Prediction for Coastal Wind Speed Based on Improved Variational Mode Decomposition and Recurrent Neural Network
Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic...
Gespeichert in:
| Veröffentlicht in: | Energies (Basel) Jg. 18; H. 3; S. 542 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.02.2025
|
| Schlagworte: | |
| ISSN: | 1996-1073, 1996-1073 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic framework, termed VMD-RUN-Seq2Seq-Attention, for noise reduction, outlier detection, and wind speed prediction by integrating Variational Mode Decomposition (VMD), the Runge–Kutta optimization algorithm (RUN), and a Sequence-to-Sequence model with an Attention mechanism (Seq2Seq-Attention). Using wind speed data from the Shidao, Xiaomaidao, and Lianyungang stations as case studies, a fitness function based on the Pearson correlation coefficient was developed to optimize the VMD mode count and penalty factor. A comparative analysis of different Intrinsic Mode Function (IMF) selection ratios revealed that selecting a 50% IMF ratio effectively retains the intrinsic information of the raw data while minimizing noise. For outlier detection, statistical methods were employed, followed by a comparative evaluation of three models—LSTM, LSTM-KAN, and Seq2Seq-Attention—for multi-step wind speed forecasting over horizons ranging from 1 to 12 h. The results consistently showed that the Seq2Seq-Attention model achieved superior predictive accuracy across all forecast horizons, with the correlation coefficient of its prediction results greater than 0.9 in all cases. The proposed VMD-RUN-Seq2Seq-Attention framework outperformed other methods in the denoising, data cleansing, and reconstruction of the original wind speed dataset, with a maximum improvement of 21% in accuracy, producing highly accurate and reliable results. This approach offers a robust methodology for improving data quality and enhancing wind speed forecasting accuracy in coastal environments. |
|---|---|
| AbstractList | Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic framework, termed VMD-RUN-Seq2Seq-Attention, for noise reduction, outlier detection, and wind speed prediction by integrating Variational Mode Decomposition (VMD), the Runge–Kutta optimization algorithm (RUN), and a Sequence-to-Sequence model with an Attention mechanism (Seq2Seq-Attention). Using wind speed data from the Shidao, Xiaomaidao, and Lianyungang stations as case studies, a fitness function based on the Pearson correlation coefficient was developed to optimize the VMD mode count and penalty factor. A comparative analysis of different Intrinsic Mode Function (IMF) selection ratios revealed that selecting a 50% IMF ratio effectively retains the intrinsic information of the raw data while minimizing noise. For outlier detection, statistical methods were employed, followed by a comparative evaluation of three models—LSTM, LSTM-KAN, and Seq2Seq-Attention—for multi-step wind speed forecasting over horizons ranging from 1 to 12 h. The results consistently showed that the Seq2Seq-Attention model achieved superior predictive accuracy across all forecast horizons, with the correlation coefficient of its prediction results greater than 0.9 in all cases. The proposed VMD-RUN-Seq2Seq-Attention framework outperformed other methods in the denoising, data cleansing, and reconstruction of the original wind speed dataset, with a maximum improvement of 21% in accuracy, producing highly accurate and reliable results. This approach offers a robust methodology for improving data quality and enhancing wind speed forecasting accuracy in coastal environments. |
