A novel variable selection method based on combined moving window and intelligent optimization algorithm for variable selection in chemical modeling

We propose a new wavelength selection algorithm based on combined moving window (CMW) and variable dimension particle swarm optimization (VDPSO) algorithm. CMW retains the advantages of the moving window algorithm, and different windows can overlap each other to realize automatic optimization of spe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Ročník 246; s. 118986
Hlavní autoři: Zhang, Pengfei, Xu, Zhuopin, Wang, Qi, Fan, Shuang, Cheng, Weimin, Wang, Haiping, Wu, Yuejin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 05.02.2021
Témata:
ISSN:1386-1425, 1873-3557, 1873-3557
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We propose a new wavelength selection algorithm based on combined moving window (CMW) and variable dimension particle swarm optimization (VDPSO) algorithm. CMW retains the advantages of the moving window algorithm, and different windows can overlap each other to realize automatic optimization of spectral interval width and number. VDPSO algorithms improve the PSO algorithm. They can search the data space in different dimensions, and reduce the risk of limited local extrema and over fitting. Four different high-performance variable selection algorithms—BOSS, VCPA, iVISSA and IRF—are compared in three NIR data sets (corn, beer and fuel). The results show that VDPSO-CMW has better performance. The Matlab codes for implementing PSO-CWM and VDPSO-CMW are freely available on the website: https://www.mathworks.com/matlabcentral/fileexchange/75828-a-variable-selection-method. [Display omitted] •CMW strategy can automatically select the appropriate number and width of interval.•VDPSO algorithm improve the PSO algorithm and reduces the risk of overfitting.•The application of the algorithm VDPSO-CMW in NIR spectral analysis is verified.
AbstractList We propose a new wavelength selection algorithm based on combined moving window (CMW) and variable dimension particle swarm optimization (VDPSO) algorithm. CMW retains the advantages of the moving window algorithm, and different windows can overlap each other to realize automatic optimization of spectral interval width and number. VDPSO algorithms improve the PSO algorithm. They can search the data space in different dimensions, and reduce the risk of limited local extrema and over fitting. Four different high-performance variable selection algorithms-BOSS, VCPA, iVISSA and IRF-are compared in three NIR data sets (corn, beer and fuel). The results show that VDPSO-CMW has better performance. The Matlab codes for implementing PSO-CWM and VDPSO-CMW are freely available on the website: https://www.mathworks.com/matlabcentral/fileexchange/75828-a-variable-selection-method.We propose a new wavelength selection algorithm based on combined moving window (CMW) and variable dimension particle swarm optimization (VDPSO) algorithm. CMW retains the advantages of the moving window algorithm, and different windows can overlap each other to realize automatic optimization of spectral interval width and number. VDPSO algorithms improve the PSO algorithm. They can search the data space in different dimensions, and reduce the risk of limited local extrema and over fitting. Four different high-performance variable selection algorithms-BOSS, VCPA, iVISSA and IRF-are compared in three NIR data sets (corn, beer and fuel). The results show that VDPSO-CMW has better performance. The Matlab codes for implementing PSO-CWM and VDPSO-CMW are freely available on the website: https://www.mathworks.com/matlabcentral/fileexchange/75828-a-variable-selection-method.
We propose a new wavelength selection algorithm based on combined moving window (CMW) and variable dimension particle swarm optimization (VDPSO) algorithm. CMW retains the advantages of the moving window algorithm, and different windows can overlap each other to realize automatic optimization of spectral interval width and number. VDPSO algorithms improve the PSO algorithm. They can search the data space in different dimensions, and reduce the risk of limited local extrema and over fitting. Four different high-performance variable selection algorithms—BOSS, VCPA, iVISSA and IRF—are compared in three NIR data sets (corn, beer and fuel). The results show that VDPSO-CMW has better performance. The Matlab codes for implementing PSO-CWM and VDPSO-CMW are freely available on the website: https://www.mathworks.com/matlabcentral/fileexchange/75828-a-variable-selection-method. [Display omitted] •CMW strategy can automatically select the appropriate number and width of interval.•VDPSO algorithm improve the PSO algorithm and reduces the risk of overfitting.•The application of the algorithm VDPSO-CMW in NIR spectral analysis is verified.
ArticleNumber 118986
Author Fan, Shuang
Xu, Zhuopin
Wang, Qi
Wang, Haiping
Zhang, Pengfei
Cheng, Weimin
Wu, Yuejin
Author_xml – sequence: 1
  givenname: Pengfei
  surname: Zhang
  fullname: Zhang, Pengfei
  organization: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 2
  givenname: Zhuopin
  surname: Xu
  fullname: Xu, Zhuopin
  organization: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 3
  givenname: Qi
  surname: Wang
  fullname: Wang, Qi
  email: wangqi@ipp.ac.cn
  organization: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 4
  givenname: Shuang
  surname: Fan
  fullname: Fan, Shuang
  organization: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 5
  givenname: Weimin
  surname: Cheng
  fullname: Cheng, Weimin
  organization: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 6
  givenname: Haiping
  surname: Wang
  fullname: Wang, Haiping
  organization: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
– sequence: 7
  givenname: Yuejin
  surname: Wu
  fullname: Wu, Yuejin
  email: yjwu@ipp.ac.cn
  organization: Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
BookMark eNp9kU1uFDEQhVsoSCSBA7Dzkk0P_mm73WIVRRCQIrGBteW2q2dq5LYH25kIzpED42RYRSirqpLqe6VX76I7iylC171ndMMoUx_3m2LthlPeZqYnrV5150yPohdSjmetF1r1bODyTXdRyp5SyjSn593DFYnpCIEcbUY7ByAFAriKKZIV6i55MtsCnrTZpXXG2Po1HTFuyT1Gn-6JjZ5grBACbiFWkg4VV_xjnzRs2KaMdbeSJeX_HcGmu4MVnQ1N10Noym-714sNBd79q5fdzy-ff1x_7W-_33y7vrrtnRC09m7xTDDgA2VCcaWYhElKvVAmHZ89B6HHUY6T82p03rOBWkr1omZNnVSTFZfdh5PuIadfd1CqWbG4ZsRGSHfF8GGYJsUlU211PK26nErJsBiH9clizRaDYdQ85mD2puVgHnMwpxwayZ6Rh4yrzb9fZD6dGGjujwjZFIcQHXjM7W_GJ3yB_gu866U4
CitedBy_id crossref_primary_10_1016_j_chemolab_2023_104795
crossref_primary_10_1016_j_foodcont_2024_110531
crossref_primary_10_1016_j_jfca_2023_105503
crossref_primary_10_1016_j_saa_2025_126637
crossref_primary_10_3390_molecules27113373
crossref_primary_10_1016_j_jpba_2025_116822
crossref_primary_10_1016_j_infrared_2024_105374
crossref_primary_10_1016_j_saa_2024_124033
crossref_primary_10_3390_aerospace9020081
crossref_primary_10_1016_j_jfoodeng_2021_110840
crossref_primary_10_1016_j_foodchem_2024_141053
crossref_primary_10_1016_j_foodchem_2025_143516
crossref_primary_10_1016_j_aca_2025_344301
crossref_primary_10_1016_j_microc_2025_114125
crossref_primary_10_1016_j_biosystemseng_2021_06_019
crossref_primary_10_1016_j_aca_2025_344308
crossref_primary_10_1016_j_infrared_2023_104572
crossref_primary_10_1016_j_infrared_2022_104231
crossref_primary_10_1007_s11694_023_01964_y
crossref_primary_10_1016_j_eja_2025_127611
crossref_primary_10_1016_j_saa_2022_121890
crossref_primary_10_1016_j_saa_2023_123095
crossref_primary_10_1016_j_saa_2021_120138
crossref_primary_10_1002_mop_70016
crossref_primary_10_1016_j_biombioe_2023_106842
crossref_primary_10_1016_j_jcs_2022_103474
Cites_doi 10.1007/s00500-016-2474-6
10.1016/j.saa.2013.03.083
10.1016/j.trac.2011.11.007
10.1002/cem.2582
10.1016/j.chemolab.2016.11.002
10.1039/C4AN02123A
10.1016/j.aca.2013.11.032
10.1016/j.chemolab.2007.10.001
10.1016/j.aca.2016.10.041
10.1039/c3an00714f
10.1366/0003702001949500
10.1021/ac00119a015
10.1002/cem.1180030204
10.1016/0003-2670(86)80028-9
10.2202/1544-6115.1390
10.1016/j.vibspec.2006.11.005
10.1016/j.aca.2009.06.046
10.1016/j.engappai.2014.03.007
10.1016/j.aca.2014.12.048
10.1021/ac400339e
10.1016/j.aca.2019.01.022
10.1021/ac011177u
10.1109/TEVC.2004.826069
10.1039/C4AN00730A
10.1016/j.aca.2012.06.031
10.1016/j.aca.2003.09.041
10.1016/j.aca.2014.09.045
10.1016/j.aca.2016.01.001
10.1016/j.trac.2019.01.018
10.1002/cem.893
10.1080/00401706.1969.10490666
10.1111/j.1467-9868.2009.00723.x
10.1016/S0169-7439(98)00051-3
10.1016/j.chemolab.2015.08.020
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.saa.2020.118986
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3557
ExternalDocumentID 10_1016_j_saa_2020_118986
S1386142520309653
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
ZMT
~G-
1RT
53G
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
M36
R2-
SEW
UHS
~HD
7X8
ID FETCH-LOGICAL-c330t-cfd131e24013626615e9558f015c2bd2e3877579cd67cdd140a008f6b80c569a3
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000592410500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1386-1425
1873-3557
IngestDate Wed Oct 01 14:50:33 EDT 2025
Sat Nov 29 07:05:16 EST 2025
Tue Nov 18 21:57:29 EST 2025
Fri Feb 23 02:46:13 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Intelligent optimization algorithm
Particle swarm optimization
Multivariate calibration
Variable selection
Near-infrared spectroscopy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-cfd131e24013626615e9558f015c2bd2e3877579cd67cdd140a008f6b80c569a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2449962516
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2449962516
crossref_citationtrail_10_1016_j_saa_2020_118986
crossref_primary_10_1016_j_saa_2020_118986
elsevier_sciencedirect_doi_10_1016_j_saa_2020_118986
PublicationCentury 2000
PublicationDate 2021-02-05
PublicationDateYYYYMMDD 2021-02-05
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-05
  day: 05
PublicationDecade 2020
PublicationTitle Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Deng, Yun, Liang, Yi (bb0065) 2014; 139
Rinnan, Andersson, Ridder, Engelsen (bb0050) 2014; 28
Geladi, Kowalski (bb0005) 1986; 185
van den Bergh, Engelbrecht (bb0170) 2004; 8
Leardi, Lupiáñez González (bb0090) 1998; 41
Kennard, Stone (bb0180) 1969; 11
Goodarzi, dos Santos Coelho (bb0095) 2014; 852
Yun, Li, Wood, Fan, Wang, Cao, Xu, Liang (bb0135) 2013; 111
Tabakhi, Moradi, Akhlaghian (bb0100) 2014; 32
Du, Liang, Jiang, Berry, Ozaki (bb0150) 2004; 501
Cai, Li, Shao (bb0035) 2008; 90
Wang, Tan, Liu (bb0175) 2017; 22
Yun, Li, Deng, Cao (bb0030) 2019; 113
Li, Xu, Liang (bb0085) 2012; 740
Shi, Eberhart (bb0165) 1998
Guyon, Elisseeff (bb0015) 2003; 3
Chun, Keleş (bb0045) 2010; 72
Yun, Bin, Liu, Xu, Yan, Cao, Xu (bb0075) 2019; 1058
Nørgaard, Saudland, Wagner, Nielsen, Munck, Engelsen (bb0110) 2000; 54
Zou, Zhao, Li (bb0115) 2007; 44
Yun, Liang, Xie, Li, Cao, Xu (bb0020) 2013; 138
Yun, Wang, Tan, Liang, Li, Cao, Lu, Xu (bb0060) 2014; 807
Li, Liang, Cao, Xu (bb0155) 2012; 38
Le Cao, Rossouw, Robert-Granie, Besse (bb0040) 2008; 7
Jouan-Rimbaud, Massart, Leardi, De Noord (bb0190) 1995; 67
Deng, Yun, Ma, Lin, Ren, Liang (bb0125) 2015; 140
Gemperline, Salt (bb0010) 1989; 3
Li, Liang, Xu, Cao (bb0055) 2009; 648
Lin, Deng, Wang, Xu, Liu, Liang (bb0130) 2016; 159
Eberhart, Kennedy (bb0160) 1995
Jiang, Berry, Siesler, Ozaki (bb0120) 2002; 74
Andries, Heyden, Buydens (bb0025) 2013; 85
Deng, Yun, Cao, Yin, Wang, Lu, Luo, Liang (bb0080) 2016; 908
Yun, Wang, Deng, Lai, Liu, Ren, Liang, Fan, Xu (bb0070) 2015; 862
Marini, Walczak (bb0105) 2015; 149
Song, Huang, Yan, Xiong, Min (bb0145) 2016; 948
Leardi, Nørgaard (bb0140) 2004; 18
Kennard (10.1016/j.saa.2020.118986_bb0180) 1969; 11
Rinnan (10.1016/j.saa.2020.118986_bb0050) 2014; 28
Yun (10.1016/j.saa.2020.118986_bb0060) 2014; 807
Yun (10.1016/j.saa.2020.118986_bb0020) 2013; 138
Marini (10.1016/j.saa.2020.118986_bb0105) 2015; 149
Goodarzi (10.1016/j.saa.2020.118986_bb0095) 2014; 852
Yun (10.1016/j.saa.2020.118986_bb0075) 2019; 1058
Eberhart (10.1016/j.saa.2020.118986_bb0160) 1995
Yun (10.1016/j.saa.2020.118986_bb0030) 2019; 113
Gemperline (10.1016/j.saa.2020.118986_bb0010) 1989; 3
Deng (10.1016/j.saa.2020.118986_bb0125) 2015; 140
Cai (10.1016/j.saa.2020.118986_bb0035) 2008; 90
Jouan-Rimbaud (10.1016/j.saa.2020.118986_bb0190) 1995; 67
Nørgaard (10.1016/j.saa.2020.118986_bb0110) 2000; 54
Andries (10.1016/j.saa.2020.118986_bb0025) 2013; 85
Li (10.1016/j.saa.2020.118986_bb0055) 2009; 648
Leardi (10.1016/j.saa.2020.118986_bb0090) 1998; 41
Guyon (10.1016/j.saa.2020.118986_bb0015) 2003; 3
Du (10.1016/j.saa.2020.118986_bb0150) 2004; 501
Chun (10.1016/j.saa.2020.118986_bb0045) 2010; 72
Wang (10.1016/j.saa.2020.118986_bb0175) 2017; 22
Li (10.1016/j.saa.2020.118986_bb0155) 2012; 38
Geladi (10.1016/j.saa.2020.118986_bb0005) 1986; 185
Shi (10.1016/j.saa.2020.118986_bb0165) 1998
Lin (10.1016/j.saa.2020.118986_bb0130) 2016; 159
Yun (10.1016/j.saa.2020.118986_bb0070) 2015; 862
Leardi (10.1016/j.saa.2020.118986_bb0140) 2004; 18
Li (10.1016/j.saa.2020.118986_bb0085) 2012; 740
Song (10.1016/j.saa.2020.118986_bb0145) 2016; 948
Zou (10.1016/j.saa.2020.118986_bb0115) 2007; 44
Jiang (10.1016/j.saa.2020.118986_bb0120) 2002; 74
van den Bergh (10.1016/j.saa.2020.118986_bb0170) 2004; 8
Yun (10.1016/j.saa.2020.118986_bb0135) 2013; 111
Deng (10.1016/j.saa.2020.118986_bb0065) 2014; 139
Tabakhi (10.1016/j.saa.2020.118986_bb0100) 2014; 32
Le Cao (10.1016/j.saa.2020.118986_bb0040) 2008; 7
Deng (10.1016/j.saa.2020.118986_bb0080) 2016; 908
References_xml – volume: 908
  start-page: 63
  year: 2016
  end-page: 74
  ident: bb0080
  article-title: A bootstrapping soft shrinkage approach for variable selection in chemical modeling
  publication-title: Anal. Chim. Acta
– volume: 948
  start-page: 19
  year: 2016
  end-page: 29
  ident: bb0145
  article-title: A novel algorithm for spectral interval combination optimization
  publication-title: Anal. Chim. Acta
– volume: 22
  start-page: 387
  year: 2017
  end-page: 408
  ident: bb0175
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft. Comput.
– volume: 90
  start-page: 188
  year: 2008
  end-page: 194
  ident: bb0035
  article-title: A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 54
  start-page: 413
  year: 2000
  end-page: 419
  ident: bb0110
  article-title: Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy
  publication-title: Appl. Spectrosc.
– volume: 28
  start-page: 439
  year: 2014
  end-page: 447
  ident: bb0050
  article-title: Recursive weighted partial least squares (rPLS): an efficient variable selection method using PLS
  publication-title: J. Chemom.
– volume: 149
  start-page: 153
  year: 2015
  end-page: 165
  ident: bb0105
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 7
  year: 2008
  ident: bb0040
  article-title: A sparse PLS for variable selection when integrating omics data
  publication-title: Stat. Appl. Genet. Mol. Biol.
– volume: 74
  start-page: 3555
  year: 2002
  end-page: 3565
  ident: bb0120
  article-title: Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data
  publication-title: Anal. Chem.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bb0015
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 486
  year: 2004
  end-page: 497
  ident: bb0140
  article-title: Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions
  publication-title: J. Chemom.
– volume: 11
  start-page: 137
  year: 1969
  end-page: 148
  ident: bb0180
  article-title: Computer aided Design of Experiments
  publication-title: Technometrics
– volume: 38
  start-page: 154
  year: 2012
  end-page: 162
  ident: bb0155
  article-title: Model-population analysis and its applications in chemical and biological modeling
  publication-title: TrAC Trends Anal. Chem.
– volume: 185
  start-page: 1
  year: 1986
  end-page: 17
  ident: bb0005
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
– volume: 41
  start-page: 195
  year: 1998
  end-page: 207
  ident: bb0090
  article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 807
  start-page: 36
  year: 2014
  end-page: 43
  ident: bb0060
  article-title: A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration
  publication-title: Anal. Chim. Acta
– volume: 138
  start-page: 6412
  year: 2013
  end-page: 6421
  ident: bb0020
  article-title: A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems
  publication-title: Analyst
– volume: 32
  start-page: 112
  year: 2014
  end-page: 123
  ident: bb0100
  article-title: An unsupervised feature selection algorithm based on ant colony optimization
  publication-title: Eng. Appl. Artif. Intell.
– volume: 72
  start-page: 3
  year: 2010
  end-page: 25
  ident: bb0045
  article-title: Sparse partial least squares regression for simultaneous dimension reduction and variable selection
  publication-title: J. R. Stat. Soc. Ser. B Stat Methodol.
– volume: 140
  start-page: 1876
  year: 2015
  end-page: 1885
  ident: bb0125
  article-title: A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals
  publication-title: Analyst
– volume: 862
  start-page: 14
  year: 2015
  end-page: 23
  ident: bb0070
  article-title: Using variable combination population analysis for variable selection in multivariate calibration
  publication-title: Anal. Chim. Acta
– volume: 648
  start-page: 77
  year: 2009
  end-page: 84
  ident: bb0055
  article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
  publication-title: Anal. Chim. Acta
– volume: 740
  start-page: 20
  year: 2012
  end-page: 26
  ident: bb0085
  article-title: Random frog: an efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification
  publication-title: Anal. Chim. Acta
– volume: 67
  start-page: 4295
  year: 1995
  end-page: 4301
  ident: bb0190
  article-title: Genetic algorithms as a tool for wavelength selection in multivariate calibration
  publication-title: Anal. Chem.
– volume: 852
  start-page: 20
  year: 2014
  end-page: 27
  ident: bb0095
  article-title: Firefly as a novel swarm intelligence variable selection method in spectroscopy
  publication-title: Anal. Chim. Acta
– volume: 159
  start-page: 196
  year: 2016
  end-page: 204
  ident: bb0130
  article-title: Fisher optimal subspace shrinkage for block variable selection with applications to NIR spectroscopic analysis
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 111
  start-page: 31
  year: 2013
  end-page: 36
  ident: bb0135
  article-title: An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 501
  start-page: 183
  year: 2004
  end-page: 191
  ident: bb0150
  article-title: Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares
  publication-title: Anal. Chim. Acta
– start-page: 69
  year: 1998
  end-page: 73
  ident: bb0165
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360)
– volume: 139
  start-page: 4836
  year: 2014
  end-page: 4845
  ident: bb0065
  article-title: A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling
  publication-title: Analyst
– volume: 3
  start-page: 343
  year: 1989
  end-page: 357
  ident: bb0010
  article-title: Principal components regression for routine multicomponent UV determinations: a validation protocol
  publication-title: J. Chemom.
– volume: 85
  start-page: 5444
  year: 2013
  end-page: 5453
  ident: bb0025
  article-title: Predictive-property-ranked variable reduction with final complexity adapted models in partial least squares modeling for multiple responses
  publication-title: Anal. Chem.
– volume: 44
  start-page: 220
  year: 2007
  end-page: 227
  ident: bb0115
  article-title: Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of ‘Fuji’ apple based on BiPLS and FiPLS models
  publication-title: Vib. Spectrosc.
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: bb0170
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 113
  start-page: 102
  year: 2019
  end-page: 115
  ident: bb0030
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: TrAC Trends Anal. Chem.
– volume: 1058
  start-page: 58
  year: 2019
  end-page: 69
  ident: bb0075
  article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration
  publication-title: Anal. Chim. Acta
– start-page: 39
  year: 1995
  end-page: 43
  ident: bb0160
  article-title: A new optimizer using particle swarm theory
  publication-title: MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– volume: 22
  start-page: 387
  issue: 2
  year: 2017
  ident: 10.1016/j.saa.2020.118986_bb0175
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft. Comput.
  doi: 10.1007/s00500-016-2474-6
– volume: 111
  start-page: 31
  year: 2013
  ident: 10.1016/j.saa.2020.118986_bb0135
  article-title: An efficient method of wavelength interval selection based on random frog for multivariate spectral calibration
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2013.03.083
– volume: 38
  start-page: 154
  year: 2012
  ident: 10.1016/j.saa.2020.118986_bb0155
  article-title: Model-population analysis and its applications in chemical and biological modeling
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2011.11.007
– volume: 28
  start-page: 439
  issue: 5
  year: 2014
  ident: 10.1016/j.saa.2020.118986_bb0050
  article-title: Recursive weighted partial least squares (rPLS): an efficient variable selection method using PLS
  publication-title: J. Chemom.
  doi: 10.1002/cem.2582
– volume: 159
  start-page: 196
  year: 2016
  ident: 10.1016/j.saa.2020.118986_bb0130
  article-title: Fisher optimal subspace shrinkage for block variable selection with applications to NIR spectroscopic analysis
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2016.11.002
– volume: 140
  start-page: 1876
  issue: 6
  year: 2015
  ident: 10.1016/j.saa.2020.118986_bb0125
  article-title: A new method for wavelength interval selection that intelligently optimizes the locations, widths and combinations of the intervals
  publication-title: Analyst
  doi: 10.1039/C4AN02123A
– volume: 807
  start-page: 36
  year: 2014
  ident: 10.1016/j.saa.2020.118986_bb0060
  article-title: A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2013.11.032
– volume: 90
  start-page: 188
  issue: 2
  year: 2008
  ident: 10.1016/j.saa.2020.118986_bb0035
  article-title: A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2007.10.001
– start-page: 69
  year: 1998
  ident: 10.1016/j.saa.2020.118986_bb0165
  article-title: A modified particle swarm optimizer
– volume: 948
  start-page: 19
  year: 2016
  ident: 10.1016/j.saa.2020.118986_bb0145
  article-title: A novel algorithm for spectral interval combination optimization
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.10.041
– volume: 138
  start-page: 6412
  issue: 21
  year: 2013
  ident: 10.1016/j.saa.2020.118986_bb0020
  article-title: A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems
  publication-title: Analyst
  doi: 10.1039/c3an00714f
– volume: 3
  start-page: 1157
  issue: null
  year: 2003
  ident: 10.1016/j.saa.2020.118986_bb0015
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 413
  issue: 3
  year: 2000
  ident: 10.1016/j.saa.2020.118986_bb0110
  article-title: Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702001949500
– volume: 67
  start-page: 4295
  issue: 23
  year: 1995
  ident: 10.1016/j.saa.2020.118986_bb0190
  article-title: Genetic algorithms as a tool for wavelength selection in multivariate calibration
  publication-title: Anal. Chem.
  doi: 10.1021/ac00119a015
– volume: 3
  start-page: 343
  issue: 2
  year: 1989
  ident: 10.1016/j.saa.2020.118986_bb0010
  article-title: Principal components regression for routine multicomponent UV determinations: a validation protocol
  publication-title: J. Chemom.
  doi: 10.1002/cem.1180030204
– volume: 185
  start-page: 1
  year: 1986
  ident: 10.1016/j.saa.2020.118986_bb0005
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal. Chim. Acta
  doi: 10.1016/0003-2670(86)80028-9
– volume: 7
  issue: 1
  year: 2008
  ident: 10.1016/j.saa.2020.118986_bb0040
  article-title: A sparse PLS for variable selection when integrating omics data
  publication-title: Stat. Appl. Genet. Mol. Biol.
  doi: 10.2202/1544-6115.1390
– start-page: 39
  year: 1995
  ident: 10.1016/j.saa.2020.118986_bb0160
  article-title: A new optimizer using particle swarm theory
– volume: 44
  start-page: 220
  issue: 2
  year: 2007
  ident: 10.1016/j.saa.2020.118986_bb0115
  article-title: Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of ‘Fuji’ apple based on BiPLS and FiPLS models
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2006.11.005
– volume: 648
  start-page: 77
  issue: 1
  year: 2009
  ident: 10.1016/j.saa.2020.118986_bb0055
  article-title: Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2009.06.046
– volume: 32
  start-page: 112
  year: 2014
  ident: 10.1016/j.saa.2020.118986_bb0100
  article-title: An unsupervised feature selection algorithm based on ant colony optimization
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.03.007
– volume: 862
  start-page: 14
  year: 2015
  ident: 10.1016/j.saa.2020.118986_bb0070
  article-title: Using variable combination population analysis for variable selection in multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.12.048
– volume: 85
  start-page: 5444
  issue: 11
  year: 2013
  ident: 10.1016/j.saa.2020.118986_bb0025
  article-title: Predictive-property-ranked variable reduction with final complexity adapted models in partial least squares modeling for multiple responses
  publication-title: Anal. Chem.
  doi: 10.1021/ac400339e
– volume: 1058
  start-page: 58
  year: 2019
  ident: 10.1016/j.saa.2020.118986_bb0075
  article-title: A hybrid variable selection strategy based on continuous shrinkage of variable space in multivariate calibration
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2019.01.022
– volume: 74
  start-page: 3555
  issue: 14
  year: 2002
  ident: 10.1016/j.saa.2020.118986_bb0120
  article-title: Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data
  publication-title: Anal. Chem.
  doi: 10.1021/ac011177u
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.saa.2020.118986_bb0170
  article-title: A cooperative approach to particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826069
– volume: 139
  start-page: 4836
  issue: 19
  year: 2014
  ident: 10.1016/j.saa.2020.118986_bb0065
  article-title: A novel variable selection approach that iteratively optimizes variable space using weighted binary matrix sampling
  publication-title: Analyst
  doi: 10.1039/C4AN00730A
– volume: 740
  start-page: 20
  year: 2012
  ident: 10.1016/j.saa.2020.118986_bb0085
  article-title: Random frog: an efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.06.031
– volume: 501
  start-page: 183
  issue: 2
  year: 2004
  ident: 10.1016/j.saa.2020.118986_bb0150
  article-title: Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2003.09.041
– volume: 852
  start-page: 20
  year: 2014
  ident: 10.1016/j.saa.2020.118986_bb0095
  article-title: Firefly as a novel swarm intelligence variable selection method in spectroscopy
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2014.09.045
– volume: 908
  start-page: 63
  year: 2016
  ident: 10.1016/j.saa.2020.118986_bb0080
  article-title: A bootstrapping soft shrinkage approach for variable selection in chemical modeling
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2016.01.001
– volume: 113
  start-page: 102
  year: 2019
  ident: 10.1016/j.saa.2020.118986_bb0030
  article-title: An overview of variable selection methods in multivariate analysis of near-infrared spectra
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.01.018
– volume: 18
  start-page: 486
  issue: 11
  year: 2004
  ident: 10.1016/j.saa.2020.118986_bb0140
  article-title: Sequential application of backward interval partial least squares and genetic algorithms for the selection of relevant spectral regions
  publication-title: J. Chemom.
  doi: 10.1002/cem.893
– volume: 11
  start-page: 137
  issue: 1
  year: 1969
  ident: 10.1016/j.saa.2020.118986_bb0180
  article-title: Computer aided Design of Experiments
  publication-title: Technometrics
  doi: 10.1080/00401706.1969.10490666
– volume: 72
  start-page: 3
  issue: 1
  year: 2010
  ident: 10.1016/j.saa.2020.118986_bb0045
  article-title: Sparse partial least squares regression for simultaneous dimension reduction and variable selection
  publication-title: J. R. Stat. Soc. Ser. B Stat Methodol.
  doi: 10.1111/j.1467-9868.2009.00723.x
– volume: 41
  start-page: 195
  issue: 2
  year: 1998
  ident: 10.1016/j.saa.2020.118986_bb0090
  article-title: Genetic algorithms applied to feature selection in PLS regression: how and when to use them
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(98)00051-3
– volume: 149
  start-page: 153
  year: 2015
  ident: 10.1016/j.saa.2020.118986_bb0105
  article-title: Particle swarm optimization (PSO). A tutorial
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.020
SSID ssj0001820
ssib047304432
Score 2.462141
Snippet We propose a new wavelength selection algorithm based on combined moving window (CMW) and variable dimension particle swarm optimization (VDPSO) algorithm. CMW...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118986
SubjectTerms Intelligent optimization algorithm
Multivariate calibration
Near-infrared spectroscopy
Particle swarm optimization
Variable selection
Title A novel variable selection method based on combined moving window and intelligent optimization algorithm for variable selection in chemical modeling
URI https://dx.doi.org/10.1016/j.saa.2020.118986
https://www.proquest.com/docview/2449962516
Volume 246
WOSCitedRecordID wos000592410500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-3557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001820
  issn: 1386-1425
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa6DcReEAwmxmUyEk9EmRrn_lhNmwChaUgD9S1KHGfN1CZTk3b7Ify0_SDO8Y1Stok98BKlluNYOV_t7xyfCyEfgIOIOBC5W4okdIMI1J0i9GExrILcL5Byy7wFP77GJyfJeJyeDgY3JhZmOY2bJrm-Ti__q6ihDYSNobMPELcdFBrgHoQOVxA7XP9J8COnaZdi6ixBC5ZxUZ0sdYNiVuWiHdy5SjwlgNeDYgz3M2VXuAIFvb3SCZlMqs7eaWFZmel4TSefnrfzup_MpIPiLS9Bx3aThUDW2TGbo6bAWPG-x0JdNfbBZB75ARDZee-MpHXW1OuV08DsALahU09iII09CLAG71PRnFeiNu3jhTx2mSwwIOz3qYHq-812O9b238ki17PUFhDmSafpcGXR9pPI9QIVQG1WdRasrsugRqUq5fZfW4ayXlwcdDmmoWK4iZi-f6bnXts2rTOj8ZO7yGCIDIfI1BAbZIvFYQpr7dbo89H4i2UImDRfGgL0vM1pu_Q7XJvHXXxpjTlIOnT2jDzVegwdKfw9JwPR7JAnh6Z84A55LH2LefeC_BxRiUhqwEItWKhCJJWIpPDbIJIqRFKFSApQoCuIpKuIpBaRFBB520tqGFcjkhpEviTfj4_ODj-5uhiIy31_2Lu8Kj3fEwztARGyylCkYZhUQGc5K0om_CSOwzjlZRTzsvSCYQ70toqKZMjDKM39XbLZtI14RWhUFAy0HsxkB8sUSxMmeC6iMhCV7_OC7ZGh-eQZ15nysWDLNLtT1Hvko33kUqWJua9zYOSYaZ6r-GsGmLzvsfdG5hnIEg_28ka0iy4Dip6mEWgq0euHzOMN2bZ_J-8t2eznC_GOPOLLvu7m-2QjHif7Grq_AD0O3Ak
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+variable+selection+method+based+on+combined+moving+window+and+intelligent+optimization+algorithm+for+variable+selection+in+chemical+modeling&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Zhang%2C+Pengfei&rft.au=Xu%2C+Zhuopin&rft.au=Wang%2C+Qi&rft.au=Fan%2C+Shuang&rft.date=2021-02-05&rft.issn=1386-1425&rft.volume=246&rft.spage=118986&rft_id=info:doi/10.1016%2Fj.saa.2020.118986&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_saa_2020_118986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon