Day-ahead price forecasting in restructured power systems using artificial neural networks

Over the past 15 years most electricity supply companies around the world have been restructured from monopoly utilities to deregulated competitive electricity markets. Market participants in the restructured electricity markets find short-term electricity price forecasting (STPF) crucial in formula...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electric power systems research Ročník 78; číslo 8; s. 1332 - 1342
Hlavní autoři: Vahidinasab, V., Jadid, S., Kazemi, A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.08.2008
Elsevier
Témata:
ISSN:0378-7796, 1873-2046
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Over the past 15 years most electricity supply companies around the world have been restructured from monopoly utilities to deregulated competitive electricity markets. Market participants in the restructured electricity markets find short-term electricity price forecasting (STPF) crucial in formulating their risk management strategies. They need to know future electricity prices as their profitability depends on them. This research project classifies and compares different techniques of electricity price forecasting in the literature and selects artificial neural networks (ANN) as a suitable method for price forecasting. To perform this task, market knowledge should be used to optimize the selection of input data for an electricity price forecasting tool. Then sensitivity analysis is used in this research to aid in the selection of the optimum inputs of the ANN and fuzzy c-mean (FCM) algorithm is used for daily load pattern clustering. Finally, ANN with a modified Levenberg–Marquardt (LM) learning algorithm are implemented for forecasting prices in Pennsylvania–New Jersey–Maryland (PJM) market. The forecasting results were compared with the previous works and showed that the results are reasonable and accurate.
AbstractList Over the past 15 years most electricity supply companies around the world have been restructured from monopoly utilities to deregulated competitive electricity markets. Market participants in the restructured electricity markets find short-term electricity price forecasting (STPF) crucial in formulating their risk management strategies. They need to know future electricity prices as their profitability depends on them. This research project classifies and compares different techniques of electricity price forecasting in the literature and selects artificial neural networks (ANN) as a suitable method for price forecasting. To perform this task, market knowledge should be used to optimize the selection of input data for an electricity price forecasting tool. Then sensitivity analysis is used in this research to aid in the selection of the optimum inputs of the ANN and fuzzy c-mean (FCM) algorithm is used for daily load pattern clustering. Finally, ANN with a modified Levenberg–Marquardt (LM) learning algorithm are implemented for forecasting prices in Pennsylvania–New Jersey–Maryland (PJM) market. The forecasting results were compared with the previous works and showed that the results are reasonable and accurate.
Author Jadid, S.
Vahidinasab, V.
Kazemi, A.
Author_xml – sequence: 1
  givenname: V.
  surname: Vahidinasab
  fullname: Vahidinasab, V.
  email: vahidinasab@iust.ac.ir
– sequence: 2
  givenname: S.
  surname: Jadid
  fullname: Jadid, S.
– sequence: 3
  givenname: A.
  surname: Kazemi
  fullname: Kazemi, A.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20370334$$DView record in Pascal Francis
BookMark eNp9kD1PwzAURS1UJErhDzBlYUx4ttM4kVhQ-ZQqscDCYjn2M7i0SWU7VP33uBQWhk53uedK95ySUdd3SMgFhYICra4WBa6DLxiAKCgrAOgRGdNa8JxBWY3IGLiocyGa6oSchrAAgKoR0zF5u1XbXH2gMtnaO42Z7T1qFaLr3jPXZR5D9IOOg8fU6Dfos7ANEVchG8Kuo3x01mmnllmHg_-JuOn9Zzgjx1YtA57_5oS83t-9zB7z-fPD0-xmnmvOIebIjGlbUzW6baiuS6E1QC1aa62pW8WEAcM4qxqcslKXqrE0AdN2KqqqVpzzCbnc765V0Gppveq0CzLdWSm_lSxdB87L1Kv3Pe37EDxaqV1U0fVd9MotJQW5cykXcudS7lxKymRymVD2D_1bPwhd7yFM578cehm0w06jcUlxlKZ3h_BvN-6Spg
CODEN EPSRDN
CitedBy_id crossref_primary_10_1016_j_neucom_2013_08_025
crossref_primary_10_1016_j_apenergy_2018_02_069
crossref_primary_10_1016_j_enconman_2010_05_006
crossref_primary_10_1016_j_ijepes_2010_08_008
crossref_primary_10_1007_s11081_012_9200_8
crossref_primary_10_1080_15325008_2013_769034
crossref_primary_10_1016_j_eneco_2017_06_020
crossref_primary_10_1016_j_epsr_2013_04_007
crossref_primary_10_1002_etep_1791
crossref_primary_10_1016_j_asoc_2016_07_011
crossref_primary_10_1016_j_tej_2019_106628
crossref_primary_10_1080_15567249_2011_557685
crossref_primary_10_1016_j_ijepes_2014_08_018
crossref_primary_10_1007_s00521_012_0875_8
crossref_primary_10_1007_s00500_013_1168_6
crossref_primary_10_1016_j_asoc_2009_10_004
crossref_primary_10_3390_math10122012
crossref_primary_10_1108_17506220911005731
crossref_primary_10_1515_snde_2019_0009
crossref_primary_10_1016_j_enconman_2010_02_023
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_1016_j_epsr_2012_11_007
crossref_primary_10_1080_15325000802599353
crossref_primary_10_1016_j_epsr_2009_11_007
crossref_primary_10_1109_TPWRS_2009_2021207
crossref_primary_10_1080_10962247_2012_755940
crossref_primary_10_3846_16484142_2017_1286521
crossref_primary_10_1016_j_renene_2015_05_024
crossref_primary_10_1080_23311916_2017_1358545
crossref_primary_10_3390_en15197336
crossref_primary_10_1016_j_epsr_2019_106080
crossref_primary_10_1016_j_renene_2013_12_042
crossref_primary_10_1016_j_energy_2011_02_003
crossref_primary_10_1016_j_neucom_2011_02_017
crossref_primary_10_1016_j_enconman_2014_04_012
crossref_primary_10_3390_info8010031
crossref_primary_10_1016_j_ijepes_2019_03_056
crossref_primary_10_1016_j_apenergy_2010_05_012
crossref_primary_10_1016_j_apenergy_2016_03_089
crossref_primary_10_3390_en6115897
crossref_primary_10_3390_en12193665
crossref_primary_10_1007_s40998_020_00347_z
crossref_primary_10_1016_j_epsr_2016_08_005
crossref_primary_10_1515_eb_2016_0017
crossref_primary_10_1016_j_epsr_2008_12_001
crossref_primary_10_1007_s12543_011_0089_2
crossref_primary_10_1007_s12667_012_0061_1
crossref_primary_10_1016_j_epsr_2015_03_027
crossref_primary_10_1016_j_epsr_2016_10_067
crossref_primary_10_1016_j_cie_2012_03_016
crossref_primary_10_1016_j_apenergy_2020_115599
crossref_primary_10_1016_j_eneco_2025_108651
crossref_primary_10_1007_s00170_011_3804_6
crossref_primary_10_1155_2014_249208
crossref_primary_10_1016_j_jfds_2016_10_001
crossref_primary_10_1016_j_enpol_2018_08_053
crossref_primary_10_1007_s10661_008_0531_z
crossref_primary_10_7232_JKIIE_2013_39_1_030
crossref_primary_10_1002_etep_316
crossref_primary_10_3390_app15010183
crossref_primary_10_1109_ACCESS_2021_3100076
crossref_primary_10_1016_j_apenergy_2008_08_014
crossref_primary_10_1016_j_ijforecast_2014_08_008
crossref_primary_10_1016_j_petrol_2015_07_002
crossref_primary_10_1080_02533839_2013_814993
crossref_primary_10_1016_j_apenergy_2017_04_039
crossref_primary_10_1016_j_rser_2011_08_014
crossref_primary_10_1007_s00450_016_0303_x
crossref_primary_10_46904_eea_25_73_2_1108010
crossref_primary_10_1016_j_enconman_2009_12_019
crossref_primary_10_1007_s00521_018_3652_5
crossref_primary_10_1177_1063293X11424512
Cites_doi 10.1109/TPWRS.2002.804943
10.1109/TPWRS.2002.1007902
10.1049/ip-gtd:20045131
10.1109/TPWRS.2004.840412
10.1109/59.780895
10.1016/j.ijforecast.2004.12.005
10.1049/ip-gtd:20020371
10.1109/TPWRS.2005.846054
10.1109/TPWRS.2002.807062
10.1109/72.329697
10.1109/TPWRS.2004.837759
10.1109/TPWRS.2005.846044
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.epsr.2007.12.001
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2046
EndPage 1342
ExternalDocumentID 20370334
10_1016_j_epsr_2007_12_001
S0378779607002362
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c330t-e2ddbbd69cb91c847cc0087bfffd8ba27d0d23269e524c4a9f1ddb5b57668a333
ISICitedReferencesCount 92
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000256572200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0378-7796
IngestDate Mon Jul 21 09:16:08 EDT 2025
Sat Nov 29 06:43:19 EST 2025
Tue Nov 18 22:25:28 EST 2025
Fri Feb 23 02:27:39 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Electricity price forecasting
Sensitivity analysis
Levenberg–Marquardt algorithm
Fuzzy clustering method
Artificial neural networks
Short term
Automatic classification
Deregulation
Profitability
Power system economics
Restructuration
Daily variation
Neural network
Risk analysis
Implementation
Electrical network
Levenberg Marquardt algorithm
Pricing
Power markets
Economic aspect
Open market
Risk management
Learning algorithm
Comparative study
Levenberg-Marquardt algorithm
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-e2ddbbd69cb91c847cc0087bfffd8ba27d0d23269e524c4a9f1ddb5b57668a333
PageCount 11
ParticipantIDs pascalfrancis_primary_20370334
crossref_citationtrail_10_1016_j_epsr_2007_12_001
crossref_primary_10_1016_j_epsr_2007_12_001
elsevier_sciencedirect_doi_10_1016_j_epsr_2007_12_001
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Electric power systems research
PublicationYear 2008
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Conejo, Contreras, Plazas, Espinola (bib8) 2005; 21
Hong, Hsiao (bib11) 2002; 149
Gonzalez, Roque, Garcia (bib15) 2005; 20
Szkuta, Sanavria, Dillon (bib10) 1999; 14
Contreras, Espínola, Nogales, Conejo (bib2) 2003; 18
Guo, Luh (bib14) 2004; 19
Shahidehpour, Yamin, Li (bib1) 2002
The MathWorks, MATLAB. Available online at the following website
Zhang, Luh, Kasiviswanathan (bib13) 2003; 18
Haykin (bib17) 1999
Wang (bib16) 1997
.
Nogales, Contreras, Conejo, Espínola (bib5) 2002; 17
David, Wen (bib3) 2000
Garcia, Contreras, van Akkeren, Garcia (bib9) 2005; 20
Zhou, Yan, Ni, Li, Nie (bib6) 2006; 153
Hong, Hsiao (bib12) 2001
PJM, Pennsylvania–New Jersey–Maryland market. Available online at the following website
Khosravi, Barghinia, Ansarimehr (bib19) 2006
Conejo, Plazas, Espinola, Molina (bib7) 2005; 20
Hagan, Menhaj (bib18) 1994; 5
Zhang (10.1016/j.epsr.2007.12.001_bib13) 2003; 18
10.1016/j.epsr.2007.12.001_bib4
Shahidehpour (10.1016/j.epsr.2007.12.001_bib1) 2002
David (10.1016/j.epsr.2007.12.001_bib3) 2000
Conejo (10.1016/j.epsr.2007.12.001_bib7) 2005; 20
Nogales (10.1016/j.epsr.2007.12.001_bib5) 2002; 17
Szkuta (10.1016/j.epsr.2007.12.001_bib10) 1999; 14
Hong (10.1016/j.epsr.2007.12.001_bib12) 2001
Gonzalez (10.1016/j.epsr.2007.12.001_bib15) 2005; 20
Khosravi (10.1016/j.epsr.2007.12.001_bib19) 2006
10.1016/j.epsr.2007.12.001_bib20
Hong (10.1016/j.epsr.2007.12.001_bib11) 2002; 149
Guo (10.1016/j.epsr.2007.12.001_bib14) 2004; 19
Haykin (10.1016/j.epsr.2007.12.001_bib17) 1999
Garcia (10.1016/j.epsr.2007.12.001_bib9) 2005; 20
Wang (10.1016/j.epsr.2007.12.001_bib16) 1997
Conejo (10.1016/j.epsr.2007.12.001_bib8) 2005; 21
Hagan (10.1016/j.epsr.2007.12.001_bib18) 1994; 5
Contreras (10.1016/j.epsr.2007.12.001_bib2) 2003; 18
Zhou (10.1016/j.epsr.2007.12.001_bib6) 2006; 153
References_xml – start-page: 1782
  year: 2006
  end-page: 1788
  ident: bib19
  article-title: New momentum adjustment technique for Levenberg–Marquardt neural network training used in short term load forecasting
  publication-title: Proceedings of 21st International Power System Conference (PSC’06)
– volume: 20
  start-page: 13
  year: 2005
  end-page: 24
  ident: bib15
  article-title: Modeling and forecasting electricity prices with input/output hidden Markov models
  publication-title: IEEE Trans. Power Syst.
– volume: 18
  start-page: 1014
  year: 2003
  end-page: 1020
  ident: bib2
  article-title: ARIMA models to predict next-day electricity prices
  publication-title: IEEE Trans. Power Syst.
– volume: 18
  start-page: 99
  year: 2003
  end-page: 105
  ident: bib13
  article-title: Energy clearing price prediction and confidence interval estimation with cascaded neural networks
  publication-title: IEEE Trans. Power Syst.
– volume: 153
  start-page: 187
  year: 2006
  end-page: 195
  ident: bib6
  article-title: Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach
  publication-title: IEE Proc.: Gener., Transm. Distrib.
– volume: 19
  start-page: 1867
  year: 2004
  end-page: 1876
  ident: bib14
  article-title: Improving market clearing price prediction by using a committee machine of neural networks
  publication-title: IEEE Trans. Power Syst.
– start-page: 2168
  year: 2000
  end-page: 2173
  ident: bib3
  article-title: Strategic bidding in competitive electricity markets: a literature survey
  publication-title: Proceedings of IEEE Power Engineering Society 2000 Summer Meeting, vol. 4
– reference: PJM, Pennsylvania–New Jersey–Maryland market. Available online at the following website:
– year: 2002
  ident: bib1
  article-title: Market Operations in Electric Power Systems, Forecasting, Scheduling and Risk Management
– year: 1997
  ident: bib16
  article-title: A Course in Fuzzy Systems and Control
– volume: 149
  start-page: 621
  year: 2002
  end-page: 626
  ident: bib11
  article-title: Locational marginal price forecasting in deregulated electric markets using a recurrent neural network
  publication-title: IEE Proc.: Gener., Transm. Distrib.
– year: 2001
  ident: bib12
  article-title: Locational marginal price forecasting in deregulated electric markets using artificial intelligence
  publication-title: Proceedings of IEEE PES Winter Meeting
– volume: 5
  start-page: 989
  year: 1994
  end-page: 993
  ident: bib18
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Networks
– reference: The MathWorks, MATLAB. Available online at the following website:
– volume: 21
  start-page: 435
  year: 2005
  end-page: 462
  ident: bib8
  article-title: Forecasting electricity prices for a day-ahead pool based energy market
  publication-title: Int. J. Forecasting
– volume: 14
  start-page: 851
  year: 1999
  end-page: 857
  ident: bib10
  article-title: Electricity price short term forecasting using artificial neural networks
  publication-title: IEEE Trans. Power Syst.