| Audience | Academic |
| Author | Du, Muyuan Zhang, Zhimeng Ji, Chunning |
| Author_xml | – sequence: 1 givenname: Muyuan surname: Du fullname: Du, Muyuan – sequence: 2 givenname: Zhimeng orcidid: 0000-0002-6453-4269 surname: Zhang fullname: Zhang, Zhimeng – sequence: 3 givenname: Chunning orcidid: 0000-0003-0376-8309 surname: Ji fullname: Ji, Chunning |
| BookMark | eNptUVuPUyEQJmZNXNd98RecxDeT7g5ngB4e13prsq7G6yPhwLChtocKVOO_X9oaNUZIYDJ8FybfQ3YypYkYe8zhAlHDJU18AAQp-nvslGutZhzmePJX_YCdl7KCthA5Ip6y9C6Tj67GNHUh5W6RbKl23X2Jk-8-bIl898yWdrb35Wab0_dWf7Y52j2lAd8kT91zcmmzTSUedGyjvie3y5mm2t3QLjfcDdUfKX99xO4Huy50_us-Y59evvi4eD27fvtqubi6njlEqDMKEiT2QWsBPVgtvRghuFE6pb3wgnOh9chJzZ0fXUCAwZKj3kqPyjqJZ2x51PXJrsw2x43NP02y0RwaKd8am2t0azJaaCkGC1IqFCPvm4mbDwjaKyVgdE3ryVGrjf9tR6WaVdrlNnwxyJUchh7E3vHiiLq1TTROIdVsXdueNtG1pEJs_asBewkKQTTC0yPB5VRKpvD7mxzMPlDzJ9AGhn_ALtZDBs0lrv9HuQMzsaNw |
| CitedBy_id | crossref_primary_10_3390_en18071612 |
| Cites_doi | 10.1016/j.future.2019.02.028 10.1016/j.energy.2022.124250 10.1016/j.advengsoft.2013.12.007 10.1016/j.advengsoft.2016.01.008 10.1016/j.future.2020.03.055 10.1007/s40095-021-00408-x 10.1109/TSP.2013.2288675 10.1002/tee.23669 10.1016/j.oceaneng.2023.115229 10.1016/j.energy.2022.123595 10.3390/en16052457 10.1016/j.renene.2021.10.034 10.1109/ICAIGE62696.2024.10776744 10.1162/neco.1997.9.8.1735 10.1080/21642583.2019.1708830 10.1016/j.jhydrol.2021.126477 10.1016/j.asoc.2020.106996 10.1016/j.energy.2021.121981 10.3390/en16031374 10.1016/j.enconman.2021.114919 10.3390/en15114067 10.1016/j.cie.2024.110477 10.1016/j.energy.2022.125231 10.1016/j.eswa.2023.119878 10.1016/j.energy.2024.132228 10.1214/aoms/1177730256 10.1016/j.enconman.2021.114136 10.1016/j.energy.2024.130726 10.1016/j.eswa.2021.115079 10.1016/j.renene.2024.121938 10.1016/j.energy.2024.131332 10.1126/science.aav9527 10.1016/j.renene.2022.09.114 10.1016/j.dsp.2024.104590 10.1016/j.energy.2022.123848 10.1177/0309524X211010758 10.3390/su151914320 10.3390/en17236155 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI DOA |
| DOI | 10.3390/en18030542 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Download PDF from ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1996-1073 |
| ExternalDocumentID | oai_doaj_org_article_949548a055634b12b5cc78309d6640bc A832506304 10_3390_en18030542 |
| GeographicLocations | United States United Kingdom Yellow Sea |
| GeographicLocations_xml | – name: United Kingdom – name: United States – name: Yellow Sea |
| GroupedDBID | 29G 2WC 2XV 5GY 5VS 7XC 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ACUHS ADBBV ADMLS AENEX AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU CITATION CS3 DU5 EBS ESX FRP GROUPED_DOAJ GX1 I-F IAO ITC KQ8 L6V L8X MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PROAC TR2 TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c330t-ef50532f994020a95d4b0fcb5c69d4d411499b1e67cdbcf3008aece2a5d36ac53 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001418502500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1996-1073 |
| IngestDate | Tue Oct 14 15:08:23 EDT 2025 Mon Jun 30 12:38:20 EDT 2025 Tue Nov 04 18:17:44 EST 2025 Sat Nov 29 07:13:21 EST 2025 Tue Nov 18 22:29:21 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c330t-ef50532f994020a95d4b0fcb5c69d4d411499b1e67cdbcf3008aece2a5d36ac53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6453-4269 0000-0003-0376-8309 |
| OpenAccessLink | https://doaj.org/article/949548a055634b12b5cc78309d6640bc |
| PQID | 3165882045 |
| PQPubID | 2032402 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_949548a055634b12b5cc78309d6640bc proquest_journals_3165882045 gale_infotracacademiconefile_A832506304 crossref_primary_10_3390_en18030542 crossref_citationtrail_10_3390_en18030542 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Energies (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Young (ref_44) 2019; 364 Sasser (ref_6) 2022; 183 Mirjalili (ref_36) 2016; 95 Liu (ref_12) 2021; 238 Dragomiretskiy (ref_29) 2014; 62 Wu (ref_17) 2022; 261 ref_33 ref_32 Heidari (ref_37) 2019; 97 ref_31 ref_30 Zhao (ref_4) 2024; 196 Dai (ref_15) 2024; 298 Li (ref_16) 2022; 238 Jiang (ref_23) 2021; 250 ref_19 Sari (ref_14) 2022; 17 Smirnov (ref_41) 1948; 19 Mohammed (ref_25) 2023; 2023 Sun (ref_18) 2024; 305 Tao (ref_28) 2021; 598 Domala (ref_21) 2023; 285 Du (ref_34) 2024; 153 Xue (ref_38) 2020; 8 Dokur (ref_3) 2022; 248 Tao (ref_2) 2025; 238 Zhang (ref_27) 2022; 254 Duan (ref_13) 2022; 200 Mirjalili (ref_35) 2014; 69 Li (ref_39) 2020; 111 ref_43 Wang (ref_10) 2021; 55 ref_42 ref_1 Fotso (ref_7) 2022; 13 Liu (ref_20) 2024; 294 Ahmadianfar (ref_40) 2021; 181 Altan (ref_9) 2021; 100 Shang (ref_22) 2023; 223 Li (ref_24) 2022; 251 ref_26 ref_8 ref_5 Groch (ref_11) 2022; 46 |
| References_xml | – volume: 97 start-page: 849 year: 2019 ident: ref_37 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 254 start-page: 124250 year: 2022 ident: ref_27 article-title: An evolutionary deep learning model based on TVFEMD, improved sine cosine algorithm, CNN and BiLSTM for wind speed prediction publication-title: Energy doi: 10.1016/j.energy.2022.124250 – volume: 69 start-page: 46 year: 2014 ident: ref_35 article-title: Grey Wolf Optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 95 start-page: 51 year: 2016 ident: ref_36 article-title: The Whale Optimization Algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 111 start-page: 300 year: 2020 ident: ref_39 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 13 start-page: 43 year: 2022 ident: ref_7 article-title: A novel hybrid model based on weather variables relationships improving applied for wind speed forecasting publication-title: Int. J. Energy Environ. Eng. doi: 10.1007/s40095-021-00408-x – ident: ref_32 – volume: 62 start-page: 531 year: 2014 ident: ref_29 article-title: Variational Mode Decomposition publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2288675 – volume: 17 start-page: 1620 year: 2022 ident: ref_14 article-title: Short-Term Wind Speed and Direction Forecasting by 3DCNN and Deep Convolutional LSTM publication-title: IEEJ Trans. Electr. Electron. Eng. doi: 10.1002/tee.23669 – volume: 285 start-page: 115229 year: 2023 ident: ref_21 article-title: Application of Empirical Mode Decomposition and Hodrick Prescot filter for the prediction single step and multistep significant wave height with LSTM publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115229 – volume: 248 start-page: 123595 year: 2022 ident: ref_3 article-title: Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine publication-title: Energy doi: 10.1016/j.energy.2022.123595 – ident: ref_5 doi: 10.3390/en16052457 – volume: 183 start-page: 491 year: 2022 ident: ref_6 article-title: Improvement of wind power prediction from meteorological characterization with machine learning models publication-title: Renew. Energy doi: 10.1016/j.renene.2021.10.034 – ident: ref_43 doi: 10.1109/ICAIGE62696.2024.10776744 – ident: ref_30 doi: 10.1162/neco.1997.9.8.1735 – volume: 8 start-page: 22 year: 2020 ident: ref_38 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – ident: ref_42 – volume: 598 start-page: 126477 year: 2021 ident: ref_28 article-title: River water level prediction in coastal catchment using hybridized relevance vector machine model with improved grasshopper optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126477 – volume: 100 start-page: 106996 year: 2021 ident: ref_9 article-title: A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106996 – volume: 2023 start-page: 9947603 year: 2023 ident: ref_25 article-title: Application of Metaheuristic Algorithms and ANN Model for Univariate Water Level Forecasting publication-title: Adv. Civ. Eng. – volume: 238 start-page: 121981 year: 2022 ident: ref_16 article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks publication-title: Energy doi: 10.1016/j.energy.2021.121981 – ident: ref_8 doi: 10.3390/en16031374 – volume: 250 start-page: 114919 year: 2021 ident: ref_23 article-title: Ultra-short-term wind speed forecasting based on EMD-VAR model and spatial correlation publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114919 – ident: ref_19 doi: 10.3390/en15114067 – ident: ref_31 – volume: 196 start-page: 110477 year: 2024 ident: ref_4 article-title: A new short-term wind power prediction methodology based on linear and nonlinear hybrid models publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.110477 – ident: ref_33 – volume: 261 start-page: 125231 year: 2022 ident: ref_17 article-title: Multistep short-term wind speed forecasting using transformer publication-title: Energy doi: 10.1016/j.energy.2022.125231 – volume: 223 start-page: 119878 year: 2023 ident: ref_22 article-title: Decomposition-based wind speed forecasting model using causal convolutional network and attention mechanism publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.119878 – volume: 305 start-page: 132228 year: 2024 ident: ref_18 article-title: Multivariate short-term wind speed prediction based on PSO-VMD-SE-ICEEMDAN two-stage decomposition and Att-S2S publication-title: Energy doi: 10.1016/j.energy.2024.132228 – volume: 19 start-page: 279 year: 1948 ident: ref_41 article-title: Table for estimating the goodness of fit of empirical distributions publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177730256 – volume: 238 start-page: 114136 year: 2021 ident: ref_12 article-title: Hybrid forecasting system based on data area division and deep learning neural network for short-term wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114136 – volume: 294 start-page: 130726 year: 2024 ident: ref_20 article-title: A wind speed forcasting model based on rime optimization based VMD and multi-headed self-attention-LSTM publication-title: Energy doi: 10.1016/j.energy.2024.130726 – volume: 181 start-page: 115079 year: 2021 ident: ref_40 