Performance evaluation of water collection systems for a hybrid dephlegmator
•A water collection system is investigated to determine its collection effectiveness, drainage capability and pressure drop.•Modifications are made that increase the collection effectiveness from 92% to 100%.•Parametric CFD models are used to determine the loss coefficients for the trough and variou...
Uloženo v:
| Vydáno v: | Applied thermal engineering Ročník 105; s. 971 - 978 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
25.07.2016
|
| Témata: | |
| ISSN: | 1359-4311 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A water collection system is investigated to determine its collection effectiveness, drainage capability and pressure drop.•Modifications are made that increase the collection effectiveness from 92% to 100%.•Parametric CFD models are used to determine the loss coefficients for the trough and various basin systems designs.•Empirical relations are proposed using the parametric CFD models.•A comparison shows that the trough system generally has the lowest loss coefficient and pumping head requirements.
Trough and basin water collection systems are used in wet-cooling towers and evaporative air-cooled heat exchangers to collect cooling or deluge water below the fill or heat exchanger bundle at the air inlet. Trough systems typically collect water in overlapping parallel troughs while allowing air to pass upwards between the troughs, whereas basin systems collect the water in a basin and the air enters laterally above the basin edge. The novel hybrid (dry/wet) dephlegmator (HDWD) requires a deluge water collection system supported high above the ground. A trough system is therefore considered the best option for this application. Apart from patents, limited information is found on the design and air-side loss coefficients of such systems and how they compare to equivalent basin systems. An existing trough collection system is therefore investigated experimentally to determine its collection effectiveness and drainage capability and to measure pressure drop characteristics. Modifications are made that increase the collection effectiveness from 92% to 100%. Parametric CFD models are developed and used to determine the loss coefficients for the trough and various basin system designs and empirical relations are proposed. A comparison shows that the trough system generally has the lowest loss coefficient and pumping head requirements. |
|---|---|
| AbstractList | •A water collection system is investigated to determine its collection effectiveness, drainage capability and pressure drop.•Modifications are made that increase the collection effectiveness from 92% to 100%.•Parametric CFD models are used to determine the loss coefficients for the trough and various basin systems designs.•Empirical relations are proposed using the parametric CFD models.•A comparison shows that the trough system generally has the lowest loss coefficient and pumping head requirements.
Trough and basin water collection systems are used in wet-cooling towers and evaporative air-cooled heat exchangers to collect cooling or deluge water below the fill or heat exchanger bundle at the air inlet. Trough systems typically collect water in overlapping parallel troughs while allowing air to pass upwards between the troughs, whereas basin systems collect the water in a basin and the air enters laterally above the basin edge. The novel hybrid (dry/wet) dephlegmator (HDWD) requires a deluge water collection system supported high above the ground. A trough system is therefore considered the best option for this application. Apart from patents, limited information is found on the design and air-side loss coefficients of such systems and how they compare to equivalent basin systems. An existing trough collection system is therefore investigated experimentally to determine its collection effectiveness and drainage capability and to measure pressure drop characteristics. Modifications are made that increase the collection effectiveness from 92% to 100%. Parametric CFD models are developed and used to determine the loss coefficients for the trough and various basin system designs and empirical relations are proposed. A comparison shows that the trough system generally has the lowest loss coefficient and pumping head requirements. |
| Author | Plessis, Jacques du Reuter, Hanno C.R. |
| Author_xml | – sequence: 1 givenname: Jacques du surname: Plessis fullname: Plessis, Jacques du – sequence: 2 givenname: Hanno C.R. surname: Reuter fullname: Reuter, Hanno C.R. |
| BookMark | eNqNkE1PAjEURbvARFD_QxduZ2zpfEDiRomoCYkudN082lco6UxJWzH8ewu40RWrl9y8e5J7RmTQ-x4JueWs5Iw3d5sStluX1hg6cNivynFOSyZKVrEBGXJRT4tKcH5JRjFuGOPjSVsNyeIdg_G50yukuAP3Bcn6nnpDvyFhoMo7h-qYxX1M2EWa_ynQ9X4ZrKYat2uHqw6SD9fkwoCLePN7r8jn_Olj9lIs3p5fZw-LQgnBUqFbrUVVN0I1BoRe4tSwpcAagClg2EzBqEqrijGFyjSTcWtEWyFgXYNo6lZckfsTVwUfY0Ajt8F2EPaSM3mwITfyrw15sCGZkNlGrj_-qyubjrNTAOvOhcxPEMxDdxaDjMpitqhtyL6k9vY80A9Vmo9o |
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2016_06_184 crossref_primary_10_1016_j_applthermaleng_2017_06_117 |
| Cites_doi | 10.1115/1.4004454 10.1115/1.1359236 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2016.03.040 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 978 |
| ExternalDocumentID | 10_1016_j_applthermaleng_2016_03_040 S1359431116303325 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FGOYB HZ~ R2- SEW ~HD |
| ID | FETCH-LOGICAL-c330t-d7dd34563c6fa3dbe9f0b3e5aa0ca0e69afc4dc400cecf6827f374eae55a36573 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000381656600095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-4311 |
| IngestDate | Sat Nov 29 07:02:07 EST 2025 Tue Nov 18 21:02:38 EST 2025 Fri Feb 23 02:43:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Troughs Water collection Counter flow Basin Inlet loss coefficient |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c330t-d7dd34563c6fa3dbe9f0b3e5aa0ca0e69afc4dc400cecf6827f374eae55a36573 |
| PageCount | 8 |
| ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2016_03_040 crossref_citationtrail_10_1016_j_applthermaleng_2016_03_040 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_03_040 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-07-25 |
| PublicationDateYYYYMMDD | 2016-07-25 |
| PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | M.R. Lefevre, Drainage Collection System. US Patent Number 4521350, 1985. Kröger (b0035) 2004 Reuter (b0045) 2010 Reuter, Kröger (b0050) 2011; 133 De Villiers, Kröger (b0030) 2001; 123 Terblanche (b0060) 2008 Cengel, Cimbala (b0010) 2006 De Villiers (b0025) 1997 Terblanche, Kröger (b0055) 1994; 10 Hamon thermal Europe (b0015) 2013 L. Korsell, Device in an Evaporative Cooler. US Patent No. 4427607, 1984. Anderson (b0005) 2014 Anderson (10.1016/j.applthermaleng.2016.03.040_b0005) 2014 10.1016/j.applthermaleng.2016.03.040_b0040 Reuter (10.1016/j.applthermaleng.2016.03.040_b0045) 2010 De Villiers (10.1016/j.applthermaleng.2016.03.040_b0030) 2001; 123 Reuter (10.1016/j.applthermaleng.2016.03.040_b0050) 2011; 133 Terblanche (10.1016/j.applthermaleng.2016.03.040_b0055) 1994; 10 Terblanche (10.1016/j.applthermaleng.2016.03.040_b0060) 2008 De Villiers (10.1016/j.applthermaleng.2016.03.040_b0025) 1997 Hamon thermal Europe (10.1016/j.applthermaleng.2016.03.040_b0015) 2013 Cengel (10.1016/j.applthermaleng.2016.03.040_b0010) 2006 Kröger (10.1016/j.applthermaleng.2016.03.040_b0035) 2004 10.1016/j.applthermaleng.2016.03.040_b0020 |
| References_xml | – year: 2008 ident: b0060 article-title: Investigation of Performance Enhancing Devices for the Rain Zone of Wet-Cooling Towers – year: 2006 ident: b0010 article-title: Fluid Mechanics Fundamentals and application – year: 1997 ident: b0025 article-title: Analysis of Heat, Mass and Momentum Transfer in the Rain Zone of Counter-Flow Cooling Towers – volume: 133 year: 2011 ident: b0050 article-title: Computational fluid dynamics analysis of cooling tower inlets publication-title: J. Fluids Eng., Trans. ASME – volume: 123 start-page: 460 year: 2001 end-page: 464 ident: b0030 article-title: Inlet losses in counterflow wet-cooling towers publication-title: ASME J. Eng. Gas Turbines Power – year: 2014 ident: b0005 article-title: Evaluation of the Performance Characteristics of a Hybrid (dry/wet) Induced Draft Dephlegmator – volume: 10 start-page: 41 year: 1994 end-page: 44 ident: b0055 article-title: Experimental evaluation of the aerodynamic inlet losses in cooling towers publication-title: South African Inst. Mech. Eng. R + D J. – reference: L. Korsell, Device in an Evaporative Cooler. US Patent No. 4427607, 1984. – reference: M.R. Lefevre, Drainage Collection System. US Patent Number 4521350, 1985. – year: 2010 ident: b0045 article-title: Performance Evaluation of Natural Draft Cooling Towers with Anisotropic Fills – year: 2013 ident: b0015 article-title: Wet Cooling Towers: Natural Draft Cooling Towers – year: 2004 ident: b0035 article-title: Air-Cooled Heat Exchangers and Cooling Towers: Thermal Flow Performance Evaluation and Design – volume: 10 start-page: 41 issue: 2 year: 1994 ident: 10.1016/j.applthermaleng.2016.03.040_b0055 article-title: Experimental evaluation of the aerodynamic inlet losses in cooling towers publication-title: South African Inst. Mech. Eng. R + D J. – year: 2004 ident: 10.1016/j.applthermaleng.2016.03.040_b0035 – volume: 133 issue: 8 year: 2011 ident: 10.1016/j.applthermaleng.2016.03.040_b0050 article-title: Computational fluid dynamics analysis of cooling tower inlets publication-title: J. Fluids Eng., Trans. ASME doi: 10.1115/1.4004454 – ident: 10.1016/j.applthermaleng.2016.03.040_b0020 – year: 1997 ident: 10.1016/j.applthermaleng.2016.03.040_b0025 – year: 2014 ident: 10.1016/j.applthermaleng.2016.03.040_b0005 – year: 2008 ident: 10.1016/j.applthermaleng.2016.03.040_b0060 – volume: 123 start-page: 460 issue: 2 year: 2001 ident: 10.1016/j.applthermaleng.2016.03.040_b0030 article-title: Inlet losses in counterflow wet-cooling towers publication-title: ASME J. Eng. Gas Turbines Power doi: 10.1115/1.1359236 – ident: 10.1016/j.applthermaleng.2016.03.040_b0040 – year: 2010 ident: 10.1016/j.applthermaleng.2016.03.040_b0045 – year: 2013 ident: 10.1016/j.applthermaleng.2016.03.040_b0015 – year: 2006 ident: 10.1016/j.applthermaleng.2016.03.040_b0010 |
| SSID | ssj0012874 |
| Score | 2.1691132 |
| Snippet | •A water collection system is investigated to determine its collection effectiveness, drainage capability and pressure drop.•Modifications are made that... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 971 |
| SubjectTerms | Basin Counter flow Inlet loss coefficient Troughs Water collection |
| Title | Performance evaluation of water collection systems for a hybrid dephlegmator |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.03.040 |
| Volume | 105 |
| WOSCitedRecordID | wos000381656600095&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1359-4311 databaseCode: AIEXJ dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012874 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELagRQgOiKcoL_nQ2yqrbBzbsTigqioqqKoqKGhvkV9pqbbZqrsL5d8zEzuP8pAWIS5RFCV24m8y-WLPfEPIti70pMCMZVEZkeQurxKjmUqMUzYHRupkk0j7-UAeHhbTqTqK5VIXTTkBWdfF1ZW6-K9QwzEAG1Nn_wLurlE4APsAOmwBdtiuBfzRIBWg1_JGUvhNoyIiIu9DgfAg47wIkZSj0--YvYWxsaczf3Kugw5xR11bvoqM8RyA9b2SYedfZxhUGyxDW_zijNyqW9Lxq1gEZF_X9Xy0O_4wHs45TAROZob85DAR1ibD9JFH6DsZVwnwkck155rygXtUodxK_NKqULznFyce5hPOxriEH58JHgnD8EQjSBv0nX6Syf6I3WPvQDBTxjJ-k2xmkivwdJs77_am77u1JVT4b37D4-3eJtt91N-f-_w9cRmQkeP75F78i6A7Af0H5IavH5K7A23JR-RgYAe0twM6r2hjB7S3AxrtgML5VNNgB3RoB4_Jp7d7x7v7SSydkVjG0mXipHMMuDGzotLMGa-q1DDPtU6tTr1QurK5g7cxtd5WoshkxWTutedcM8Ele0I26nntnxJaOGuE88yaPMu9EsZzozNhrSoyY2S1RV6341LaqCuP5U1mZRtAeFZeH9USR7VMWQmjukV4d_VF0FdZ87o3LQRl5IqBA5ZgRWu18OyfW3hO7vQvxwuysbxc-Zfklv26_LK4fBXN7gcNhJ5I |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+water+collection+systems+for+a+hybrid+dephlegmator&rft.jtitle=Applied+thermal+engineering&rft.au=Plessis%2C+Jacques+du&rft.au=Reuter%2C+Hanno+C.R.&rft.date=2016-07-25&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=105&rft.spage=971&rft.epage=978&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.03.040&rft.externalDocID=S1359431116303325 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |