Lower bounds for non-convex stochastic optimization
We lower bound the complexity of finding ϵ -stationary points (with gradient norm at most ϵ ) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance...
Uloženo v:
| Vydáno v: | Mathematical programming Ročník 199; číslo 1-2; s. 165 - 214 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2023
Springer |
| Témata: | |
| ISSN: | 0025-5610, 1436-4646 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We lower bound the complexity of finding
ϵ
-stationary points (with gradient norm at most
ϵ
) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least
ϵ
-
4
queries to find an
ϵ
-stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of
ϵ
-
3
queries, establishing the optimality of recently proposed variance reduction techniques. |
|---|---|
| ISSN: | 0025-5610 1436-4646 |
| DOI: | 10.1007/s10107-022-01822-7 |