uoqBL8bHqKaRJCoLsyrp69Lc709Z1BcWLl1LaKaSTycx86fQbgINIJi5JDYIcL-JASMMDJVwYmIhjcLZprMouEf2LpNdL7-9VNtXqi2rCKnrgSnFNJYiSzJREViKPWrm0Nkl5qFwcizC35H3DRE2BqdIHc47gi1d8pBxxfdMPopSMW7S-RaCSqP83d1zGmO4yLNXJITuuBrUCM36wCotTlIFrMMxG9GmF1Mkw32QnQ4P53RO7Q2zNrp8xFrE2BibH8H61YYDnfQTE9aYfo-Zn7NRTKXldr8UMPnpF--7E1MSIrgPlelV9-Drcdjs3J2dB3TQhsJyH48AXkpo9FEoRMjRKOpGHhUW1xcoJJxD_KJVHPk6sy23BMQcwnrqCScdjYyXfgNnBcOA3gYW8MJjepIWxSsROmSLKWzl3ssA0EjO7Bhx9KlLbmlGcGls8aUQWpHT9pfQG7E9knysejR-l2jQfEwnivi4voEXo2iL0XxbRgEOaTU0rFIdjTf2jAb4UcV3pY3RikqjGRAN2Pidc10v3RfMIk7KUWPq3_mM027DQopbBZaH3DsyOR69-F-bt2_jxZbQHc-1OL7vaK60Xj5fvHbyWnV9mDx_OzfNh
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWiRgwRsxUMASIMQiahI7TrxAqNOHWnWIRqWU7oxjO2ikKhkyA4if4hu5N48pSMCuC3ZR4khxfHwf9vU5AM-jJHVpZjDJ8UIGIjE8UMKFgYk4OmebSdWqRJxO0jzPzs7UdA1-DGdhqKxysImtoXa1pTXyLR6hr8yIPP3N_HNAqlG0uzpIaHSwOPLfv2HKtnh9uIvj-yKO9_dOdg6CXlUgsJi7LwNfJqSGUCpFqZNRiRNFWNoisVI54QQmCEoVkZepdYUtOTpJ40k2K3FcGksqEWjyNwQXEufVxngvnx6vVnVCzjHp4x0PKucq3PJVlNGkEvFvnq8VCPibG2h92_7N_-2v3IIbfRTNtjvY34Y1X92B679wK96FetrQHhThjmFgznZqg4HwOfswqxx7N0enzcbowR3D593KCl6fmmbWr44yUolju55q7vvCNmbw1WPaoCBKK0a8Jtgu7wrp78H7S-nxfViv6so_ABby0mAcmJXGKiGdMmVUxAV3SYnxNobAI3g1jLy2PfU6KYCca0zBCCX6AiUjeLZqO-8IR_7YakwAWrUgkvD2Rt180r3N0UoQm59pOeBEEcXYNZtmPFROShEWdgQvCX6aTBl-jjX9iQzsFJGC6W209glxsokRbA7w072NW-gL7D389-OncPXg5O1ETw7zo0dwLSYF5bbufRPWl80X_xiu2K_L2aJ50k8nBh8vG6s_AVNEXcs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOoTggW9EYYAlQIiHqEnsfPgBoXVdxbQpqgaMvXmO7aBKU1rSAuKv8eu4N3E6kIC3PfBWJY5Ut8f33GvfnAPwPEoym-Uaixwn0kAkmgdS2DDQEUdyNnkqW5eIk6OsKPLTUznbgh_9uzDUVtnHxDZQ24WhPfIRj5ArcxJPH1W-LWI2mb5Zfg7IQYpOWns7jQ4ih-77NyzfVq8PJvhfv4jj6f77vbeBdxgIDNbx68BVCTkjVFJSGaVlYkUZVqZMTCqtsAKLBSnLyKWZsaWpOBKmdmShlVieakOOERj-tzNSWR_A9ni_mB1vdnhCzrEA5J0mKucyHLk6ymmBifg3FmzNAv5GCS3PTW_-z7_QLbjhs2u22y2H27Dl6jtw_RfNxbuwmDV0NkV4ZJiws72FxgT5nH2c15a9WyKZszEyu2V4v9txwc8nupn7XVNG7nFs4qgX3ze8MY2PHtPBBUldMdI7wXFF12B_Dz5cyozvw6Be1O4BsJBXGvPDvNJGitRKXUVlXHKbVJiHY2o8hFc9CpTxkuzkDHKusDQjxKgLxAzh2WbsshMi-eOoMYFpM4LEw9sLi-aT8rFISUEqf7rVhhNlFOPUTJbzUNo0FWFphvCSoKgoxOHXMdq_qYGTIrEwtYsskJBWmxjCTg9F5WPfSl3g8OG_bz-FqwhQdXRQHD6CazEZK7ft8DswWDdf3GO4Yr6u56vmiV9ZDM4uG6o_AW24Zo4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+for+Coastal+Wind+Speed+Based+on+Improved+Variational+Mode+Decomposition+and+Recurrent+Neural+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Du%2C+Muyuan&rft.au=Zhang%2C+Zhimeng&rft.au=Ji%2C+Chunning&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=18&rft.issue=3&rft_id=info:doi/10.3390%2Fen18030542&rft.externalDocID=A832506304
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon