Integral representations for elliptic functions

We derive new integral representations for constituents of the classical theory of elliptic functions: the Eisenstein series, and Weierstrass' ℘ and ζ functions. The derivations proceed from the Laplace–Mellin representation of multipoles, and an elementary lemma on the summation of 2D geometri...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical analysis and applications Ročník 316; číslo 1; s. 142 - 160
Hlavní autoři: Dienstfrey, Andrew, Huang, Jingfang
Médium: Journal Article
Jazyk:angličtina
Vydáno: San Diego, CA Elsevier Inc 01.04.2006
Elsevier
Témata:
ISSN:0022-247X, 1096-0813
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We derive new integral representations for constituents of the classical theory of elliptic functions: the Eisenstein series, and Weierstrass' ℘ and ζ functions. The derivations proceed from the Laplace–Mellin representation of multipoles, and an elementary lemma on the summation of 2D geometric series. In addition, we present results concerning the analytic continuation of the Eisenstein series to an entire function in the complex plane, and the value of the conditionally convergent series, denoted by E ˜ 2 below, as a function of summation over increasingly large rectangles with arbitrary fixed aspect ratio. 1 1 Contribution of US Government, not subject to copyright.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2005.04.058