article-title: RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115079 – volume: 238 start-page: 121938 year: 2025 ident: ref_2 article-title: An investment game model for offshore power grid multi-stage expansion planning publication-title: Renew. Energy doi: 10.1016/j.renene.2024.121938 – volume: 298 start-page: 131332 year: 2024 ident: ref_15 article-title: A wind speed forecasting model using nonlinear auto-regressive model optimized by the hybrid chaos-cloud salp swarm algorithm publication-title: Energy doi: 10.1016/j.energy.2024.131332 – volume: 55 start-page: 1080 year: 2021 ident: ref_10 article-title: Short-Term Wind Speed Forecasting Model Based on Mutual Information and Recursive Neural Network publication-title: J. Shanghai Jiaotong Univ. – volume: 364 start-page: 548 year: 2019 ident: ref_44 article-title: Multiplatform evaluation of global trends in wind speed and wave height publication-title: Science doi: 10.1126/science.aav9527 – volume: 200 start-page: 788 year: 2022 ident: ref_13 article-title: A combined short-term wind speed forecasting model based on CNN-RNN and linear regression optimization considering error publication-title: Renew. Energy doi: 10.1016/j.renene.2022.09.114 – volume: 153 start-page: 104590 year: 2024 ident: ref_34 article-title: Rotating machinery fault diagnosis based on parameter-optimized variational mode decomposition publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2024.104590 – volume: 251 start-page: 123848 year: 2022 ident: ref_24 article-title: A novel offshore wind farm typhoon wind speed prediction model based on PSOeBi-LSTM improved by VMD publication-title: Energy doi: 10.1016/j.energy.2022.123848 – volume: 46 start-page: 102 year: 2022 ident: ref_11 article-title: Forecasting wind speed events at a utility-scale wind farm using a WRF-ANN model publication-title: Wind Eng. doi: 10.1177/0309524X211010758 – ident: ref_26 doi: 10.3390/su151914320 – ident: ref_1 doi: 10.3390/en17236155 |
| SSID | ssj0000331333 |
| Score | 2.392108 |
| Snippet | Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 542 |
| SubjectTerms | Accuracy Algorithms Analysis Buildings Case studies Cost analysis data cleaning data imputation Data integrity Datasets Decision trees Deep learning Efficiency Forecasting Green technology Information management Machine learning Mathematical optimization Neural networks Noise control Optimization algorithms Performance evaluation Remodeling, restoration, etc Seq2Seq with attention Time series variational mode decomposition Water levels Wind power wind prediction |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFH9sSQ_bofssS5cNQQejBxM7kmzrNJJsZYM1hH6k2UnIkjwGJU6TdH__3rOVpIVup92MJYPEe35fevr9AD4kMnNZbjDJ8SKNhDQ8UsLFkUk4Omebp6pmiZh-z8bjfDZTk3A9ehXaKjc2sTbUDdoz9W2jEe65ylLFvMcT9Jw5Qal_WtxExCFFZ62BUOMxtOmKd96C9uTb6eTHtuYSc44pGW9QSjlm-z0_T3JSedG_55dq-P6_Gena85w8-79rfg77IQJlg0ZlXsAjP38JT-_gEr6CarKk8xuSGcOglo0qg0HkNbvCBJ6dL9DhsSF6P8dwvKlK4PMUs-5QWWTEsMY-e-pXD01hzOCnZ1TcJzgoRpggOG_cNKG_hsuTLxejr1FgZogs5_E68qUkRolSKUo_jZJOFHFpC2lT5YQTmGQpVSQ-zawrbMkx0DCeqMek46mxkh9Aa17N_RtgMS8NxlB5aawSqVOmTIp-wZ0sMVbF8LEDxxu5aBtgy4k941pj-kIy1DsZduBoO3fRgHU8OGtI4t3OIIDt-kW1_KnD_6qVICQ8U-OniSLp49ZslvNYuTQVcWE78JGUQ5MZwOVYE24z4KYIUEsP0FJKwjMTHehulEMH-7DSO104_PfwW3jSJ8bhuk-8C6318ta_gz37e_1rtXwfFPwPO-oLWA priority: 102 providerName: ProQuest |
| Title | Prediction for Coastal Wind Speed Based on Improved Variational Mode Decomposition and Recurrent Neural Network |
| URI | https://www.proquest.com/docview/3165882045 https://doaj.org/article/949548a055634b12b5cc78309d6640bc |
| Volume | 18 |
| WOSCitedRecordID | wos001418502500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Download PDF from ProQuest Central customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1996-1073 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331333 issn: 1996-1073 databaseCode: PIMPY dateStart: 20080301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB5EPehBfOL6IqAgHsq2m6Rtjq7uoqBL8bHqKaRJCoLsyrp69Lc709Z1BcWLl1LaKaSTycx86fQbgINIJi5JDYIcL-JASMMDJVwYmIhjcLZprMouEf2LpNdL7-9VNtXqi2rCKnrgSnFNJYiSzJREViKPWrm0Nkl5qFwcizC35H3DRE2BqdIHc47gi1d8pBxxfdMPopSMW7S-RaCSqP83d1zGmO4yLNXJITuuBrUCM36wCotTlIFrMMxG9GmF1Mkw32QnQ4P53RO7Q2zNrp8xFrE2BibH8H61YYDnfQTE9aYfo-Zn7NRTKXldr8UMPnpF--7E1MSIrgPlelV9-Drcdjs3J2dB3TQhsJyH48AXkpo9FEoRMjRKOpGHhUW1xcoJJxD_KJVHPk6sy23BMQcwnrqCScdjYyXfgNnBcOA3gYW8MJjepIWxSsROmSLKWzl3ssA0EjO7Bhx9KlLbmlGcGls8aUQWpHT9pfQG7E9knysejR-l2jQfEwnivi4voEXo2iL0XxbRgEOaTU0rFIdjTf2jAb4UcV3pY3RikqjGRAN2Pidc10v3RfMIk7KUWPq3_mM027DQopbBZaH3DsyOR69-F-bt2_jxZbQHc-1OL7vaK60Xj5fvHbyWnV9mDx_OzfNh |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qWiRgwRsxUMASIMQiahI7TrxAqNOHWnWIRqWU7oxjO2ikKhkyA4if4hu5N48pSMCuC3ZR4khxfHwf9vU5AM-jJHVpZjDJ8UIGIjE8UMKFgYk4OmebSdWqRJxO0jzPzs7UdA1-DGdhqKxysImtoXa1pTXyLR6hr8yIPP3N_HNAqlG0uzpIaHSwOPLfv2HKtnh9uIvj-yKO9_dOdg6CXlUgsJi7LwNfJqSGUCpFqZNRiRNFWNoisVI54QQmCEoVkZepdYUtOTpJ40k2K3FcGksqEWjyNwQXEufVxngvnx6vVnVCzjHp4x0PKucq3PJVlNGkEvFvnq8VCPibG2h92_7N_-2v3IIbfRTNtjvY34Y1X92B679wK96FetrQHhThjmFgznZqg4HwOfswqxx7N0enzcbowR3D593KCl6fmmbWr44yUolju55q7vvCNmbw1WPaoCBKK0a8Jtgu7wrp78H7S-nxfViv6so_ABby0mAcmJXGKiGdMmVUxAV3SYnxNobAI3g1jLy2PfU6KYCca0zBCCX6AiUjeLZqO-8IR_7YakwAWrUgkvD2Rt180r3N0UoQm59pOeBEEcXYNZtmPFROShEWdgQvCX6aTBl-jjX9iQzsFJGC6W209glxsokRbA7w072NW-gL7D389-OncPXg5O1ETw7zo0dwLSYF5bbufRPWl80X_xiu2K_L2aJ50k8nBh8vG6s_AVNEXcs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFL2aOoTggW9EYYAlQIiHqEnsfPgBoXVdxbQpqgaMvXmO7aBKU1rSAuKv8eu4N3E6kIC3PfBWJY5Ut8f33GvfnAPwPEoym-Uaixwn0kAkmgdS2DDQEUdyNnkqW5eIk6OsKPLTUznbgh_9uzDUVtnHxDZQ24WhPfIRj5ArcxJPH1W-LWI2mb5Zfg7IQYpOWns7jQ4ih-77NyzfVq8PJvhfv4jj6f77vbeBdxgIDNbx68BVCTkjVFJSGaVlYkUZVqZMTCqtsAKLBSnLyKWZsaWpOBKmdmShlVieakOOERj-tzNSWR_A9ni_mB1vdnhCzrEA5J0mKucyHLk6ymmBifg3FmzNAv5GCS3PTW_-z7_QLbjhs2u22y2H27Dl6jtw_RfNxbuwmDV0NkV4ZJiws72FxgT5nH2c15a9WyKZszEyu2V4v9txwc8nupn7XVNG7nFs4qgX3ze8MY2PHtPBBUldMdI7wXFF12B_Dz5cyozvw6Be1O4BsJBXGvPDvNJGitRKXUVlXHKbVJiHY2o8hFc9CpTxkuzkDHKusDQjxKgLxAzh2WbsshMi-eOoMYFpM4LEw9sLi-aT8rFISUEqf7rVhhNlFOPUTJbzUNo0FWFphvCSoKgoxOHXMdq_qYGTIrEwtYsskJBWmxjCTg9F5WPfSl3g8OG_bz-FqwhQdXRQHD6CazEZK7ft8DswWDdf3GO4Yr6u56vmiV9ZDM4uG6o_AW24Zo4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+for+Coastal+Wind+Speed+Based+on+Improved+Variational+Mode+Decomposition+and+Recurrent+Neural+Network&rft.jtitle=Energies+%28Basel%29&rft.au=Du%2C+Muyuan&rft.au=Zhang%2C+Zhimeng&rft.au=Ji%2C+Chunning&rft.date=2025-02-01&rft.pub=MDPI+AG&rft.issn=1996-1073&rft.eissn=1996-1073&rft.volume=18&rft.issue=3&rft_id=info:doi/10.3390%2Fen18030542&rft.externalDocID=A832506304 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1073&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1073&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1073&client=summon |