– volume: 20
  start-page: 1035
  year: 2005
  end-page: 1042
  ident: bib7
  article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
  publication-title: IEEE Trans. Power Syst.
– volume: 20
  start-page: 867
  year: 2005
  end-page: 874
  ident: bib9
  article-title: A GARCH forecasting model to predict day-ahead electricity prices
  publication-title: IEEE Trans. Power Syst.
– volume: 17
  start-page: 342
  year: 2002
  end-page: 348
  ident: bib5
  article-title: Forecasting next-day electricity prices by time series models
  publication-title: IEEE Trans. Power Syst.
– reference: .
– year: 1999
  ident: bib17
  article-title: Neural Networks (A Comprehensive Foundation)
– volume: 18
  start-page: 1014
  issue: 3
  year: 2003
  ident: 10.1016/j.epsr.2007.12.001_bib2
  article-title: ARIMA models to predict next-day electricity prices
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.804943
– volume: 17
  start-page: 342
  issue: 2
  year: 2002
  ident: 10.1016/j.epsr.2007.12.001_bib5
  article-title: Forecasting next-day electricity prices by time series models
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.1007902
– volume: 153
  start-page: 187
  issue: 2
  year: 2006
  ident: 10.1016/j.epsr.2007.12.001_bib6
  article-title: Electricity price forecasting with confidence-interval estimation through an extended ARIMA approach
  publication-title: IEE Proc.: Gener., Transm. Distrib.
  doi: 10.1049/ip-gtd:20045131
– volume: 20
  start-page: 13
  issue: 1
  year: 2005
  ident: 10.1016/j.epsr.2007.12.001_bib15
  article-title: Modeling and forecasting electricity prices with input/output hidden Markov models
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.840412
– volume: 14
  start-page: 851
  issue: 3
  year: 1999
  ident: 10.1016/j.epsr.2007.12.001_bib10
  article-title: Electricity price short term forecasting using artificial neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.780895
– year: 1997
  ident: 10.1016/j.epsr.2007.12.001_bib16
– volume: 21
  start-page: 435
  year: 2005
  ident: 10.1016/j.epsr.2007.12.001_bib8
  article-title: Forecasting electricity prices for a day-ahead pool based energy market
  publication-title: Int. J. Forecasting
  doi: 10.1016/j.ijforecast.2004.12.005
– start-page: 2168
  year: 2000
  ident: 10.1016/j.epsr.2007.12.001_bib3
  article-title: Strategic bidding in competitive electricity markets: a literature survey
– start-page: 1782
  year: 2006
  ident: 10.1016/j.epsr.2007.12.001_bib19
  article-title: New momentum adjustment technique for Levenberg–Marquardt neural network training used in short term load forecasting
– volume: 149
  start-page: 621
  year: 2002
  ident: 10.1016/j.epsr.2007.12.001_bib11
  article-title: Locational marginal price forecasting in deregulated electric markets using a recurrent neural network
  publication-title: IEE Proc.: Gener., Transm. Distrib.
  doi: 10.1049/ip-gtd:20020371
– ident: 10.1016/j.epsr.2007.12.001_bib20
– year: 2002
  ident: 10.1016/j.epsr.2007.12.001_bib1
– year: 2001
  ident: 10.1016/j.epsr.2007.12.001_bib12
  article-title: Locational marginal price forecasting in deregulated electric markets using artificial intelligence
– volume: 20
  start-page: 1035
  issue: 2
  year: 2005
  ident: 10.1016/j.epsr.2007.12.001_bib7
  article-title: Day-ahead electricity price forecasting using the wavelet transform and ARIMA models
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.846054
– volume: 18
  start-page: 99
  issue: 1
  year: 2003
  ident: 10.1016/j.epsr.2007.12.001_bib13
  article-title: Energy clearing price prediction and confidence interval estimation with cascaded neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2002.807062
– ident: 10.1016/j.epsr.2007.12.001_bib4
– volume: 5
  start-page: 989
  issue: 6
  year: 1994
  ident: 10.1016/j.epsr.2007.12.001_bib18
  article-title: Training feedforward networks with the Marquardt algorithm
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.329697
– volume: 19
  start-page: 1867
  issue: 4
  year: 2004
  ident: 10.1016/j.epsr.2007.12.001_bib14
  article-title: Improving market clearing price prediction by using a committee machine of neural networks
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2004.837759
– volume: 20
  start-page: 867
  issue: 2
  year: 2005
  ident: 10.1016/j.epsr.2007.12.001_bib9
  article-title: A GARCH forecasting model to predict day-ahead electricity prices
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2005.846044
– year: 1999
  ident: 10.1016/j.epsr.2007.12.001_bib17
SSID ssj0006975
Score 2.1992886
Snippet Over the past 15 years most electricity supply companies around the world have been restructured from monopoly utilities to deregulated competitive electricity...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1332
SubjectTerms Applied sciences
Artificial neural networks
Electrical engineering. Electrical power engineering
Electrical power engineering
Electricity price forecasting
Exact sciences and technology
Fuzzy clustering method
Levenberg–Marquardt algorithm
Miscellaneous
Operation. Load control. Reliability
Power networks and lines
Sensitivity analysis
Title Day-ahead price forecasting in restructured power systems using artificial neural networks
URI https://dx.doi.org/10.1016/j.epsr.2007.12.001
Volume 78
WOSCitedRecordID wos000256572200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZL0kNLKX3S9BF06C04eCXbko5Lm9IXodA0LL0YSZaoQ-Iu8SYkOfaXd_Sw4k1oaAu9eBdhy1rP59HM7Mw3CL2yueFGKpkZVpissCLPRFHKzHGhsEqBMyZ915JPbHeXz-fi82Tyc6iFOT1kXcfPzsTiv4oaxkDYrnT2L8SdJoUB-A5ChyOIHY5_JPg38jyToGJd_T9oAZdHaLTsl6l4JVDGnrjE84XrkRbZnPutEx83cFNGWglHduk_fKp4vxLF9-1zWn1lisgdlGLM-_J7C7uj7KX_32d_O2XsyKYNIek09FFemCOfXDDbXglG8JQKFyNk16pkQmUWeKqMiUh5HRQtZxTEFsOPURMzPkIcH6lVcKTJaIue0sDIdU39h0jEAZzWHwd6ShfqjQtcpdX-4lblFgU6z7Howza-TlgpQLmvz97vzD-k_bwSnq45_YpYehWyBK_e6Xfmzd2F7OGls6FbysiE2buP7kXfA88CZh6giekeojsjRspH6FtCD_bowSP04LbDY_RgL3ocRY89evAlenBADx7Q8xh9fbuz9_pdFttvZJrSfJkZ0jRKNZXQSkw1WDFaOwJDZa1tuJKENXkD9nglTEkKXUhhp3BBqcCDrbiklD5Ba92PzjxFWJHGWMYayYktlLbcMA2uhyHUVlXOiw00HZ5arSM3vWuRclgPSYgHtXvSrmkqq6fEZWJuoK10zSIws9x4djkIo462ZbAZa8DOjddtrkgu3YoAHnJKi2f_OPFzdPvyBXqB1kB45iW6pU-XbX-8GTH4C05BrTU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Day-ahead+price+forecasting+in+restructured+power+systems+using+artificial+neural+networks&rft.jtitle=Electric+power+systems+research&rft.au=Vahidinasab%2C+V.&rft.au=Jadid%2C+S.&rft.au=Kazemi%2C+A.&rft.date=2008-08-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=78&rft.issue=8&rft.spage=1332&rft.epage=1342&rft_id=info:doi/10.1016%2Fj.epsr.2007.12.001&rft.externalDocID=S0378779607002362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon