Pricing Asian option by the FFT with higher-order error convergence rate under Lévy processes

Pricing Asian options is a long-standing hard problem; there is no analytical formula for the probability density of its payoff even when the process of the underlying asset follows the simple lognormal diffusion process. It is known that the density function of a discretely-sampled Asian option’s p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 252; s. 418 - 437
Hlavní autoři: Chiu, Chun-Yuan, Dai, Tian-Shyr, Lyuu, Yuh-Dauh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.02.2015
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Pricing Asian options is a long-standing hard problem; there is no analytical formula for the probability density of its payoff even when the process of the underlying asset follows the simple lognormal diffusion process. It is known that the density function of a discretely-sampled Asian option’s payoff can be efficiently approximated by the Fast Fourier Transform (FFT). As a result, we can accurately price the option under more general Lévy processes. This paper shows that the pricing error of this approach, called the FFT approach, can be decomposed into the truncation error, the integration error, and the interpolation error. We prove that previous algorithms that follow the FFT approach converge quadratically. To improve the error convergence rate, our proposed algorithms reduce the integration error by the higher-order Newton–Cotes formulas and new integration rules derived from the Lagrange interpolating polynomial. The interpolation error is reduced by the higher-order Newton divided-difference interpolation formula. Consequently, our algorithms can be sped up by the FFT to achieve the same time complexity as previous algorithms, but with a faster error convergence rate. Numerical results are given to verify the efficiency and the fast convergence of our algorithms.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.12.002