A Multi-kernel Joint Sparse Graph for SAR Image Segmentation

Recently, more and more attention has been drawn on the study of sparse graph-based classification with respect to pattern recognition and computer vision. Sparse self-representation method features good category distinguishing performance, noise robustness, and data-adaptiveness. In this paper, a m...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE journal of selected topics in applied earth observations and remote sensing Ročník 9; číslo 3; s. 1265 - 1285
Hlavní autori: Gu, Jing, Jiao, Licheng, Yang, Shuyuan, Liu, Fang, Hou, Biao, Zhao, Zhiqiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.03.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1939-1404, 2151-1535
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recently, more and more attention has been drawn on the study of sparse graph-based classification with respect to pattern recognition and computer vision. Sparse self-representation method features good category distinguishing performance, noise robustness, and data-adaptiveness. In this paper, a multi-kernel joint sparse graph (MKJS-graph) is proposed to segment synthetic aperture radar (SAR) images. At first, an SAR image is over-segmented to many superpixels. Then, a new multikernel sparse representation (MKSR) model is used to express sparsely multiple features of the superpixels in high-dimensional projection space, which can reflect the global similarity of superpixels. Moreover, the local neighborhood spatial correlation of superpixels is combined with the global similarity of that to improve the segmentation performance by formulating the adjacent matrix for MKJS-graph. Integration of the global and local structures of the superpixels provides the MKJS-graph with favorable category distinguishing ability on segmenting SAR images polluted by speckle noise. The simulated, Ku-band, and X-band SAR images are tested through a series of experiments, and the results indicate that the proposed method is more competitive than other state-of-the-art algorithms in SAR image segmentation.
AbstractList Recently, more and more attention has been drawn on the study of sparse graph-based classification with respect to pattern recognition and computer vision. Sparse self-representation method features good category distinguishing performance, noise robustness, and data-adaptiveness. In this paper, a multi-kernel joint sparse graph (MKJS-graph) is proposed to segment synthetic aperture radar (SAR) images. At first, an SAR image is over-segmented to many superpixels. Then, a new multi-kernel sparse representation (MKSR) model is used to express sparsely multiple features of the superpixels in high-dimensional projection space, which can reflect the global similarity of superpixels. Moreover, the local neighborhood spatial correlation of superpixels is combined with the global similarity of that to improve the segmentation performance by formulating the adjacent matrix for MKJS-graph. Integration of the global and local structures of the superpixels provides the MKJS-graph with favorable category distinguishing ability on segmenting SAR images polluted by speckle noise. The simulated, Ku-band, and $X$-band SAR images are tested through a series of experiments, and the results indicate that the proposed method is more competitive than other state-of-the-art algorithms in SAR image segmentation.
Recently, more and more attention has been drawn on the study of sparse graph-based classification with respect to pattern recognition and computer vision. Sparse self-representation method features good category distinguishing performance, noise robustness, and data-adaptiveness. In this paper, a multi-kernel joint sparse graph (MKJS-graph) is proposed to segment synthetic aperture radar (SAR) images. At first, an SAR image is over-segmented to many superpixels. Then, a new multikernel sparse representation (MKSR) model is used to express sparsely multiple features of the superpixels in high-dimensional projection space, which can reflect the global similarity of superpixels. Moreover, the local neighborhood spatial correlation of superpixels is combined with the global similarity of that to improve the segmentation performance by formulating the adjacent matrix for MKJS-graph. Integration of the global and local structures of the superpixels provides the MKJS-graph with favorable category distinguishing ability on segmenting SAR images polluted by speckle noise. The simulated, Ku-band, and X-band SAR images are tested through a series of experiments, and the results indicate that the proposed method is more competitive than other state-of-the-art algorithms in SAR image segmentation.
Recently, more and more attention has been drawn on the study of sparse graph-based classification with respect to pattern recognition and computer vision. Sparse self-representation method features good category distinguishing performance, noise robustness, and data-adaptiveness. In this paper, a multi-kernel joint sparse graph (MKJS-graph) is proposed to segment synthetic aperture radar (SAR) images. At first, an SAR image is over-segmented to many superpixels. Then, a new multi-kernel sparse representation (MKSR) model is used to express sparsely multiple features of the superpixels in high-dimensional projection space, which can reflect the global similarity of superpixels. Moreover, the local neighborhood spatial correlation of superpixels is combined with the global similarity of that to improve the segmentation performance by formulating the adjacent matrix for MKJS-graph. Integration of the global and local structures of the superpixels provides the MKJS-graph with favorable category distinguishing ability on segmenting SAR images polluted by speckle noise. The simulated, Ku-band, and [Formula Omitted]-band SAR images are tested through a series of experiments, and the results indicate that the proposed method is more competitive than other state-of-the-art algorithms in SAR image segmentation.
Author Yang, Shuyuan
Jiao, Licheng
Hou, Biao
Zhao, Zhiqiang
Gu, Jing
Liu, Fang
Author_xml – sequence: 1
  givenname: Jing
  surname: Gu
  fullname: Gu, Jing
  email: xuer6126@126.com
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China
– sequence: 2
  givenname: Licheng
  surname: Jiao
  fullname: Jiao, Licheng
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China
– sequence: 3
  givenname: Shuyuan
  surname: Yang
  fullname: Yang, Shuyuan
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China
– sequence: 4
  givenname: Fang
  surname: Liu
  fullname: Liu, Fang
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China
– sequence: 5
  givenname: Biao
  surname: Hou
  fullname: Hou, Biao
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China
– sequence: 6
  givenname: Zhiqiang
  surname: Zhao
  fullname: Zhao, Zhiqiang
  organization: Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education of China, Xidian University, Xi'an, China
BookMark eNqFkLFuwjAQhq2KSgXaJ2CJ1KVLqM-Ok1jqglBLQVSVCJ0t45xpaEioHYa-fYOCOrB0uhv-73T_NyC9qq6QkBHQMQCVj4tsPVllY0ZBjJmgTEq4In0GAkIQXPRIHySXIUQ0uiED73eUxiyRvE-eJsHbsWyK8AtdhWWwqIuqCbKDdh6DmdOHz8DWLsgmq2C-11sMMtzusWp0U9TVLbm2uvR4d55D8vHyvJ6-hsv32Xw6WYaGc9qEeZJQzkUimLF5YixYNDmmsbA6wii3uUwtUNTtylBIo2WUs3gjrNlQnseUD8lDd_fg6u8j-kbtC2-wLHWF9dErSCGmbW8etdH7i-iuPrqq_U5BkiZMpDGcUrJLGVd779AqU3SVGqeLUgFVJ6-q86pOXtXZa8vyC_bgir12P_9Qo44qEPGPSHhMJTD-C3f0hUY
CODEN IJSTHZ
CitedBy_id crossref_primary_10_1007_s11042_021_11416_8
crossref_primary_10_1109_JSTARS_2020_2997666
crossref_primary_10_1109_TSMC_2019_2912206
crossref_primary_10_1109_TGRS_2018_2888891
crossref_primary_10_1016_j_patcog_2016_11_015
crossref_primary_10_1016_j_knosys_2016_12_006
crossref_primary_10_1016_j_patcog_2017_09_016
crossref_primary_10_1109_JSTARS_2017_2716620
crossref_primary_10_1016_j_sigpro_2020_107518
crossref_primary_10_1109_JSTARS_2022_3218983
crossref_primary_10_1109_TGRS_2020_3041281
crossref_primary_10_1109_ACCESS_2018_2889929
crossref_primary_10_3390_rs9101085
crossref_primary_10_1109_JSTARS_2017_2743338
crossref_primary_10_1587_transinf_2017EDL8281
crossref_primary_10_1109_JSTARS_2016_2524918
crossref_primary_10_1109_TGRS_2021_3108585
crossref_primary_10_3233_JIFS_202401
crossref_primary_10_1109_TFUZZ_2017_2686804
crossref_primary_10_1109_JSTARS_2020_2987653
crossref_primary_10_1109_LGRS_2017_2689506
crossref_primary_10_1109_TGRS_2019_2941288
crossref_primary_10_1109_TGRS_2023_3307825
crossref_primary_10_3390_rs10060906
Cites_doi 10.2528/PIER13041503
10.1109/CVPR.2005.38
10.1126/science.290.5500.2323
10.1137/080716542
10.1109/ICIG.2011.86
10.1109/LGRS.2013.2292820
10.1162/089976603321780317
10.1109/36.35954
10.1109/TGRS.2012.2201730
10.1109/TIP.2014.2322938
10.1109/IGARSS.2012.6351715
10.1016/j.neucom.2014.05.010
10.1080/2150704X.2012.723146
10.1109/TIP.2010.2040763
10.1016/j.neucom.2011.08.018
10.1109/83.951532
10.1109/TSP.2011.2179539
10.1109/TCSVT.2003.818352
10.1109/IGARSS.2009.5417941
10.1109/ICCV.2011.6126528
10.7551/mitpress/6173.003.0016
10.1109/TPAMI.2008.216
10.1109/TIP.2010.2050625
10.1109/TPAMI.2007.70844
10.1109/97.991133
10.1007/s11045-013-0225-8
10.1109/TPAMI.2011.274
10.1109/34.868688
10.1007/978-3-642-33506-8_7
10.1109/TPAMI.2008.15
10.1109/TPAMI.2012.62
10.1109/CVPR.2009.5206547
10.1016/j.ins.2011.02.025
10.1016/j.sigpro.2012.08.024
10.1109/TIT.2005.860430
10.1109/JSTARS.2012.2201249
10.1109/TIP.2009.2038764
10.1109/KAMW.2008.4810503
10.1109/36.673672
10.1016/j.patcog.2013.07.003
10.1109/ICNC.2009.447
10.1109/APSAR.2009.5374114
10.1109/APSAR.2009.5374117
10.1109/TPAMI.2008.79
10.1109/TPAMI.2012.120
10.1007/978-3-642-33506-8_55
10.1109/TSP.2006.881199
10.1109/JSTARS.2012.2230435
10.1109/TGRS.2012.2203604
10.1109/TPAMI.2009.96
10.1109/RADAR.2011.5960546
10.1109/TGRS.2013.2287273
10.1109/TSMC.1973.4309314
10.1109/BIBE.2012.6399658
10.1109/TGRS.2008.918647
10.1109/JSTARS.2013.2255119
10.1016/j.asoc.2011.05.039
10.1109/JPROC.2010.2044470
10.1109/CVPR.2011.5995393
10.1109/TGRS.2007.895416
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/JSTARS.2015.2502991
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 1285
ExternalDocumentID 4047840781
10_1109_JSTARS_2015_2502991
7360912
Genre orig-research
GrantInformation_xml – fundername: National Basic Research Program (973 Program) of China
  grantid: 2013CB329402
– fundername: Program for Cheung Kong Scholars and Innovative Research Team in University
  grantid: IRT1170
– fundername: Major Research Plan of the National Natural Science Foundation of China
  grantid: 91438201; 91438103
– fundername: Fund for Foreign Scholars in University Research and Teaching Programs
  grantid: B07048
– fundername: National Natural Science Foundation of China
  grantid: 61573267; 61473215; 61472306; 61271302; 61272282; 61202176; 61173090
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
RIG
ID FETCH-LOGICAL-c330t-d770335752cfd7cf1fecde865fa4e4dfd98f10ea4df2e59ca94d26b5fcb03d603
IEDL.DBID RIE
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000373054100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1939-1404
IngestDate Fri Sep 05 08:16:41 EDT 2025
Sun Jul 13 02:56:13 EDT 2025
Tue Nov 18 22:30:42 EST 2025
Sat Nov 29 04:50:52 EST 2025
Wed Aug 27 02:50:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords sparse representation (SR)
synthetic aperture radar (SAR) image segmentation
Local spatial relation
multi-kernel
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c330t-d770335752cfd7cf1fecde865fa4e4dfd98f10ea4df2e59ca94d26b5fcb03d603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1787258614
PQPubID 75722
PageCount 21
ParticipantIDs ieee_primary_7360912
crossref_primary_10_1109_JSTARS_2015_2502991
proquest_miscellaneous_1816025034
crossref_citationtrail_10_1109_JSTARS_2015_2502991
proquest_journals_1787258614
PublicationCentury 2000
PublicationDate 2016-March
2016-3-00
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref56
ref59
ref15
ref58
ref14
ref53
ref55
ref11
ref54
ref10
ref17
la (ref52) 2005; 5914
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref43
ref49
gou (ref13) 0
ref8
samant (ref12) 0
ref4
ref3
ref6
ref5
kim (ref41) 2002; 9
ref40
yu (ref9) 2008; 30
ref35
ref34
roweis (ref37) 2000; 290
ref36
ref31
ref30
aharon (ref22) 2006; 54
ref32
ref38
gao (ref44) 0
ng (ref33) 2002; 14
ref71
tang (ref57) 0
ref72
liu (ref39) 0
carrara (ref1) 1995
ref68
ref24
ref67
ref23
ref69
ref25
ref64
ref20
ref63
lin (ref61) 2010
ref65
ref21
xu (ref26) 0
ref28
ref27
bengio (ref70) 2006
ref29
zhu (ref66) 2006; 37
oliver (ref2) 2004
ref60
ref62
ma (ref7) 2011; 11
References_xml – volume: 5914
  start-page: 273
  year: 2005
  ident: ref52
  article-title: Signal reconstruction using sparse tree representations
  publication-title: Int Soc Opt Eng
– ident: ref29
  doi: 10.2528/PIER13041503
– ident: ref50
  doi: 10.1109/CVPR.2005.38
– volume: 290
  start-page: 2323
  year: 2000
  ident: ref37
  article-title: Nonlinear dimensionality reduction by locally linear embedding
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– ident: ref62
  doi: 10.1137/080716542
– ident: ref40
  doi: 10.1109/ICIG.2011.86
– ident: ref16
  doi: 10.1109/LGRS.2013.2292820
– ident: ref35
  doi: 10.1162/089976603321780317
– ident: ref3
  doi: 10.1109/36.35954
– start-page: 1
  year: 0
  ident: ref44
  article-title: Kernel sparse representation for image classification and face recognition
  publication-title: Proc Eur Conf Comput Vision
– volume: 14
  start-page: 849
  year: 2002
  ident: ref33
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Adv Neural Inform Process Syst
– start-page: 667
  year: 0
  ident: ref13
  article-title: Image segmentation based on fusing multi-feature and spatial spectral clustering
  publication-title: Proc Congr Image Signal Process (CISP'08)
– ident: ref46
  doi: 10.1109/TGRS.2012.2201730
– start-page: 1
  year: 0
  ident: ref26
  article-title: SAR image compression based on sparse representation
  publication-title: Proc Int Radar Symp (IRS'13)
– ident: ref48
  doi: 10.1109/TIP.2014.2322938
– ident: ref10
  doi: 10.1109/IGARSS.2012.6351715
– ident: ref69
  doi: 10.1016/j.neucom.2014.05.010
– ident: ref51
  doi: 10.1080/2150704X.2012.723146
– ident: ref72
  doi: 10.1109/TIP.2010.2040763
– ident: ref60
  doi: 10.1016/j.neucom.2011.08.018
– ident: ref53
  doi: 10.1109/83.951532
– volume: 37
  start-page: 63
  year: 2006
  ident: ref66
  article-title: Semi-supervised learning literature survey
  publication-title: Computer Sciences
– start-page: 610
  year: 0
  ident: ref12
  article-title: Segmentation technique of SAR imagery based on fuzzy c-means clustering
  publication-title: Proc Int Conf Adv Eng Sci Manage
– start-page: 663
  year: 0
  ident: ref39
  article-title: Robust subspace segmentation by low-rank representation
  publication-title: Proc Int Conf Mach Learn (ICML'10)
– ident: ref45
  doi: 10.1109/TSP.2011.2179539
– ident: ref42
  doi: 10.1109/TCSVT.2003.818352
– ident: ref68
  doi: 10.1109/IGARSS.2009.5417941
– ident: ref34
  doi: 10.1109/ICCV.2011.6126528
– start-page: 193
  year: 2006
  ident: ref70
  article-title: Label propagation and quadratic criterion
  publication-title: Semi-Supervised Learn
  doi: 10.7551/mitpress/6173.003.0016
– ident: ref36
  doi: 10.1109/TPAMI.2008.216
– ident: ref25
  doi: 10.1109/TIP.2010.2050625
– start-page: 377
  year: 0
  ident: ref57
  article-title: A new local feature extraction in SAR image
  publication-title: Proc Int Asia-Pac Conf Synth Aperture Radar (APSAR)
– ident: ref8
  doi: 10.1109/TPAMI.2007.70844
– volume: 9
  start-page: 40
  year: 2002
  ident: ref41
  article-title: Face recognition using kernel principal component analysis
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/97.991133
– ident: ref30
  doi: 10.1007/s11045-013-0225-8
– ident: ref4
  doi: 10.1109/TPAMI.2011.274
– ident: ref65
  doi: 10.1109/34.868688
– ident: ref47
  doi: 10.1007/978-3-642-33506-8_7
– volume: 30
  start-page: 2126
  year: 2008
  ident: ref9
  article-title: IRGS: Image segmentation using edge penalties and region growing
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.15
– ident: ref43
  doi: 10.1109/TPAMI.2012.62
– year: 2004
  ident: ref2
  publication-title: Understanding Synthetic Aperture Radar Images
– ident: ref32
  doi: 10.1109/CVPR.2009.5206547
– ident: ref54
  doi: 10.1016/j.ins.2011.02.025
– ident: ref14
  doi: 10.1016/j.sigpro.2012.08.024
– ident: ref24
  doi: 10.1109/TIT.2005.860430
– ident: ref5
  doi: 10.1109/JSTARS.2012.2201249
– ident: ref38
  doi: 10.1109/TIP.2009.2038764
– ident: ref64
  doi: 10.1109/KAMW.2008.4810503
– ident: ref17
  doi: 10.1109/36.673672
– ident: ref63
  doi: 10.1016/j.patcog.2013.07.003
– ident: ref11
  doi: 10.1109/ICNC.2009.447
– ident: ref20
  doi: 10.1109/APSAR.2009.5374114
– ident: ref58
  doi: 10.1109/APSAR.2009.5374117
– ident: ref31
  doi: 10.1109/TPAMI.2008.79
– ident: ref56
  doi: 10.1109/TPAMI.2012.120
– ident: ref49
  doi: 10.1007/978-3-642-33506-8_55
– volume: 54
  start-page: 4311
  year: 2006
  ident: ref22
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.881199
– ident: ref19
  doi: 10.1109/JSTARS.2012.2230435
– ident: ref18
  doi: 10.1109/TGRS.2012.2203604
– ident: ref55
  doi: 10.1109/TPAMI.2009.96
– ident: ref28
  doi: 10.1109/RADAR.2011.5960546
– ident: ref15
  doi: 10.1109/TGRS.2013.2287273
– year: 2010
  ident: ref61
  article-title: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices
– ident: ref71
  doi: 10.1109/TSMC.1973.4309314
– ident: ref59
  doi: 10.1109/BIBE.2012.6399658
– ident: ref21
  doi: 10.1109/TGRS.2008.918647
– ident: ref6
  doi: 10.1109/JSTARS.2013.2255119
– volume: 11
  start-page: 5205
  year: 2011
  ident: ref7
  article-title: SAR image segmentation based on artificial bee colony algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.05.039
– ident: ref23
  doi: 10.1109/JPROC.2010.2044470
– ident: ref27
  doi: 10.1109/CVPR.2011.5995393
– ident: ref67
  doi: 10.1109/TGRS.2007.895416
– year: 1995
  ident: ref1
  publication-title: Spotlight Synthetic Aperture Radar-Signal Processing Algorithms
SSID ssj0062793
Score 2.2300653
Snippet Recently, more and more attention has been drawn on the study of sparse graph-based classification with respect to pattern recognition and computer vision....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1265
SubjectTerms Algorithms
Categories
Clustering algorithms
Feature extraction
Graphs
Image segmentation
Local spatial relation
multi-kernel
Noise
Pattern recognition
Similarity
sparse representation (SR)
Speckle
Synthetic aperture radar
synthetic aperture radar (SAR) image segmentation
Title A Multi-kernel Joint Sparse Graph for SAR Image Segmentation
URI https://ieeexplore.ieee.org/document/7360912
https://www.proquest.com/docview/1787258614
https://www.proquest.com/docview/1816025034
Volume 9
WOSCitedRecordID wos000373054100025&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 1939-1404
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZSwMxEB60KPjiLVarRPCxa_fKZgO-FNGqiEir4NuyTSZS1G3pIfjvnWS3BVEE3wKbvb4k33w5Zgbg1CSKI8lWz-Q89WKMOPGg1J4m2yhTE4u071r6Ttzfp8_P8mEJmgtfGER0h8_wzBbdXr4eqpldKmuJKCHzRoS7LIQofbXmrJuEwgXYJT0iPRsypoowFPiyRV283e3ZY1z8jCw-EXDwzQq5tCo_uNgZmKuN_33aJqxXQpK1y5bfgiUstmG14xL1fu7AeZs531rvFccFvrHb4aCYst6I5rHIOjZKNSO5ynrtLrt5J05hPXx5r_yQil14urp8vLj2qkwJnooif-ppQQM3IuUVKqOFMoFBpTFNuMljjLXRBHvgY07FELlUuYx1mPS5UX0_0okf7UGtGBa4D0zINCBVosIg92nqpvqx4sZmFiXDlSqDdQjnyGWqCiNus1m8ZW464cushDuzcGcV3HVoLm4alVE0_q6-YxFeVK3ArUNj3kRZNdImWUCME_KUVEYdThaXaYzYjY-8wOGM6tAvWa0XxQe_P_kQ1uj9SXm2rAG16XiGR7CiPqaDyfjYdbQvRtzN_A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB7EA33xFtczgo9WeyRtA74s4r0u4ir4VrrJRBa1u-wh-O-dpN0FUQTfAk1L-iX55ssxMwCHJlYCSbZ6JhepxzESxINSe5pso0wNT9K26-lG0mymz8_yfgqOJr4wiOgun-GxLbqzfN1VI7tVdpJEMZk3ItwZwXkYlN5aY96Nw8SF2CVFIj0bNKaKMRT48oQGef2hZS9yiWOy-UTBwTc75BKr_GBjZ2Iulv7XuGVYrKQkq5d9vwJTWKzC3KVL1fu5Bqd15rxrvVfsF_jGbrqdYshaPVrJIru0caoZCVbWqj-w63diFdbCl_fKE6lYh6eL88ezK6_KleCpKPKHnk5o6kakvUJldKJMYFBpTGNhco5cG03ABz7mVAxRSJVLrsO4LYxq-5GO_WgDpotugZvAEpkGpEtUGOQ-Ld5UmythbG5RMl2pMliDcIxcpqpA4jafxVvmFhS-zEq4Mwt3VsFdg6PJS70yjsbf1dcswpOqFbg12Bl3UVbNtUEWEOeEIiWdUYODyWOaJfboIy-wO6I69EtW7UV86_cv78P81eNdI2tcN2-3YYHaEpc3zXZgetgf4S7Mqo9hZ9Dfc4PuCylG0UM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-kernel+Joint+Sparse+Graph+for+SAR+Image+Segmentation&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Gu%2C+Jing&rft.au=Jiao%2C+Licheng&rft.au=Yang%2C+Shuyuan&rft.au=Liu%2C+Fang&rft.date=2016-03-01&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=9&rft.issue=3&rft.spage=1265&rft.epage=1285&rft_id=info:doi/10.1109%2FJSTARS.2015.2502991&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon