Lower bounds for non-convex stochastic optimization
We lower bound the complexity of finding ϵ -stationary points (with gradient norm at most ϵ ) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance...
Saved in:
| Published in: | Mathematical programming Vol. 199; no. 1-2; pp. 165 - 214 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.05.2023
Springer |
| Subjects: | |
| ISSN: | 0025-5610, 1436-4646 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!