Data-driven prediction of convective heat transfer coefficients in internal walls of aero-engine bearing chambers using Mind Evolution Algorithm-Enhanced Bayesian regularization neural networks

•Studied two-phase flow dynamics in aero-engine bearing chambers.•Analyzed factors affecting local convective heat transfer coefficients.•Validated heat transfer predictions using regression and neural network models.•Enhanced accuracy with a Bayesian regularization neural network model. In the bear...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied thermal engineering Ročník 257; s. 124226
Hlavní autori: Wang, Jiang, Pan, Yingxiu, Wang, Yechun, Guo, Liejin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2024
Predmet:
ISSN:1359-4311
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Studied two-phase flow dynamics in aero-engine bearing chambers.•Analyzed factors affecting local convective heat transfer coefficients.•Validated heat transfer predictions using regression and neural network models.•Enhanced accuracy with a Bayesian regularization neural network model. In the bearing chambers of aero-engines, the complex nature of the oil–gas flow complicates the precise calculation of heat transfer coefficients. Addressing computational discrepancies, firstly, this study establishes a correlation analysis method, which considers the relationship between several independent variables including the geometric shape of the bearing chamber, rotational speed, oil flow rate, thermal sealing air mass, circumferential angle, axial position, and the dependent variable, which is the logarithmic Nusselt number on the internal wall. Secondly, four models are developed using Multiple Linear Regression, Back Propagation Neural Network, Deep Belief Neural Network, and Convolutional Neural Network with Long Short-Term Memory Network, yielding Mean Relative Percentage Errors (MRPE) of 5.14%, 2.80%, 4.66%, and 4.12%, respectively. Due to the limited predictive performance of these models, the neural network topology is further optimized. After repeated trial-and-error calculations, the neural network with three hidden layers was found to be the most effective. Finally, a novel BP Neural Network optimized by the Mind Evolution Algorithm-enhanced with Bayesian regularization (MEA-BPNN-Bayesian) model is proposed forpredicting the local convective heat transfer, achieving an MRPE of 1.71%. The model accurately predicted heat transfer coefficients, opening up new ways to improve heat management in bearing chambers.
AbstractList •Studied two-phase flow dynamics in aero-engine bearing chambers.•Analyzed factors affecting local convective heat transfer coefficients.•Validated heat transfer predictions using regression and neural network models.•Enhanced accuracy with a Bayesian regularization neural network model. In the bearing chambers of aero-engines, the complex nature of the oil–gas flow complicates the precise calculation of heat transfer coefficients. Addressing computational discrepancies, firstly, this study establishes a correlation analysis method, which considers the relationship between several independent variables including the geometric shape of the bearing chamber, rotational speed, oil flow rate, thermal sealing air mass, circumferential angle, axial position, and the dependent variable, which is the logarithmic Nusselt number on the internal wall. Secondly, four models are developed using Multiple Linear Regression, Back Propagation Neural Network, Deep Belief Neural Network, and Convolutional Neural Network with Long Short-Term Memory Network, yielding Mean Relative Percentage Errors (MRPE) of 5.14%, 2.80%, 4.66%, and 4.12%, respectively. Due to the limited predictive performance of these models, the neural network topology is further optimized. After repeated trial-and-error calculations, the neural network with three hidden layers was found to be the most effective. Finally, a novel BP Neural Network optimized by the Mind Evolution Algorithm-enhanced with Bayesian regularization (MEA-BPNN-Bayesian) model is proposed forpredicting the local convective heat transfer, achieving an MRPE of 1.71%. The model accurately predicted heat transfer coefficients, opening up new ways to improve heat management in bearing chambers.
ArticleNumber 124226
Author Guo, Liejin
Pan, Yingxiu
Wang, Jiang
Wang, Yechun
Author_xml – sequence: 1
  givenname: Jiang
  orcidid: 0009-0009-6933-7334
  surname: Wang
  fullname: Wang, Jiang
– sequence: 2
  givenname: Yingxiu
  surname: Pan
  fullname: Pan, Yingxiu
– sequence: 3
  givenname: Yechun
  surname: Wang
  fullname: Wang, Yechun
  email: wangycc@mail.xjtu.edu.cn
– sequence: 4
  givenname: Liejin
  surname: Guo
  fullname: Guo, Liejin
  email: lj-guo@mail.xjtu.edu.cn
BookMark eNqNkctu2zAQRbVIgebRf-AiW7kiqYcFdJOkTlogRTftWhiTQ4sOTRpDWkH6d_2zUHY27SoAAWLAuXeG91wUZz54LIprXi14xdvP2wXs9y6NSDtw6DcLUYl6wUUtRHtWnHPZ9GUtOf9YXMS4rSoull19Xvz9CglKTXZCz_aE2qpkg2fBMBX8hLmakI0IiSUCHw1SfkBjrLLoU2TW55OQPDj2DM7FWQpIocxLWI9sjUDWb5gaYbdGiuwQ5_KH9ZqtpuAOx3k3bhPIpnFXrvwIXqFmt_CC0YJnhJuDyyZ_4Njq8UB5mMf0HOgpXhUfDLiIn97uy-L3_erX3bfy8efD97ubx1JJWaVS6barRIPrvgeh-64HyVtluhyMWnItm9bUKESzNLoH3cu1apTsZO4DCb2p5GVxe_JVFGIkNIOy6bhRDsa6gVfDDGLYDv-CGGYQwwlENvnyn8me7A7o5b3y-5Mc80cnizTEGUNOy1JGNehg32f0Cgy0uik
CitedBy_id crossref_primary_10_1007_s10973_025_14250_4
crossref_primary_10_1007_s11668_025_02225_4
crossref_primary_10_1007_s10973_025_14570_5
crossref_primary_10_1088_1361_6501_adeacf
Cites_doi 10.1016/j.icheatmasstransfer.2019.104444
10.1115/GT2014-26756
10.1016/j.applthermaleng.2021.117067
10.1115/GTINDIA2012-9620
10.1016/j.energy.2024.130899
10.2514/6.2007-5033
10.1016/j.applthermaleng.2024.123043
10.1016/j.energy.2023.128981
10.1155/S1023621X99000147
10.1016/j.applthermaleng.2018.07.140
10.1016/j.knosys.2020.106622
10.1115/GT2019-91657
10.1115/GT2013-94362
10.1126/science.1127647
10.1115/93-GT-209
10.1016/j.energy.2023.128176
10.1115/1.1924485
10.1016/j.applthermaleng.2024.123255
10.1162/neco.2006.18.7.1527
10.1016/j.applthermaleng.2017.03.126
10.1115/97-GT-261
10.1162/089976602760128018
10.4249/scholarpedia.1482
10.1115/GT2012-68984
10.1115/1.2816687
10.1115/GT2003-38376
10.1115/GT2004-53698
10.1243/09544100JAERO40
10.1016/j.applthermaleng.2023.120698
10.1115/GT2004-53578
10.1115/GT2016-56747
10.1115/GT2011-46259
10.1115/GT2015-43506
10.1115/1.2770480
10.1115/GT2022-82275
10.1126/science.aaw4741
10.1115/1.483209
10.1016/j.energy.2019.05.230
10.1109/CVPR.2015.7299173
10.1115/GT2017-64410
10.1115/1.2906518
10.1109/72.572092
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2024.124226
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_applthermaleng_2024_124226
S1359431124018945
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
HZ~
R2-
~HD
ID FETCH-LOGICAL-c330t-cd67025eb99a2d979a316cf7135c81d356f4e2258fd9ad93bc5c37379aa3a9f03
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001302638800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sat Nov 29 03:21:14 EST 2025
Tue Nov 18 21:17:04 EST 2025
Wed Dec 04 16:47:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convection heat transfer coefficient
Multiple Linear Regression
Back Propagation Neural Network
CNN-LSTM
Deep Belief Neural Network
MEA-BPNN-Bayesian
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c330t-cd67025eb99a2d979a316cf7135c81d356f4e2258fd9ad93bc5c37379aa3a9f03
ORCID 0009-0009-6933-7334
ParticipantIDs crossref_citationtrail_10_1016_j_applthermaleng_2024_124226
crossref_primary_10_1016_j_applthermaleng_2024_124226
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2024_124226
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied thermal engineering
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – sequence: 0
  name: Elsevier Ltd
References S. Rodkey, S. Heister, S. Collicott, Physics of gas turbine engine bearing chambers, in: 43rd AIAA, ASME, SAE, ASEE Jt. Propuls. Conf. Exhib., American Institute of Aeronautics and Astronautics, Cincinnati, OH, 2007. https://doi.org/10.2514/6.2007-5033.
C. Zhou, C. Sun, Z. Liu, F.C.M. Lau, A C-LSTM neural network for text classification, (2015). https://doi.org/10.48550/arXiv.1511.08630.
Hinton, Salakhutdinov (b0290) 2006
M. Klingsporn, Advanced Transmission and Oil System Concepts for Modern Aero-Engines, in: Vol. 4 Turbo Expo 2004, ASME, Vienna, Austria, 2004. 391-398. https://doi.org/10.1115/GT2004-53578.
Castellano, Fanelli, Pelillo (b0255) 1997; 8
A. Glahn, S. Busam, S. Wittig, Local and mean heat transfer coefficients along the internal housing walls of aero engine bearing chambers, in: Vol. 3 Heat Transf. Electr. Power Ind. Cogener., ASME, Orlando, Florida, USA, 1997, p. V003T09A050. https://doi.org/10.1115/97-GT-261.
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b0260) 2014; 15
K. Farbrother, P.P. Cagaeo, K. Johnson, S. Ambrose, Investigation of droplet shedding in an aero-engine bearing chamber using convolutional neural networks, in: Vol. 8A Struct. Dyn.-Aerodyn. Excit. Damping Bear. Seal Dyn. Emerg. Methods Eng. Des. Anal. Addit. Manuf. Fatigue Fract. Life Predict., ASME, Rotterdam, Netherlands, 2022, p. V08AT22A013. https://doi.org/10.1115/GT2022-82275.
Hinton, Osindero, Teh (b0280) 2006; 18
P. Gorse, K. Willenborg, S. Busam, J. Ebner, K. Dullenkopf, S. Wittig, 3D-LDA Measurements in an Aero-Engine Bearing Chamber, in: Vol. 5 Turbo Expo 2003 Parts B, ASME, Atlanta, Georgia, USA, 2003. 257-265. https://doi.org/10.1115/GT2003-38376.
Rumelhart, Hinton, McClelland (b0240) 1987
D.G. Arcila, H. Morvan, K. Simmons, S. Ambrose, M. Walsh, B. Kakimpa, Modelling droplet heat and mass transfer in aero-engine bearing chambers, in: Vol. 2C Turbomach., ASME, Phoenix, Arizona, USA, 2019, p. V02CT41A034. https://doi.org/10.1115/GT2019-91657.
C. Wang, H.P. Morvan, S. Hibberd, K.A. Cliffe, Thin Film Modelling for Aero-Engine Bearing Chambers, in: Vol. 1 Aircr. Engine Ceram. Coal Biomass Altern. Fuels Wind Turbine Technol., ASME, Vancouver, British Columbia, Canada, 2011. 277-286. https://doi.org/10.1115/GT2011-46259.
Hinton (b0285) 2002; 14
A.A. Adeniyi, B. Chandra, K. Simmons, Computational study of a customised shallow-sump aero-engine bearing chamber with inserts to improve oil residence volume, in: Vol. 5B Heat Transf., ASME, Charlotte, North Carolina, USA, 2017, p. V05BT15A022. https://doi.org/10.1115/GT2017-64410.
Busam, Glahn, Wittig (b0095) 2000; 122
Kim, Cho (b0165) 2019; 182
Farrall, Hibberd, Simmons (b0235) 2008; 130
Sun, Chen, Wang, Wang (b0115) 2016; 37
Hee (b0005) 2018
Wang, Chen, Zhang (b0140) 2013; 32
Deissler (b0085) 1954; 76
Glahn, Kurreck, Willmann, Wittig (b0075) 1995
Glahn, Wittig (b0225) 1999; 5
P. Gorse, Tropfenentstehung und Impulsaustausch in Lagerkammern von Flugtriebwerken, Dissertation, Institut für Thermische Strömungsmaschinen, Karlsruher Institut für Technologie (KIT), 2007.
Mitchell (b0320) 1996
Assareh, Hoseinzadeh, Agarwal, Delpisheh, Dezhdar, Feyzi, Wang, Garcia, Gholamian, Hosseinzadeh, Ghodrat, Lee (b0180) 2023; 231
K. He, J. Sun, Convolutional neural networks at constrained time cost, in: 2015 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR, 2015. 5353-5360. https://doi.org/10.1109/CVPR.2015.7299173.
Kiannejad Amiri, Ghorbanzade Zaferani, Sarmasti Emami, Zahmatkesh, Pourhanasa, Sadeghi Namaghi, Klemeš, Bokhari, Hajiaghaei-Keshteli (b0175) 2023; 280
J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, (2012). https://doi.org/10.48550/arXiv.1206.2944.
Holland (b0315) 1992
Wang, Zhai, Yao, Ma, Wang (b0155) 2020; 110
Farrall, Hibberd, Simmons, Giddings (b0030) 2006; 220
Raissi, Yazdani, Karniadakis (b0150) 2020; 367
Zhang, Chen, Wu (b0135) 2015; 2
Heaton (b0250) 2008
Rooker (b0310) 1991; 12
M. Farrall, S. Hibberd, K. Simmons, Modelling oil droplet/film interaction in an aero-engine bearing chamber, Proc. ICLASS, 2003.
Glahn, Wittig (b0080) 1996; 118
Leng, Jia, Zheng, Deng, Niu (b0170) 2023; 282
B. Kakimpa, H.P. Morvan, S. Hibberd, Thin-Film Flow Over a Rotating Plate: An assessment of the suitability of VOF and Eulerian Thin-Film Methods for the numerical simulation of isothermal thin-film flows, in: Vol. 5C Heat Transf., ASME, Montreal, Quebec, Canada, 2015, p. V05CT15A027. https://doi.org/10.1115/GT2015-43506.
B. Kakimpa, H.P. Morvan, S. Hibberd, The numerical simulation of multi-scale oil films using coupled VOF and Eulerian thin-film models, in: Vol. 1 Aircr. Engine Fans Blowers Mar, ASME, Seoul, South Korea, 2016, p.V001T01A020. https://doi.org/10.1115/GT2016-56747.
W. Kurz, H.-J. Bauer, An approach for predicting the flow regime in an aero engine bearing chamber, in: Vol. 5C Heat Transf., ASME, Düsseldorf, Germany, 2014, p. V05CT16A037. https://doi.org/10.1115/GT2014-26756.
Hu, Ren, Yi, Liu, Lv, Zhao (b0120) 2017; 38
Chenyi, Keming, Mingqi (b0305) 1999
Kurz, Dullenkopf, Bauer (b0045) 2013
M. Farrall, K. Simmons, S. Hibberd, P. Gorse, A numerical model for oil film flow in an aero-engine bearing chamber and comparison with experimental data, in: Vol. 4 Turbo Expo 2004, ASME, Vienna, Austria, 2004. 409-417. https://doi.org/10.1115/GT2004-53698.
N. Kanike, D. Taluru, K. Nelanti, K.G. Gujar, Thermal analysis of gas turbine bearing compartment during normal operation period, in: ASME 2012 Gas Turbine India Conf., ASME, Mumbai, Maharashtra, India, 2012. 505-511. https://doi.org/10.1115/GTINDIA2012-9620.
W.N. Diao, Z.Q. Liu, W.J. Guo, Thermal calculation and analysis of aero-engine bearing chamber, in: 1994-2022 China Acad. J. Electron. Publ. House, China Aerospace Third Professional Information Network, China Association for Science and Technology Aero-Engine Industry-Academy Consortium (Preparatory), 2019, p. 9. https://doi.org/10.26914/c.cnkihy.2019.035955.
López-Belchí, Illán-Gómez, Cano-Izquierdo, García-Cascales (b0195) 2018; 144
Holland (b0270) 2012; 7
Verma, Nashine, Singh, Singh, Panwar (b0190) 2017; 120
He, Zhao, Chu (b0275) 2021; 212
E.D. Kay, H. Power, S. Hibberd, Film flow characteristics of droplet cooling in a simplified bearing chamber, in: Vol. 3A Heat Transf., ASME, San Antonio, Texas, USA, 2013, p. V03AT15A007. https://doi.org/10.1115/GT2013-94362.
Zhang (b0245) 2003; 5
John Wiley & Sons (b0010) 2015
C. Wang, H.P. Morvan, S. Hibberd, K.A. Cliffe, A. Anderson, A. Jacobs, Specifying and benchmarking a thin film model for oil systems applications in ANSYS fluent, in: Vol. 1 Aircr. Engine Ceram. Coal Biomass Altern. Fuels Controls Diagn. Instrum., ASME, Copenhagen, Denmark, 2012. 229-234. https://doi.org/10.1115/GT2012-68984.
Jradi, Marvillet, Jeday (b0200) 2024
Loyola-Fuentes, Nazemzadeh, Diaz-Bejarano, Mancin, Coletti (b0205) 2024; 248
Gorse, Busam, Dullenkopf (b0220) 2006; 128
S. Wittig, A. Glahn, J. Himmelsbach, Influence of high rotational speeds on heat transfer and oil film thickness in aero engine bearing chambers, in: Vol. 3A Gen., ASME, Cincinnati, Ohio, USA, 1993, p. V03AT15A060. https://doi.org/10.1115/93-GT-209.
Sun, Xie, Song, Li, Markides (b0185) 2021; 194
Zhang, Zhong, Mao, Xu, Lu, Ye, Guan, Pan, Tan (b0160) 2024; 294
Morrison, Johnson, Tatterson (b0215) 1991; 113
10.1016/j.applthermaleng.2024.124226_b0125
John Wiley & Sons (10.1016/j.applthermaleng.2024.124226_b0010) 2015
López-Belchí (10.1016/j.applthermaleng.2024.124226_b0195) 2018; 144
10.1016/j.applthermaleng.2024.124226_b0040
Busam (10.1016/j.applthermaleng.2024.124226_b0095) 2000; 122
Chenyi (10.1016/j.applthermaleng.2024.124226_b0305) 1999
Kurz (10.1016/j.applthermaleng.2024.124226_b0045) 2013
Sun (10.1016/j.applthermaleng.2024.124226_b0115) 2016; 37
Mitchell (10.1016/j.applthermaleng.2024.124226_b0320) 1996
Hee (10.1016/j.applthermaleng.2024.124226_b0005) 2018
Deissler (10.1016/j.applthermaleng.2024.124226_b0085) 1954; 76
Zhang (10.1016/j.applthermaleng.2024.124226_b0160) 2024; 294
Leng (10.1016/j.applthermaleng.2024.124226_b0170) 2023; 282
Holland (10.1016/j.applthermaleng.2024.124226_b0315) 1992
Srivastava (10.1016/j.applthermaleng.2024.124226_b0260) 2014; 15
10.1016/j.applthermaleng.2024.124226_b0035
Farrall (10.1016/j.applthermaleng.2024.124226_b0030) 2006; 220
10.1016/j.applthermaleng.2024.124226_b0110
Raissi (10.1016/j.applthermaleng.2024.124226_b0150) 2020; 367
Jradi (10.1016/j.applthermaleng.2024.124226_b0200) 2024
Holland (10.1016/j.applthermaleng.2024.124226_b0270) 2012; 7
Verma (10.1016/j.applthermaleng.2024.124226_b0190) 2017; 120
10.1016/j.applthermaleng.2024.124226_b0230
Rooker (10.1016/j.applthermaleng.2024.124226_b0310) 1991; 12
Glahn (10.1016/j.applthermaleng.2024.124226_b0225) 1999; 5
10.1016/j.applthermaleng.2024.124226_b0070
Gorse (10.1016/j.applthermaleng.2024.124226_b0220) 2006; 128
Glahn (10.1016/j.applthermaleng.2024.124226_b0075) 1995
Glahn (10.1016/j.applthermaleng.2024.124226_b0080) 1996; 118
Castellano (10.1016/j.applthermaleng.2024.124226_b0255) 1997; 8
Hinton (10.1016/j.applthermaleng.2024.124226_b0290) 2006
Wang (10.1016/j.applthermaleng.2024.124226_b0155) 2020; 110
Sun (10.1016/j.applthermaleng.2024.124226_b0185) 2021; 194
Hu (10.1016/j.applthermaleng.2024.124226_b0120) 2017; 38
Rumelhart (10.1016/j.applthermaleng.2024.124226_b0240) 1987
10.1016/j.applthermaleng.2024.124226_b0105
Wang (10.1016/j.applthermaleng.2024.124226_b0140) 2013; 32
10.1016/j.applthermaleng.2024.124226_b0145
10.1016/j.applthermaleng.2024.124226_b0025
10.1016/j.applthermaleng.2024.124226_b0300
10.1016/j.applthermaleng.2024.124226_b0100
10.1016/j.applthermaleng.2024.124226_b0265
10.1016/j.applthermaleng.2024.124226_b0020
10.1016/j.applthermaleng.2024.124226_b0065
Farrall (10.1016/j.applthermaleng.2024.124226_b0235) 2008; 130
10.1016/j.applthermaleng.2024.124226_b0060
Zhang (10.1016/j.applthermaleng.2024.124226_b0245) 2003; 5
Assareh (10.1016/j.applthermaleng.2024.124226_b0180) 2023; 231
He (10.1016/j.applthermaleng.2024.124226_b0275) 2021; 212
Hinton (10.1016/j.applthermaleng.2024.124226_b0280) 2006; 18
10.1016/j.applthermaleng.2024.124226_b0015
Hinton (10.1016/j.applthermaleng.2024.124226_b0285) 2002; 14
Kim (10.1016/j.applthermaleng.2024.124226_b0165) 2019; 182
10.1016/j.applthermaleng.2024.124226_b0055
10.1016/j.applthermaleng.2024.124226_b0210
10.1016/j.applthermaleng.2024.124226_b0130
10.1016/j.applthermaleng.2024.124226_b0295
Loyola-Fuentes (10.1016/j.applthermaleng.2024.124226_b0205) 2024; 248
10.1016/j.applthermaleng.2024.124226_b0050
10.1016/j.applthermaleng.2024.124226_b0090
Zhang (10.1016/j.applthermaleng.2024.124226_b0135) 2015; 2
Kiannejad Amiri (10.1016/j.applthermaleng.2024.124226_b0175) 2023; 280
Heaton (10.1016/j.applthermaleng.2024.124226_b0250) 2008
Morrison (10.1016/j.applthermaleng.2024.124226_b0215) 1991; 113
References_xml – volume: 113
  start-page: 119
  year: 1991
  end-page: 125
  ident: b0215
  article-title: 3-D Laser Anemometer Measurements in a Labyrinth Seal
  publication-title: J. Eng. Gas Turb. Power
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b0260
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 122
  start-page: 314
  year: 2000
  end-page: 320
  ident: b0095
  article-title: Internal bearing chamber wall heat transfer as a function of operating conditions and chamber geometry
  publication-title: J. Eng. Gas Turb. Power
– volume: 7
  start-page: 1482
  year: 2012
  ident: b0270
  article-title: Genetic algorithms
  publication-title: Scholarpedia
– reference: W. Kurz, H.-J. Bauer, An approach for predicting the flow regime in an aero engine bearing chamber, in: Vol. 5C Heat Transf., ASME, Düsseldorf, Germany, 2014, p. V05CT16A037. https://doi.org/10.1115/GT2014-26756.
– reference: P. Gorse, Tropfenentstehung und Impulsaustausch in Lagerkammern von Flugtriebwerken, Dissertation, Institut für Thermische Strömungsmaschinen, Karlsruher Institut für Technologie (KIT), 2007.
– year: 2015
  ident: b0010
  article-title: The Jet Engine
– volume: 76
  start-page: 73
  year: 1954
  end-page: 83
  ident: b0085
  article-title: Heat transfer and fluid friction for fully developed turbulent flow of air and supercritical water with variable fluid properties
  publication-title: J. Fluids Eng.
– reference: M. Klingsporn, Advanced Transmission and Oil System Concepts for Modern Aero-Engines, in: Vol. 4 Turbo Expo 2004, ASME, Vienna, Austria, 2004. 391-398. https://doi.org/10.1115/GT2004-53578.
– reference: W.N. Diao, Z.Q. Liu, W.J. Guo, Thermal calculation and analysis of aero-engine bearing chamber, in: 1994-2022 China Acad. J. Electron. Publ. House, China Aerospace Third Professional Information Network, China Association for Science and Technology Aero-Engine Industry-Academy Consortium (Preparatory), 2019, p. 9. https://doi.org/10.26914/c.cnkihy.2019.035955.
– year: 1995
  ident: b0075
  article-title: Feasibility study on oil droplet flow investigations inside aero engine bearing chambers: PDPA techniques in combination with numerical approaches
  publication-title: ASME Digital Collection
– volume: 110
  year: 2020
  ident: b0155
  article-title: Established prediction models of thermal conductivity of hybrid nanofluids based on artificial neural network (ANN) models in waste heat system
  publication-title: Int. Commun. Heat Mass Transf.
– volume: 294
  year: 2024
  ident: b0160
  article-title: Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF
  publication-title: Energy
– volume: 120
  start-page: 219
  year: 2017
  end-page: 227
  ident: b0190
  article-title: ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes
  publication-title: Appl. Therm. Eng.
– reference: J. Snoek, H. Larochelle, R.P. Adams, Practical Bayesian optimization of machine learning algorithms, (2012). https://doi.org/10.48550/arXiv.1206.2944.
– volume: 5
  start-page: 21
  year: 2003
  ident: b0245
  article-title: Estimation of the reasonable number of hidden layer nodes in forward neural networks
  publication-title: Comput. Eng. Appl.
– volume: 37
  start-page: 1060
  year: 2016
  end-page: 1073
  ident: b0115
  article-title: Oil droplets fractions and oil droplets/air energy transfer analysis in bearing chamber
  publication-title: Acta Aeronaut. Astronaut. Sin.
– volume: 32
  start-page: 328
  year: 2013
  end-page: 332
  ident: b0140
  article-title: The oil/air two phase flow pattern recognition in bearing chamber of aircraft engine based on clustering analysis
  publication-title: Mech. Sci. Technol. Aerosp. Eng.
– reference: A.A. Adeniyi, B. Chandra, K. Simmons, Computational study of a customised shallow-sump aero-engine bearing chamber with inserts to improve oil residence volume, in: Vol. 5B Heat Transf., ASME, Charlotte, North Carolina, USA, 2017, p. V05BT15A022. https://doi.org/10.1115/GT2017-64410.
– volume: 220
  start-page: 197
  year: 2006
  end-page: 202
  ident: b0030
  article-title: Prediction of air/oil exit flows in a commercial aero-engine bearing chamber
  publication-title: Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
– volume: 182
  start-page: 72
  year: 2019
  end-page: 81
  ident: b0165
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
– reference: K. He, J. Sun, Convolutional neural networks at constrained time cost, in: 2015 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR, 2015. 5353-5360. https://doi.org/10.1109/CVPR.2015.7299173.
– year: 2008
  ident: b0250
  article-title: Introduction to Neural Networks for Java
– reference: C. Zhou, C. Sun, Z. Liu, F.C.M. Lau, A C-LSTM neural network for text classification, (2015). https://doi.org/10.48550/arXiv.1511.08630.
– volume: 194
  year: 2021
  ident: b0185
  article-title: Thermal characteristics of in-tube upward supercritical CO
  publication-title: Appl. Therm. Eng.
– start-page: 2251
  year: 2013
  end-page: 2259
  ident: b0045
  article-title: Influences on the oil split between the offtakes of an aero-engine bearing chamber
  publication-title: ASME Digital Collection
– volume: 8
  start-page: 519
  year: 1997
  end-page: 531
  ident: b0255
  article-title: An iterative pruning algorithm for feedforward neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 282
  year: 2023
  ident: b0170
  article-title: Dynamic liquid level prediction in oil wells during oil extraction based on WOA-AM-LSTM-ANN model using dynamic and static information
  publication-title: Energy
– reference: P. Gorse, K. Willenborg, S. Busam, J. Ebner, K. Dullenkopf, S. Wittig, 3D-LDA Measurements in an Aero-Engine Bearing Chamber, in: Vol. 5 Turbo Expo 2003 Parts B, ASME, Atlanta, Georgia, USA, 2003. 257-265. https://doi.org/10.1115/GT2003-38376.
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b0280
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 144
  start-page: 321
  year: 2018
  end-page: 330
  ident: b0195
  article-title: GMDH ANN to optimize model development: prediction of the pressure drop and the heat transfer coefficient during condensation within mini-channels
  publication-title: Appl. Therm. Eng.
– reference: A. Glahn, S. Busam, S. Wittig, Local and mean heat transfer coefficients along the internal housing walls of aero engine bearing chambers, in: Vol. 3 Heat Transf. Electr. Power Ind. Cogener., ASME, Orlando, Florida, USA, 1997, p. V003T09A050. https://doi.org/10.1115/97-GT-261.
– year: 1992
  ident: b0315
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
  publication-title: The MIT Press
– year: 2018
  ident: b0005
  article-title: Experimental and Computational Investigation into Oil Shedding from an Aeroengine Ball Bearing
– reference: B. Kakimpa, H.P. Morvan, S. Hibberd, The numerical simulation of multi-scale oil films using coupled VOF and Eulerian thin-film models, in: Vol. 1 Aircr. Engine Fans Blowers Mar, ASME, Seoul, South Korea, 2016, p.V001T01A020. https://doi.org/10.1115/GT2016-56747.
– volume: 367
  start-page: 1026
  year: 2020
  end-page: 1030
  ident: b0150
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
– reference: K. Farbrother, P.P. Cagaeo, K. Johnson, S. Ambrose, Investigation of droplet shedding in an aero-engine bearing chamber using convolutional neural networks, in: Vol. 8A Struct. Dyn.-Aerodyn. Excit. Damping Bear. Seal Dyn. Emerg. Methods Eng. Des. Anal. Addit. Manuf. Fatigue Fract. Life Predict., ASME, Rotterdam, Netherlands, 2022, p. V08AT22A013. https://doi.org/10.1115/GT2022-82275.
– reference: S. Rodkey, S. Heister, S. Collicott, Physics of gas turbine engine bearing chambers, in: 43rd AIAA, ASME, SAE, ASEE Jt. Propuls. Conf. Exhib., American Institute of Aeronautics and Astronautics, Cincinnati, OH, 2007. https://doi.org/10.2514/6.2007-5033.
– year: 2024
  ident: b0200
  article-title: Multi-objective optimization and performance assessment of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy interference system (ANFIS) for estimation of fouling in phosphoric acid/steam heat exchanger
  publication-title: Appl. Therm. Eng.
– start-page: 3
  year: 1999
  end-page: 7
  ident: b0305
  article-title: The framework and new progress of machine learning based on Mind Evolutionary Algorithm
  publication-title: J. Taiyuan Univ. Technol.
– reference: C. Wang, H.P. Morvan, S. Hibberd, K.A. Cliffe, Thin Film Modelling for Aero-Engine Bearing Chambers, in: Vol. 1 Aircr. Engine Ceram. Coal Biomass Altern. Fuels Wind Turbine Technol., ASME, Vancouver, British Columbia, Canada, 2011. 277-286. https://doi.org/10.1115/GT2011-46259.
– volume: 2
  start-page: 44
  year: 2015
  end-page: 46
  ident: b0135
  article-title: Study of the identification methods of gas-liquid two-phase flow regime in aero-engine bearing chamber based on neural network
  publication-title: Lubr. Eng.
– volume: 130
  year: 2008
  ident: b0235
  article-title: The effect of initial injection conditions on the oil droplet motion in a simplified bearing chamber
  publication-title: J. Eng. Gas Turb. Power
– reference: D.G. Arcila, H. Morvan, K. Simmons, S. Ambrose, M. Walsh, B. Kakimpa, Modelling droplet heat and mass transfer in aero-engine bearing chambers, in: Vol. 2C Turbomach., ASME, Phoenix, Arizona, USA, 2019, p. V02CT41A034. https://doi.org/10.1115/GT2019-91657.
– volume: 128
  start-page: 103
  year: 2006
  end-page: 110
  ident: b0220
  article-title: Influence of operating condition and geometry on the oil film thickness in aero-engine bearing chambers
  publication-title: J. Eng. Gas Turb. Power
– reference: E.D. Kay, H. Power, S. Hibberd, Film flow characteristics of droplet cooling in a simplified bearing chamber, in: Vol. 3A Heat Transf., ASME, San Antonio, Texas, USA, 2013, p. V03AT15A007. https://doi.org/10.1115/GT2013-94362.
– year: 2006
  ident: b0290
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 280
  year: 2023
  ident: b0175
  article-title: Multi-objective optimization of thermophysical properties GO powders-DW/EG Nf by RSM, NSGA-II, ANN, MLP and ML
  publication-title: Energy
– volume: 248
  year: 2024
  ident: b0205
  article-title: A framework for data regression of heat transfer data using machine learning
  publication-title: Appl. Therm. Eng.
– reference: M. Farrall, S. Hibberd, K. Simmons, Modelling oil droplet/film interaction in an aero-engine bearing chamber, Proc. ICLASS, 2003.
– reference: C. Wang, H.P. Morvan, S. Hibberd, K.A. Cliffe, A. Anderson, A. Jacobs, Specifying and benchmarking a thin film model for oil systems applications in ANSYS fluent, in: Vol. 1 Aircr. Engine Ceram. Coal Biomass Altern. Fuels Controls Diagn. Instrum., ASME, Copenhagen, Denmark, 2012. 229-234. https://doi.org/10.1115/GT2012-68984.
– volume: 118
  start-page: 578
  year: 1996
  end-page: 583
  ident: b0080
  article-title: Two-phase air/oil flow in aero engine bearing chambers: characterization of oil film flows
  publication-title: J. Eng. Gas Turb. Power
– volume: 212
  year: 2021
  ident: b0275
  article-title: AutoML: A survey of the state-of-the-art
  publication-title: Knowl.-Based Syst.
– year: 1996
  ident: b0320
  article-title: An Introduction to Genetic Algorithms
  publication-title: The MIT Press
– volume: 231
  year: 2023
  ident: b0180
  article-title: A transient simulation for a novel solar-geothermal cogeneration system with a selection of heat transfer fluids using thermodynamics analysis and ANN intelligent (AI) modeling
  publication-title: Appl. Therm. Eng.
– reference: M. Farrall, K. Simmons, S. Hibberd, P. Gorse, A numerical model for oil film flow in an aero-engine bearing chamber and comparison with experimental data, in: Vol. 4 Turbo Expo 2004, ASME, Vienna, Austria, 2004. 409-417. https://doi.org/10.1115/GT2004-53698.
– reference: N. Kanike, D. Taluru, K. Nelanti, K.G. Gujar, Thermal analysis of gas turbine bearing compartment during normal operation period, in: ASME 2012 Gas Turbine India Conf., ASME, Mumbai, Maharashtra, India, 2012. 505-511. https://doi.org/10.1115/GTINDIA2012-9620.
– volume: 14
  start-page: 1771
  year: 2002
  end-page: 1800
  ident: b0285
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
– reference: S. Wittig, A. Glahn, J. Himmelsbach, Influence of high rotational speeds on heat transfer and oil film thickness in aero engine bearing chambers, in: Vol. 3A Gen., ASME, Cincinnati, Ohio, USA, 1993, p. V03AT15A060. https://doi.org/10.1115/93-GT-209.
– volume: 5
  start-page: 155
  year: 1999
  end-page: 165
  ident: b0225
  article-title: Two-phase air/oil flow in aero-engine bearing chambers – assessment of an analytical prediction method for the internal wall heat transfer
  publication-title: Int. J. Rotating Mach.
– volume: 38
  start-page: 138
  year: 2017
  end-page: 148
  ident: b0120
  article-title: Numerical simulation and experiment for heat transfer between inner wall of bearing chamber
  publication-title: Acta Aeronaut. Astronaut. Sin.
– reference: B. Kakimpa, H.P. Morvan, S. Hibberd, Thin-Film Flow Over a Rotating Plate: An assessment of the suitability of VOF and Eulerian Thin-Film Methods for the numerical simulation of isothermal thin-film flows, in: Vol. 5C Heat Transf., ASME, Montreal, Quebec, Canada, 2015, p. V05CT15A027. https://doi.org/10.1115/GT2015-43506.
– start-page: 45
  year: 1987
  end-page: 76
  ident: b0240
  article-title: A general framework for parallel distributed processing
  publication-title: Parallel Distrib. Process. Explor. Microstruct. Cogn. Found
– volume: 12
  start-page: 102
  year: 1991
  end-page: 103
  ident: b0310
  article-title: Genetic algorithms in search, optimization, and machine learning
  publication-title: AI Mag.
– volume: 110
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.124226_b0155
  article-title: Established prediction models of thermal conductivity of hybrid nanofluids based on artificial neural network (ANN) models in waste heat system
  publication-title: Int. Commun. Heat Mass Transf.
  doi: 10.1016/j.icheatmasstransfer.2019.104444
– start-page: 3
  year: 1999
  ident: 10.1016/j.applthermaleng.2024.124226_b0305
  article-title: The framework and new progress of machine learning based on Mind Evolutionary Algorithm
  publication-title: J. Taiyuan Univ. Technol.
– volume: 32
  start-page: 328
  year: 2013
  ident: 10.1016/j.applthermaleng.2024.124226_b0140
  article-title: The oil/air two phase flow pattern recognition in bearing chamber of aircraft engine based on clustering analysis
  publication-title: Mech. Sci. Technol. Aerosp. Eng.
– ident: 10.1016/j.applthermaleng.2024.124226_b0050
  doi: 10.1115/GT2014-26756
– ident: 10.1016/j.applthermaleng.2024.124226_b0230
– volume: 194
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124226_b0185
  article-title: Thermal characteristics of in-tube upward supercritical CO2 flows and a new heat transfer prediction model based on artificial neural networks (ANN)
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2021.117067
– ident: 10.1016/j.applthermaleng.2024.124226_b0100
  doi: 10.1115/GTINDIA2012-9620
– volume: 37
  start-page: 1060
  year: 2016
  ident: 10.1016/j.applthermaleng.2024.124226_b0115
  article-title: Oil droplets fractions and oil droplets/air energy transfer analysis in bearing chamber
  publication-title: Acta Aeronaut. Astronaut. Sin.
– volume: 294
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.124226_b0160
  article-title: Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130899
– ident: 10.1016/j.applthermaleng.2024.124226_b0295
– ident: 10.1016/j.applthermaleng.2024.124226_b0110
  doi: 10.2514/6.2007-5033
– volume: 248
  year: 2024
  ident: 10.1016/j.applthermaleng.2024.124226_b0205
  article-title: A framework for data regression of heat transfer data using machine learning
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.123043
– year: 2018
  ident: 10.1016/j.applthermaleng.2024.124226_b0005
– volume: 282
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124226_b0170
  article-title: Dynamic liquid level prediction in oil wells during oil extraction based on WOA-AM-LSTM-ANN model using dynamic and static information
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128981
– year: 2008
  ident: 10.1016/j.applthermaleng.2024.124226_b0250
– volume: 5
  start-page: 155
  year: 1999
  ident: 10.1016/j.applthermaleng.2024.124226_b0225
  article-title: Two-phase air/oil flow in aero-engine bearing chambers – assessment of an analytical prediction method for the internal wall heat transfer
  publication-title: Int. J. Rotating Mach.
  doi: 10.1155/S1023621X99000147
– volume: 144
  start-page: 321
  year: 2018
  ident: 10.1016/j.applthermaleng.2024.124226_b0195
  article-title: GMDH ANN to optimize model development: prediction of the pressure drop and the heat transfer coefficient during condensation within mini-channels
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.07.140
– year: 1996
  ident: 10.1016/j.applthermaleng.2024.124226_b0320
  article-title: An Introduction to Genetic Algorithms
  publication-title: The MIT Press
– volume: 212
  year: 2021
  ident: 10.1016/j.applthermaleng.2024.124226_b0275
  article-title: AutoML: A survey of the state-of-the-art
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106622
– ident: 10.1016/j.applthermaleng.2024.124226_b0125
  doi: 10.1115/GT2019-91657
– ident: 10.1016/j.applthermaleng.2024.124226_b0105
  doi: 10.1115/GT2013-94362
– year: 2006
  ident: 10.1016/j.applthermaleng.2024.124226_b0290
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.applthermaleng.2024.124226_b0070
  doi: 10.1115/93-GT-209
– start-page: 45
  year: 1987
  ident: 10.1016/j.applthermaleng.2024.124226_b0240
  article-title: A general framework for parallel distributed processing
– volume: 280
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124226_b0175
  article-title: Multi-objective optimization of thermophysical properties GO powders-DW/EG Nf by RSM, NSGA-II, ANN, MLP and ML
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128176
– volume: 128
  start-page: 103
  year: 2006
  ident: 10.1016/j.applthermaleng.2024.124226_b0220
  article-title: Influence of operating condition and geometry on the oil film thickness in aero-engine bearing chambers
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.1924485
– year: 1992
  ident: 10.1016/j.applthermaleng.2024.124226_b0315
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
  publication-title: The MIT Press
– volume: 2
  start-page: 44
  year: 2015
  ident: 10.1016/j.applthermaleng.2024.124226_b0135
  article-title: Study of the identification methods of gas-liquid two-phase flow regime in aero-engine bearing chamber based on neural network
  publication-title: Lubr. Eng.
– year: 2024
  ident: 10.1016/j.applthermaleng.2024.124226_b0200
  article-title: Multi-objective optimization and performance assessment of response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy interference system (ANFIS) for estimation of fouling in phosphoric acid/steam heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2024.123255
– volume: 38
  start-page: 138
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.124226_b0120
  article-title: Numerical simulation and experiment for heat transfer between inner wall of bearing chamber
  publication-title: Acta Aeronaut. Astronaut. Sin.
– volume: 18
  start-page: 1527
  year: 2006
  ident: 10.1016/j.applthermaleng.2024.124226_b0280
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 5
  start-page: 21
  year: 2003
  ident: 10.1016/j.applthermaleng.2024.124226_b0245
  article-title: Estimation of the reasonable number of hidden layer nodes in forward neural networks
  publication-title: Comput. Eng. Appl.
– volume: 120
  start-page: 219
  year: 2017
  ident: 10.1016/j.applthermaleng.2024.124226_b0190
  article-title: ANN: prediction of an experimental heat transfer analysis of concentric tube heat exchanger with corrugated inner tubes
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.03.126
– ident: 10.1016/j.applthermaleng.2024.124226_b0090
  doi: 10.1115/97-GT-261
– volume: 14
  start-page: 1771
  year: 2002
  ident: 10.1016/j.applthermaleng.2024.124226_b0285
  article-title: Training products of experts by minimizing contrastive divergence
  publication-title: Neural Comput.
  doi: 10.1162/089976602760128018
– volume: 7
  start-page: 1482
  year: 2012
  ident: 10.1016/j.applthermaleng.2024.124226_b0270
  article-title: Genetic algorithms
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.1482
– ident: 10.1016/j.applthermaleng.2024.124226_b0265
– ident: 10.1016/j.applthermaleng.2024.124226_b0040
  doi: 10.1115/GT2012-68984
– ident: 10.1016/j.applthermaleng.2024.124226_b0020
– volume: 118
  start-page: 578
  year: 1996
  ident: 10.1016/j.applthermaleng.2024.124226_b0080
  article-title: Two-phase air/oil flow in aero engine bearing chambers: characterization of oil film flows
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.2816687
– ident: 10.1016/j.applthermaleng.2024.124226_b0210
  doi: 10.1115/GT2003-38376
– ident: 10.1016/j.applthermaleng.2024.124226_b0025
  doi: 10.1115/GT2004-53698
– volume: 220
  start-page: 197
  year: 2006
  ident: 10.1016/j.applthermaleng.2024.124226_b0030
  article-title: Prediction of air/oil exit flows in a commercial aero-engine bearing chamber
  publication-title: Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
  doi: 10.1243/09544100JAERO40
– volume: 231
  year: 2023
  ident: 10.1016/j.applthermaleng.2024.124226_b0180
  article-title: A transient simulation for a novel solar-geothermal cogeneration system with a selection of heat transfer fluids using thermodynamics analysis and ANN intelligent (AI) modeling
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2023.120698
– ident: 10.1016/j.applthermaleng.2024.124226_b0015
  doi: 10.1115/GT2004-53578
– year: 1995
  ident: 10.1016/j.applthermaleng.2024.124226_b0075
  article-title: Feasibility study on oil droplet flow investigations inside aero engine bearing chambers: PDPA techniques in combination with numerical approaches
  publication-title: ASME Digital Collection
– ident: 10.1016/j.applthermaleng.2024.124226_b0060
  doi: 10.1115/GT2016-56747
– ident: 10.1016/j.applthermaleng.2024.124226_b0035
  doi: 10.1115/GT2011-46259
– ident: 10.1016/j.applthermaleng.2024.124226_b0055
  doi: 10.1115/GT2015-43506
– volume: 130
  year: 2008
  ident: 10.1016/j.applthermaleng.2024.124226_b0235
  article-title: The effect of initial injection conditions on the oil droplet motion in a simplified bearing chamber
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.2770480
– ident: 10.1016/j.applthermaleng.2024.124226_b0145
  doi: 10.1115/GT2022-82275
– volume: 367
  start-page: 1026
  year: 2020
  ident: 10.1016/j.applthermaleng.2024.124226_b0150
  article-title: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations
  publication-title: Science
  doi: 10.1126/science.aaw4741
– year: 2015
  ident: 10.1016/j.applthermaleng.2024.124226_b0010
– ident: 10.1016/j.applthermaleng.2024.124226_b0130
– volume: 76
  start-page: 73
  year: 1954
  ident: 10.1016/j.applthermaleng.2024.124226_b0085
  article-title: Heat transfer and fluid friction for fully developed turbulent flow of air and supercritical water with variable fluid properties
  publication-title: J. Fluids Eng.
– volume: 122
  start-page: 314
  year: 2000
  ident: 10.1016/j.applthermaleng.2024.124226_b0095
  article-title: Internal bearing chamber wall heat transfer as a function of operating conditions and chamber geometry
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.483209
– volume: 182
  start-page: 72
  year: 2019
  ident: 10.1016/j.applthermaleng.2024.124226_b0165
  article-title: Predicting residential energy consumption using CNN-LSTM neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.230
– ident: 10.1016/j.applthermaleng.2024.124226_b0300
  doi: 10.1109/CVPR.2015.7299173
– volume: 12
  start-page: 102
  year: 1991
  ident: 10.1016/j.applthermaleng.2024.124226_b0310
  article-title: Genetic algorithms in search, optimization, and machine learning
  publication-title: AI Mag.
– ident: 10.1016/j.applthermaleng.2024.124226_b0065
  doi: 10.1115/GT2017-64410
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.applthermaleng.2024.124226_b0260
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 2251
  year: 2013
  ident: 10.1016/j.applthermaleng.2024.124226_b0045
  article-title: Influences on the oil split between the offtakes of an aero-engine bearing chamber
  publication-title: ASME Digital Collection
– volume: 113
  start-page: 119
  year: 1991
  ident: 10.1016/j.applthermaleng.2024.124226_b0215
  article-title: 3-D Laser Anemometer Measurements in a Labyrinth Seal
  publication-title: J. Eng. Gas Turb. Power
  doi: 10.1115/1.2906518
– volume: 8
  start-page: 519
  year: 1997
  ident: 10.1016/j.applthermaleng.2024.124226_b0255
  article-title: An iterative pruning algorithm for feedforward neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.572092
SSID ssj0012874
Score 2.488256
Snippet •Studied two-phase flow dynamics in aero-engine bearing chambers.•Analyzed factors affecting local convective heat transfer coefficients.•Validated heat...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124226
SubjectTerms Back Propagation Neural Network
CNN-LSTM
Convection heat transfer coefficient
Deep Belief Neural Network
MEA-BPNN-Bayesian
Multiple Linear Regression
Title Data-driven prediction of convective heat transfer coefficients in internal walls of aero-engine bearing chambers using Mind Evolution Algorithm-Enhanced Bayesian regularization neural networks
URI https://dx.doi.org/10.1016/j.applthermaleng.2024.124226
Volume 257
WOSCitedRecordID wos001302638800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0012874
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhA8IG4T4yY_7K1K1eZSx-IBFSg3iWkSQ-qeIsdx1lRdOqVpKT-PN34W59jOZR1IRYiXqIp8iXs-O5-dc75DyBFjClWlYKaJQej4rhs7sYLpzqTHQuGpoWKpTjbBjo_DyYSfdDo_q1iY9ZzlebjZ8Mv_amq4B8bG0Nm_MHfdKNyA32B0uILZ4bqT4d-KUjhJgasYKgAkmaxIofYw1-sb8sMS00MAaVUFCoRoJQkd7ZblWkNC09RvYm7UlYUqFo7S2oXdGP4xHao7FZhNZNld6fOGz7C7747Xdmzd0fx8UWTl9MIZ51PjZvBafFc6ZrNQ5-j9akNAu6ipCZ3lxiN92ebLFUlGmnoBZVQjn9h8CrBOxdByffPEnOueQblNttoueqbkdFXPiverhTmdUDMrQ25PQVx_y6OkDs9pfKFwNfcC7gBDGrSXe9cIYl97dZhTjFkPHQfsoGBMPeysByTIdbcUuzUH-IJdYA9AjAYh94MbZN9lAYdXxP7o43jyqf6ihXkF9ObfPtItctT4Gv65z9_TpRYFOr1H7tq9Cx0ZzN0nHZU_IHdaipYPyY8W-miDPrpIaYM-iuijFfpoG300y2mFPqrRh1Vb6KMWfbRCH9Xoo4g-WqOPXkcfrdBHr6KPGvTRCn2PyNd349M3HxybJcSRntcvHZkMGRB3FXMu3IQzLrzBUKaYelLCZswLhqmv4K0VpgkXCfdiGcA65EE54Qme9r0DspcvcvWY0Fj2eRIIHoYD4UNzXDIV-ynz3VRwaOiQvKyMEUkroY-ZXOZR5Ss5i66aMkJTRsaUhySoa18aKZkd672q7B5ZWmzobgTQ3amFJ__cwlNyu5l1z8heWazUc3JTrstsWbywWP8FRz71MA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+prediction+of+convective+heat+transfer+coefficients+in+internal+walls+of+aero-engine+bearing+chambers+using+Mind+Evolution+Algorithm-Enhanced+Bayesian+regularization+neural+networks&rft.jtitle=Applied+thermal+engineering&rft.au=Wang%2C+Jiang&rft.au=Pan%2C+Yingxiu&rft.au=Wang%2C+Yechun&rft.au=Guo%2C+Liejin&rft.date=2024-12-01&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=257&rft_id=info:doi/10.1016%2Fj.applthermaleng.2024.124226&rft.externalDocID=S1359431124018945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon